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Robust and asymptotically unbiased estimation of extreme

quantiles for heavy tailed distributions

Yuri Goegebeur ∗

Armelle Guillou †

Andréhette Verster ‡

Abstract. A robust and asymptotically unbiased extreme quantile estimator is derived from

a second order Pareto-type model and its asymptotic properties are studied under suitable

regularity conditions. The finite sample properties of the proposed estimator are investigated

with a small simulation experiment.

1 Introduction

In extreme value statistics, the estimation of extreme quantiles of a distribution function is a

central topic. Indeed, many important applications in climatology, finance, actuarial science,

hydrology and geology, to name but a few, require extrapolations outside the data range, and

extreme value theory provides the only realistic framework for such an exercise. In the present

paper we shall address this estimation problem, with special focus on asymptotic unbiasedness

and robustness against outliers.
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We consider the framework of Pareto-type distributions satisfying a second order condition. In

particular, we assume the following (see Beirlant et al., 2009). Let RVβ denote the class of the

regularly varying functions at infinity with index β, i.e. Lebesgue measurable ultimately positive

functions z satisfying limt→∞ z(tx)/z(t) = xβ for all x > 0.

Condition (R). Let γ > 0 and τ < 0 be constants. The distribution function F is such that

x1/γF̄ (x)→ C ∈ (0,∞) as x→∞ and the function δ defined via

F̄ (x) = Cx−1/γ(1 + γ−1δ(x)),

is ultimately nonzero, of constant sign and |δ| ∈ RVτ .

Clearly, condition (R) implies that the tail quantile function U , defined as U(y) := inf{x :

F (x) ≥ 1− 1/y}, y > 1, satisfies y−γU(y)→ Cγ as y →∞ and the function a implicitly defined

by

U(y) = Cγyγ(1 + a(y)) (1)

satisfies a(y) = δ(Cγyγ)(1 + o(1)) as y →∞, so |a| ∈ RVρ, with ρ = γτ .

The second order condition (R) can be used to derive the so-called extended Pareto distribution,

EPD (Beirlant et al., 2004, Beirlant et al., 2009), with distribution function given by

G(y) =

 1− [y(1 + δ − δyτ )]−1/γ , y > 1,

0, y ≤ 1,
(2)

where γ > 0, τ < 0, and δ > max{−1, 1/τ}. As shown in Proposition 2.3 of Beirlant et al. (2009),

for distribution functions satisfying (R), the distribution function of the relative excess Y := X/u

given that X > u can be approximated by (2) with δ = δ(u) up to an error that is uniformly

o(δ(u)) for u → ∞. In Dierckx et al. (2013), a robust and asymptotically unbiased estimator

for γ was introduced by fitting the EPD to a sample of relative excesses by the minimum

density power divergence (MDPD) criterion (Basu et al., 1998). In particular, let X1, . . . , Xn

be independent and identically distributed (i.i.d.) random variables with a distribution function
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satisfying (R), and denote by X1,n ≤ · · · ≤ Xn,n the corresponding order statistics. The

parameters γ and δ of the EPD are then estimated with the minimum density power divergence

criterion applied to the relative excesses over the random threshold u = Xn−k,n, namely Yj :=

Xn−k+j,n/Xn−k,n, j = 1, . . . , k, i.e. one minimises the empirical divergence

∆̂α(γ, δ) :=

∫ ∞
1

g1+α(y)dy −
(

1 +
1

α

)
1

k

k∑
j=1

gα(Yj),

in case α > 0, and

∆̂0(γ, δ) := −1

k

k∑
j=1

log g(Yj),

in case α = 0, where g denotes the density function of G. The parameter ρ is estimated exter-

nally, e.g. by using one of the estimators proposed in Fraga Alves et al. (2003) or Goegebeur et

al. (2010). Other robust estimators for γ were proposed by e.g. Peng and Welsh (2001), Juárez

and Schucany (2004), Vandewalle et al. (2007), Kim and Lee (2008).

In the present paper we will consider robust and asymptotically unbiased extreme quantile es-

timation under model (R), using the MDPD estimator of Dierckx et al. (2013). Beirlant et al.

(2009) studied the asymptotically unbiased estimation of small tail probabilities based on the

EPD, fitted by the maximum likelihood method. In Gomes and Pestana (2007) an asymptoti-

cally unbiased extreme quantile estimator was introduced for heavy-tailed distributions. These

approaches are however not robust against outliers. To the best of our knowledge, robust and

asymptotically unbiased extreme quantile estimation has not been considered before.

The remainder of our paper is organised as follows. In the next section we will introduce the

robust and asymptotically unbiased estimator for extreme quantiles and study its asymptotic

properties under suitable regularity conditions. The finite sample behaviour of the proposed esti-

mator and some alternatives from the literature is illustrated with a small simulation experiment

in Section 3.
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2 Estimator and asymptotic properties

From the second order condition (R) and using the EPD as approximation to the distribution

of X/un given X > un we can for F (un) → 0 and pn → 0 such that pn/F (un) → c ∈ [0,∞)

introduce

U0

(
1

pn

)
:= un

(
pn

F (un)

)−γ (
1− δ(un)

(
1−

(
pn

F (un)

)−ρ))
(3)

as approximation for U(1/pn).

Lemma 1 Assume (R). If F (un) → 0 and pn → 0 such that pn/F (un) → c ∈ [0,∞) we have

that U0(1/pn)/U(1/pn)→ 1.

The proof of this lemma is straightforward and therefore it is for brevity omitted from the paper.

Now, let X1, . . . , Xn be i.i.d. random variables with a distribution function satisfying (R), and

denote by X1,n ≤ · · · ≤ Xn,n the corresponding order statistics. Taking un = Xn−k,n, replacing

F by the empirical distribution function in (3), and using the fact that e−x ∼ 1− x for x→ 0,

we can introduce the following extreme quantile estimator

Û

(
1

pn

)
:= Xn−k,n

(npn
k

)−γ̂n
exp

(
−δ̂n

(
1−

(npn
k

)−ρ̂n))
, (4)

where (γ̂n, δ̂n) is the MDPD estimator for (γ, δ) and ρ̂n is a consistent estimator sequence for ρ.

In order to study the asymptotic behaviour of Û(1/pn), properly normalised, we need some

preliminary results. Firstly, we need the limiting distribution of the MDPD estimator for (γ̂n, δ̂n).

This was already derived in Dierckx et al. (2013), but we repeat the result for completeness

here. Let the arrow  denote convergence in distribution, and let
P→ denote convergence in

probability. From now on we denote by γ0 and ρ0 the true values of the parameters γ and ρ,

respectively, and δn := δ(Xn−k,n).

Theorem 1 Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function

satisfying (R). Then if k, n→∞ with k/n→ 0 and
√
ka(n/k)→ λ ∈ R, we have that

√
k

 γ̂n − γ0

δ̂n − δn

 (Γ,∆)
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with

(Γ,∆) ∼ N2

(
0,C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0)

)
,

where Σ(ρ0) is a symmetric (3× 3) matrix with elements

σ11(ρ0) :=
α2(1 + γ0)

2

[1 + α(1 + γ0)]2[1 + 2α(1 + γ0)]
,

σ21(ρ0) :=
α(1 + γ0)[α(1 + γ0)− ρ0]

[1 + α(1 + γ0)][1− ρ0 + α(1 + γ0)][1− ρ0 + 2α(1 + γ0)]
,

σ22(ρ0) :=
[α(1 + γ0)− ρ0]2

[1− ρ0 + α(1 + γ0)]2[1− 2ρ0 + 2α(1 + γ0)]
,

σ31(ρ0) := γ0

(
1

[1 + 2α(1 + γ0)]2
− 1

[1 + α(1 + γ0)]3

)
,

σ32(ρ0) := γ0

(
1

[1− ρ0 + 2α(1 + γ0)]2
− 1

[1 + α(1 + γ0)]2[1− ρ0 + α(1 + γ0)]

)
,

σ33(ρ0) := γ20

(
2

[1 + 2α(1 + γ0)]3
− 1

[1 + α(1 + γ0)]4

)
,

C(ρ0) is a symmetric (2× 2) matrix with elements

c11(ρ0) := γ−α−20

1 + α2(1 + γ0)
2

[1 + α(1 + γ0)]3
,

c12(ρ0) := γ−α−20

ρ0(1− ρ0)[1 + α(1 + γ0) + α2(1 + γ0)
2] + α3ρ0(1 + γ0)

3

[1 + α(1 + γ0)]2[1− ρ0 + α(1 + γ0)]2
,

c22(ρ0) := γ−α−20

(1− ρ0)ρ20 + αρ20(1 + γ0)[α(1 + γ0)− ρ0]
[1 + α(1 + γ0)][1− ρ0 + α(1 + γ0)][1− 2ρ0 + α(1 + γ0)]

,

and

B(ρ0) := γ−α−20

 γ0 0 −1

γ0 −γ0(1− ρ0) 0

 .
Secondly, we need the limiting distribution of the intermediate order statistic Xn−k,n under (R),

properly normalised.

Lemma 2 Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function

satisfying (R). For k, n→∞ such that k = o(n) and
√
ka(n/k)→ λ ∈ R we have that

√
k

(
Xn−k,n
U(n/k)

− 1

)
 X

where X ∼ N(0, γ20).
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In the next theorem we state the limiting distribution of the extreme quantile estimator (4),

when properly normalised.

Theorem 2 Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function

satisfying (R). Then if k → ∞ as n → ∞ with k/n → 0,
√
ka(n/k) → λ ∈ R, npn/k → 0 and

ln(npn)/
√
k → 0 we have that

√
k

ln k
npn

 Û
(

1
pn

)
U
(

1
pn

) − 1

 Γ.

Theorem 2 indicates that the normalised extreme quantile estimator inherits the asymptotic

distribution of the MDPD estimator for γ0. As shown in Dierckx et al. (2013), the MDPD

estimator for γ0 based on the EPD is robust against outliers and asymptotically unbiased.

3 Simulation experiment

In this section we investigate the finite sample properties of Û(1/pn) as given in (4) with different

parameter estimators, in particular the MDPD estimator γ̂n and δ̂n with α = 0.1, 0.5 and 1,

and the maximum likelihood estimator (corresponding to MDPD with α = 0, see also Beirlant

et al., 2009). We also consider the Weissman estimator (Weissman, 1978) given by

ÛW (1/pn) = Xn−k,n

(npn
k

)−Hk,n

,

with Hk,n being Hill’s estimator (Hill, 1975). For the parameter ρ we use the estimator of Fraga

Alves et al. (2003).

Figures 1 to 6 illustrate the results of a small simulation study based on 100 datasets, each of size

n = 200, simulated from the distributions given below. The same distributions were considered

in Dierckx et al. (2013).

• Uncontaminated Fréchet distribution (Figure 1): F (x) = exp(−x−β), x > 0, β > 0, de-

noted Fréchet(β). For this study β was chosen as 2.

• Contaminated Fréchet distribution: Fε(x) = (1 − ε)F (x) + εF̃ (x) where F (x) represents

the uncontaminated Fréchet(2) and F̃ (x) = 1− (x/xc)
−β, x > xc where β is chosen as 0.5
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and xc = 2 times the 99.99% quantile of the uncontaminated Fréchet(2). We take ε = 0.01

(Figure 2) and ε = 0.02 (Figure 3).

• Uncontaminated Burr distribution (Figure 4): F (x) = 1− (η/(η+xτ ))λ, x > 0, η, τ, λ > 0,

denoted Burr(η, τ, λ). For this study we have chosen η = 1, τ = 1 and λ = 2.

• Contaminated Burr distribution: Fε(x) = (1− ε)F (x) + εF̃ (x) where F (x) represents the

uncontaminated Burr(1,1,2) and F̃ (x) = 1− (x/xc)
−β, x > xc where β = 0.5 and xc = 1.2

times the 99.99% quantile of the uncontaminated Burr(1,1,2). We take ε = 0.01 (Figure

5) and ε = 0.02 (Figure 6).

We report only the results for quantile 1− 1/500. The 1− 1/1000 quantile was also considered

and resulted in similar outcomes.

In Figures 1 to 6, the left panels show the median of the extreme quantile estimators and the

right panels the mean squared error (MSE) of ln(Û∗(1/pn)/U(1/pn)), where Û∗(1/pn) denotes

any of the considered estimators of U(1/pn), as a function of k. The top panels of the figures

illustrate the behavior of Û(1/pn) with the MDPD estimator at different levels of robustness,

namely α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). The true quantile is indicated by

the horizontal reference line on the left panels. In the uncontaminated cases (Figures 1 and 4)

the bias and variability increase as α increases and by judging from the mean squared error of

the log ratios the performance weakens as α increases, as expected. Thus, for uncontaminated

cases α = 0.1 results in the best performance. For the contaminated cases (Figures 2 - 3 and 5

- 6), α = 0.5 seems to be less biased compared to the other two and it results in the best MSE

of the log ratios (at least for small values of k). The bottom panels of the figures illustrate the

behavior of Û(1/pn) with the MDPD estimator at α = 0.1 for uncontaminated datasets (solid)

and α = 0.5 for contaminated datasets (solid), as well as with the MLE of the EPD (dotted),

and ÛW (1/pn) (dashed). For both uncontaminated and contaminated cases the bias corrected

and robust MDPD based estimator outperforms the non-robust estimators in terms of bias and

MSE. In particular note that compared to the other estimators, the MDPD based estimator has

very stable sample paths, especially in presence of outliers.
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Figure 1: Fréchet simulation, quantile 1-1/500. Top: median (left) and MSE (right) of the

MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom:

median (left) and MSE (right) of the MDPD based estimator with α = 0.1 (solid), MLE based

estimator (dotted) and Weissman estimator (dashed).

Appendix

Proof of Lemma 2

Using the inverse probability integral transform we have that Xn−k,n
D
= U(Yn−k,n), where Yn−k,n

denotes order statistic n − k of a random sample Y1, . . . , Yn from the unit Pareto distribution
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Figure 2: Fréchet simulation, quantile 1-1/500, 1% contamination. Top: median (left) and MSE

(right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed).

Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid),

MLE based estimator (dotted) and Weissman estimator (dashed).

with distribution function H(y) = 1− 1/y, y > 1. Thus,

√
k ln

Xn−k,n
U(n/k)

D
=
√
k ln

U(Yn−k,n)

U(n/k)

= γ0
√
k ln

(
k

n
Yn−k,n

)
+
√
k ln

1 + a(Yn−k,n)

1 + a(n/k)

=: L1 + L2.
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Figure 3: Fréchet simulation, quantile 1-1/500, 2% contamination. Top: median (left) and MSE

(right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed).

Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid),

MLE based estimator (dotted) and Weissman estimator (dashed).

For L1, use the well-known fact that
√
k(k/nYn−k,n−1) Z where Z ∼ N(0, 1) (see for instance

Corollary 2.2.2 in de Haan and Ferreira, 2006) and the delta method to obtain that L1  X

under the conditions of the lemma. For the term L2, a straightforward application of Taylor’s

theorem gives

L2 =
√
ka(n/k)

(
a(Yn−k,n)

a(n/k)
− 1 + o(1) + o

(
a(Yn−k,n)

a(n/k)

))
.
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Figure 4: Burr simulation, quantile 1-1/500. Top: median (left) and MSE (right) of the MDPD

based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed). Bottom: median

(left) and MSE (right) of the MDPD based estimator with α = 0.1 (solid), MLE based estimator

(dotted) and Weissman estimator (dashed).

Since a is regularly varying we have that a(tx)/a(t)→ xρ as t→∞, locally uniformly for x > 0.

Combining this with the fact that k/nYn−k,n → 1 a.s. and the assumption
√
ka(n/k)→ λ ∈ R

we have that L2
P→ 0. Lemma 2 follows then by collecting the terms and another application of

the delta method.
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Figure 5: Burr simulation, quantile 1-1/500, 1% contamination. Top: median (left) and MSE

(right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed).

Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid),

MLE based estimator (dotted) and Weissman estimator (dashed).

Proof of Theorem 2

First we comment on the joint convergence in distribution of the random vector

(
√
k(γ̂n − γ0),

√
k(δ̂n − δn),

√
k(Xn−k,n/U(n/k)− 1), ρ̂n).
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Figure 6: Burr simulation, quantile 1-1/500, 2% contamination. Top: median (left) and MSE

(right) of the MDPD based estimator with α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed).

Bottom: median (left) and MSE (right) of the MDPD based estimator with α = 0.5 (solid),

MLE based estimator (dotted) and Weissman estimator (dashed).

According to the proof of Theorem 2 in Dierckx et al. (2013), we have that

(
√
k(γ̂n − γ0),

√
kδ̂n) (Γ, ∆̃),

where (Γ, ∆̃) ∼ N2((0, λ),C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0)). From the proof of Lemma 1 and

Theorem 2 in Dierckx et al. (2013) we can deduce that γ̂n and δ̂n are independent of Xn−k,n,
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and therefore

(
√
k(γ̂n − γ0),

√
kδ̂n,
√
k(Xn−k,n/U(n/k)− 1)) (Γ, ∆̃,X),

where (Γ, ∆̃,X) ∼ N3((0, λ, 0),Ψ), with

Ψ :=

 C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0) 0

0 γ20

 .
Finally, using the fact that

√
kδn

P→ λ and ρ̂n
P→ ρ0 we have also that

(
√
k(γ̂n − γ0),

√
k(δ̂n − δn),

√
k(Xn−k,n/U(n/k)− 1), ρ̂n) (Γ,∆,X, ρ0).

Now, consider ln(Û(1/pn)/U(1/pn)). Let dn := k/(npn). Straightforward calculations give

ln
Û
(

1
pn

)
U
(

1
pn

) = ln
Xn−k,n

U
(
n
k

) + (γ̂n − γ0) ln dn + ln
1 + a

(
n
k

)
1 + a

(
1
pn

) − δ̂n (1− dρ̂nn
)

(5)

=: T1 + T2 + T3 − T4.

Clearly T1 = OP(1/
√
k) by Lemma 2 and T2 = OP

(
ln dn√
k

)
by Theorem 1. From Taylor’s theorem

we can write

T3 = a(n/k)

1−
a
(

1
pn

)
a
(
n
k

) + o(1) + o

a
(

1
pn

)
a
(
n
k

)
 .

By using the regular variation properties of the function a and the fact that dn →∞ we have that

a(1/pn)/a(n/k) → 0, and thus under the conditions of the theorem T3 = O(a(n/k)). Finally,

for T4 note that dρ̂nn = oP(1) and δ̂n = OP(1/
√
k). Collecting all the terms we see thus that the

rate of convergence of ln(Û(1/pn)/U(1/pn)) is given by ln dn√
k

. Multiplying both sides of (5) by
√
k/ ln dn, the result of the theorem follows.
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