Electronic excitation of gaseous pyrrole and pyrazole by inner-shell electron energy loss spectroscopy - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 1998

Electronic excitation of gaseous pyrrole and pyrazole by inner-shell electron energy loss spectroscopy

Résumé

The spectroscopy of the unoccupied molecular orbitals of gaseous pyrrole and pyrazole has been studied by electron impact under electric dipole scattering conditions (2 KeV, small angle) and the inner-shell electron energy loss method. The core-excitation spectra have been recorded at the C1s and N1s edges with 0.2 eV resolution, resolution allowing to observe separately the transitions from the carbon atoms with different chemical environment. Ab initio calculations, using the equivalent core model, were performed to help in the interpretation of the spectral features. The spectra are dominated by transitions to the π* and σ* molecular orbitals. The calculations confirm that the 3b1(π*) orbital is the lowest-energy unoccupied one in pyrrole. In several cases, the intensity of the Rydberg excitations is enhanced by an important valence σ* character of the Rydberg orbitals.
Fichier non déposé

Dates et versions

hal-00880726 , version 1 (06-11-2013)

Identifiants

Citer

D. Duflot, C. Hannay, J.-P. Flament, M.-J. Hubin-Franskin. Electronic excitation of gaseous pyrrole and pyrazole by inner-shell electron energy loss spectroscopy. Journal of Chemical Physics, 1998, 109, pp.5308-5318. ⟨10.1063/1.477149⟩. ⟨hal-00880726⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More