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Abstract: To investigate the effect of branching on linear and nonlinear optical properties, a 

specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly 

explored by a combined theoretical and experimental approach. Excited state structure 

calculations based on quantum-chemical techniques (time-dependent density functional 

theory) as well as a Frenkel exciton model nicely complement experimental 

photoluminescence, one- and two-photon absorption findings and contribute to their 

interpretation. This allowed getting a deep insight into the nature of fundamental excited state 

dynamics and nonlinear optical response involved. Both experiment and theory reveal that a 

multidimensional intramolecular charge transfer takes place from the donating moiety to the 

periphery of the branched molecules upon excitation, while fluorescence stems from an 

excited state localized on one of the dipolar branches. Branching is also observed to lead to 

cooperative enhancement of TPA while maintaining high fluorescence quantum yield, thanks 

to localization of the emitting state. Comparison between results obtained in the Frenkel 

exciton scheme and ab initio results suggests coherent coupling between branches as one of 

the possible mechanisms for the observed enhancement. New strategies for rational design of 

NLO molecular assemblies are thus inferred on basis of the acquired insights. 
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1. Introduction 

Organic molecular materials with high nonlinear optical (NLO) responses have diverse 

and important technical issues. In the quest of improving NLO properties, attention has been 

essentially focused on dipolar molecules over several decades.1-3 More recently, quadrupolar 

systems have been designed and investigated4-21and showed improved properties in particular 

with respect to the trade off between optical transparency and nonlinear optical performance. 

Lately, attention has turned toward multipolar22-33 and branched structures including 

dendrimers.23,24,28,33-43 Given the huge synthetic effort needed to build such supramolecular 

structures, detailed understanding of the effect of branching of molecular entities on the linear 

and nonlinear optical properties is of major interest. Thus, further development of approaches 

for rational design of NLO assemblies is needed in order to focus the synthesis on knowledge-

based materials. Among the many questions that are still debated, coherent coupling between 

the arms (building blocks) is of particular interest. Depending on the nature of this coupling, 

the ground or the excited state may be either localized or delocalized and specific optical 

properties may be either enhanced or suppressed.44 

Among the many NLO effects, two-photon absorption (TPA) has become very popular 

during the last decade owing to its wide-ranging applications such as two-photon laser 

scanning microscopy,45-47 photodynamic therapy,48 optical power limitation,4,5 

microfabrication49-52 or 3D optical data storage.53-56 Depending on the applications, two-

photon chromophores have to satisfy different kinds of requirements. For instance, 

combination of high fluorescence quantum yield (φ) and TPA cross-section (σ2) in the red-

NIR range (700-1200 nm) are desirable for biological imaging. A number of factors influence 

the TPA magnitude, among which electronic delocalization and intramolecular charge transfer 

phenomena. In recent years, considerable effort has been devoted to the design and 

investigation of chromophores with large TPA cross-sections, exploring in particular the 

possibility of obtaining optimized response thanks to the multipolar and/or (multi)branching 

strategy.57 Experimental investigation of the branching effect has led to various trends: 

cooperative enhancement,24,38,40,41 additive behavior36,37 or even reduction of TPA37 have been 

reported. Among the reasons that lead to these apparently conflicting findings, two can be put 

forward. Firstly, most of these studies were limited to single wavelength 

measurements24,25,31,35-37,40 which can obviously lead to discrepancies, since spectral position 

and shape always play an important role. Secondly, the nature of the branches (dipolar versus 

quadrupolar, for example) will also be of major importance as it affects interbranch coupling. 
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The aim of this paper is to thoroughly investigate the effect of branching of dipolar 

chromophores on photoluminescence and TPA by combining various experimental and 

theoretical approaches. These include UV/VIS spectra, fluorescence, fluorescence decay and 

femtosecond two-photon-excited fluorescence (TPEF) measurements, high-level (state of the 

art) quantum-chemical approaches as well as simple interpretative models. The paper will 

focus on the branching of dipolar entities in the weak-medium interaction limit. An 

asymmetrically substituted stilbene chromophore bearing an electron-withdrawing end-group 

(SO2Oct, Figure 1) has been chosen as a prototype for this class. Grafting of one, two or three 

branches on an electron-donating trigonal moiety (triphenylamine) leads to multipolar 

chromophores of different symmetry: dipolar, V-shaped and octupolar. Triphenylamine is a 

well-known electron-donating moiety, which has been used both in the design of octupoles 

for second-order NLO effects58-61 and in branched and dendritic structures for molecular two-

photon absorption.23-25,29-32,36-38,41,42  

In this paper, we first briefly describe the synthesis of the studied chromophores, as well 

as experimental and computational details (Section 2). Linear absorption and fluorescence 

properties of the compounds are then thoroughly explored through a combined analysis of 

both experimental and theoretical results (Section 3). In particular, the solvatochromic 

behavior of one-photon spectra, combined with excited state lifetimes, suggests an emitting 

excited state localized on one branch. This phenomenon of localization is investigated and 

demonstrated through quantum-chemical excited state calculations. Two-photon spectra of 

branched chromophores analyzed in Section 4 show a cooperative enhancement with respect 

to the dipolar analogue in the visible red region as well as in the near-infrared. These results 

can be qualitatively interpreted as resulting from the splitting of excited states due to the 

coupling between the dipolar branches. Theoretical modeling of TPA spectra with time-

dependent-density functional theory (TD-DFT) and interpretation of interactions in the 

branched chromophores using a Frenkel exciton model allows to confirm and to explain all 

observed experimental trends. Finally, in Section 5 we summarize the observed trends and 

suggest new routes for TPA enhancement and for rational design of optimized structures. 

 

2. Experimental and computational details 

2.1. Synthesis of the chromophores 

Chromophores 1-3 were prepared in one step by means of a single, double or triple 

Horner-Wadsworth-Emmons condensation carried out in solid-liquid phase transfer 

conditions by reacting either 1.1, 2.2 or 3.3 equivalents of phosphonate reagent 4 with either 
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aldehyde 5, 6 or 762,63 (Scheme 1). Chromophores 1-3 were obtained as pure all-E compounds 

as testified by 1H NMR spectra. Thanks to the presence of the alkyl chains on the electron-

withdrawing end-groups, chromophores 1-3 maintain suitable solubility in chlorinated 

solvents. 

4-[(1E)-2-[4-(Octylsulfonyl)phenyl]ethenyl]-N,N-diphenylbenzenamine (1). To a 

solution of 4-(diphenylamino)benzaldehyde62 (5) (94.5 mg, 0.346 mmol) and 4 (140 mg, 

0.346 mmol) in anhyd CH2Cl2 (8 mL), was added t-BuOK (58 mg, 0.52 mmol). The mixture 

was stirred at 20 °C for 16 h and the solvent was removed under reduced pressure. After 

addition of water, extraction with CH2Cl2 and drying (Na2SO4), the solvent was evaporated. 

The crude product was purified by column chromatography (heptane/CH2Cl2, 60:40) to afford 

a mixture of isomers, which was dissolved in Et2O (25 mL). A catalytic amount of I2 (0.3 %) 

was then added and the solution was stirred at 20 °C for 2 h under light exposure (75 W 

lamp). The organic layer was washed with aq Na2S2O3 and dried (Na2SO4). After evaporation 

of the solvent, the crude product was purified by filtration through a pad of silica gel 

(heptane/CH2Cl2, 65:35) to yield 97 mg (54%) of 1: mp 79 °C; 1H NMR (200.13 MHz, 

CDCl3) δ 7.85 and 7.63 (AA'XX', JAX = 8.5, 4H), 7.40 and 7.08 (AA'XX', JAX = 8.6, 4H), 

7.28 (m, 4H), 7.20 (d, J = 16.6, 1H), 7.11 (m, 6H), 6.99 (d, J = 16.6, 1H), 3.08 (m, 2H), 1.72 

(m, 2H), 1.24 (m, 10H), 0.86 (t, J = 6.5, 3H); 13C NMR (50.32 MHz, CDCl3) δ 148.3, 147.2, 

143.0, 146.8, 132.0, 129.9, 129.3, 128.4, 127.8, 126.6, 124.8, 124.5, 123.4, 122.8, 56.4, 31.6, 

28.9, 28.8, 28.2, 22.7, 22.5, 14.0; HRMS (LSIMS+, mNBA) calcd for C34H37NO2S (M+·) m/z 

523.2545, found 523.2519. 

Bis[4-[(1E)-2-[4-(octylsulfonyl)phenyl]ethenyl]phenyl]phenylamine (2). To a 

solution of bis(4-formylphenyl)phenylamine62 (6) (90.4 mg, 0.3 mmol) and 4 (267 mg, 0.66 

mmol) in anhyd CH2Cl2 (8 mL), was added t-BuOK (100 mg, 0.90 mmol). The mixture was 

stirred at 20 °C for 16 h and the solvent was removed under reduced pressure. After addition 

of water, extraction with CH2Cl2 and drying (Na2SO4), the solvent was evaporated. The crude 

product was purified by column chromatography (heptane/CH2Cl2, 20:80) to yield 144 mg 

(60%) of 2: mp 68 °C; 1H NMR (200.13 MHz, CDCl3) δ 7.86 and 7.64 (AA'XX', JAX = 8.4, 

8H), 7.44 and 7.11 (AA'XX', JAX = 8.7, 8H), 7.32 (m, 2H), 7.22 (d, J = 16.7, 2H), 7.15 (m, 

3H), 7.02 (d, J = 16.7, 2H), 3.09 (m, 4H), 1.72 (m, 4H), 1.23 (m, 20H), 0.86 (t, J = 6.5, 6H); 
13C NMR (75.47 MHz, CDCl3) δ 147.7, 146.8, 142.9, 137.0, 131.9, 130.8, 129.5, 128.5, 

127.9, 126.7, 125.3, 125.0, 124.1, 123.7, 56.4, 31.6, 28.95, 28.87, 28.3, 22.7, 22.5, 14.0; 

HRMS (LSIMS+, mNBA) calcd for C50H59NO4S2 (M+·) m/z 801.3886, found 801.3869. Anal. 
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Calcd for C50H59NO4S2 (802.16): C, 74.87; H, 7.41; N, 1.75. Found: C, 74.89; H, 7.39; N, 

1.69. 

Tris[4-[(1E)-2-[4-(octylsulfonyl)phenyl]ethenyl]phenyl]amine (3). To a solution of 

tris(4-formylphenyl)amine62,63 (7) (98.8 mg, 0.3 mmol) and 4 (400.5 mg, 0.99 mmol) in 

anhyd CH2Cl2 (10 mL), was added t-BuOK (151.5 mg, 1.35 mmol). The mixture was stirred 

at 20 °C for 16 h, then refluxed for 2 h and the solvent was removed under reduced pressure. 

After addition of water, extraction with CH2Cl2 and drying (Na2SO4), the solvent was 

evaporated. The crude product was purified by column chromatography (heptane/CH2Cl2, 

20:80) to yield 116 mg (36%) of 3: mp 88 °C; 1H NMR (200.13 MHz, CDCl3) δ 7.87 and 

7.65 (AA'XX', JAX = 8.5, 12H), 7.47 and 7.14 (AA'XX', JAX = 8.7, 12H), 7.23 (d, J = 16.0, 

3H), 7.05 (d, J = 16.0, 3H), 3.09 (m, 6H), 1.73 (m, 6H), 1.24 (m, 30H), 0.86 (t, J = 6.5, 9H); 
13C NMR (50.32 MHz, CDCl3) δ 147.1, 142.8, 137.1, 132.1, 131.5, 128.5, 128.0, 126.7, 

125.4, 124.3, 56.3, 31.6, 28.9, 28.8, 28.2, 22.6, 22.5, 14.0; HRMS (LSIMS+, mNBA) calcd for 

C66H81NO6S3 (M+·) m/z 1079.5226, found 1079.5245. Calcd for C66H81NO6S3 (1080.57): C, 

73.36; H, 7.56; N, 1.30; S, 8.90. Found: C, 73.08; H, 7.49; N, 1.15; S, 9.08. 

 

2.2. Theoretical approaches 

We employed a blend of quantum-chemical approaches to model both linear and 

nonlinear spectra of the chromophores of interest. For the sake of simplicity, the alkyl 

solubilizing chains have been replaced by methyl groups. Solvation effects were neglected. 

Ground state optimized geometries have been obtained using the Gaussian 9864 package. The 

geometry optimization was conducted using the 6-31G* basis set at the Hartree-Fock (HF) 

and hybrid density functional theory (DFT) B3LYP levels. The latter method represents one 

of the currently most accurate DFT functional. For ground state geometries, we previously 

found that the HF method is superior to the B3LYP approach by reproducing accurately bond 

length alternation parameter in similar conjugated systems when compared to experiment.65 

Thus, all ground state geometries used for discussion are obtained at the HF level.  

Excited state electronic structures (up to 20 excited states for each molecule) were 

calculated with Gaussian 98.64 It is well known that TD-HF lacks important electronic 

correlations and therefore excited states are systematically and significantly blue shifted with 

respect to experiments. In contrast, TD-DFT much better reproduces excited state properties 

of many systems.66 However, pure and gradient-corrected DFT functionals do not reproduce 

charge transfer states (HF does within a certain approximation). For example, standard GGA 
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functionals tend to underestimate excitation energies of charge transfer states67,68 due to 

spurious self-interaction. This can be partly cured by hybrid functionals as B3LYP69 and was 

found to be very accurate for excited states in many molecular systems.66,70,71 Therefore we 

used TD-B3LYP/6-31G level of theory to investigate linear and nonlinear optical properties 

using the density matrix formalism for nonlinear optical responses as described in ref.72 This 

method has already demonstrated its accuracy for both linear and nonlinear spectra in 

different series of substituted chromophores.65,73,74  

Vertical transition frequencies νgΩ , dipoles νµ g  and densities νξ g  are used72 to model 

both linear absorption and TPA spectra. The linear absorption at frequency ω is given by the 

imaginary part of  

( )
( )

,22 Γ+−Ω
=∑ ig

g

ω
ωα

ν

ν

ν

f
     (1) 

where Γ is the linewidth, and νgf  is the oscillator strength associated with the g  to v  

electronic transition. The TPA cross-section ( )ωσ 2  is related to the imaginary part of the 

third order polarizability γ(−ω;ω,ω,−ω) by  

( ) ,Im4 4
22
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2 〉〈= γ
ωπ

ωσ L
cn
!      (2) 

where !  is Plank’s constant, c is the speed of light, n is the refractive index of the medium, L 

is the local field factor and  
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⎠
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15
1
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is the orientational average of γ following Eq. (6) in ref.75 γ(−ω;ω,ω,−ω) has been calculated 

using the density matrix formalism as described in ref.72 and implemented in ref.65 All 

comparisons with experiment for amplitude of the responses are subject to an uncertainty in 

the choice of the line-broadening parameter Γ . In all calculations we used an empirical 

linewidth Γ= 0.1 eV. 

 To model the fluorescence spectra we used the TURBOMOLE76 package to optimize 

molecular geometries for the lowest excited state at time-dependent HF (TD-HF)/6-31G level. 

TD-B3LYP optimizations were not stable and often resulted in a low-lying unphysical charge 

transfer states with vanishing oscillator strengths (see discussion above).67,68 Thus for all 



J. Phys. Chem. A, 2005, 109 (13), pp 3024–3037 DOI: 10.1021/jp047353v 
 

7 

subsequent analysis we will consistently use molecular geometries based on HF and TD-HF 

approaches and excited states calculated with TD-B3LYP method. Namely absorption and 

fluorescence points were treated at TD-B3LYP/6-31G//HF/6-31G* and TD-B3LYP/6-

31G//TD-HF/6-31G levels, respectively, in conventional quantum chemical notation “single 

point//optimization level”. At excited state optimal geometry, transition frequencies )( f
geΩ  and 

dipoles )( f
geµ correspond to the vertical fluorescence process and were used to calculate the 

radiative lifetime 0τ  as77 (c.g.s. units): 

,
)2(

41 2)(3)(
23

0

f
ge

f
genc

µ
τ

Ω
+

=
!

    (4) 

To analyze the nature of the excited states involved in the photophysical processes we 

used natural transition orbital analysis of the excited states78,79 based on the calculated 

transition densities. This analysis offers the most compact representation of a given transition 

density in terms of an expansion into single-particle transitions. Wavefunctions for degenerate 

states in the octupolar specimen are defined by implementation of Davidson diagonalization 

in Gaussian 9864 and differ from the “canonical” eigenfunctions )2(6/1 321 φφφ −−  and 

)(2/1 32 φφ − .27 Figures showing molecular geometries and transition orbitals were obtained 

with XCrySDen.80  

To connect the photophysical properties of multi-branched chromophores 2 and 3 to 

those of their single-branch counterpart 1, we use a Frenkel exciton model.81,82 This approach 

is applicable to molecular aggregates (such as molecular crystals,82 H- and J-aggregates83,84 

and biological complexes85,86) and assumes an electrostatic interaction between monomers 

(V), which is small compared to the typical transition energy ( Ω<<V ). The intermolecular 

coupling does not necessarily have to be of dipole-dipole nature and the chromophores do not 

necessary have to be spatially separated (phenylacetylene dendrimers are examples of such 

cases87). As it is the case for many conjugated molecules, the lowest excited state of monomer 

1 with frequency geΩ  (which is the origin of excitonic manifold in multi-branched 

chromophores) is expected to be responsible for the dominant contributions in the spectra. In 

particular, the Frenkel exciton Hamiltonian for chromophores 2 and 3 for the lowest excitonic 

manifold is given by: 

   ∑∑
≠

++ +Ω=
32

,
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ij
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where +
iB ( iB ) are the excitonic creation (annihilation) operators on branch i. After 

diagonalization of the Hamiltonian (5),27 the resulting splittings in energies of the excitonic 

states are cartooned on Scheme 2, where |g> denotes the ground state, |e>, |e’> and |e’’> the 

excited states. The V-shaped character of 2 is responsible for the non-vanishing one-photon 

oscillator strength of the symmetric (higher energy) state 2|e’>, even if the 2|e> is the most 

one-photon allowed state. If C3 symmetry is assumed for the 3-branched system, a two-fold 

degenerated first excited state (|e> and |e’>) is obtained, which is both one- and two-photon 

allowed, while excited state |e’’> is only two-photon allowed. These excited states, together 

with the ground state (the vacuum state with respect to the +
iB operators) can be inserted in 

the sum-over-states expression88 for the γijkl, and the TPA cross section is obtained through 

Eqs. (3) and (2). 

 

2.3 Photophysical methods 

UV/VIS spectra were recorded on a Jasco V-570 spectrophotometer. Steady-state and 

time resolved fluorescence measurements were performed at room temperature in dilute 

solutions (ca. 10−
6 M) using an Edinburgh Instruments (FLS 920) spectrometer in photon-

counting mode. Emission spectra were obtained, for each compound, at λex = λmax(abs) with 

Aλex ≤ 0.1 to minimize internal absorption. Fluorescence quantum yields were measured on 

degassed samples at room temperature; fluorescein in 0.1 N NaOH was used as a standard 

(quantum yield Φ = 0.90).89 The lifetime values were obtained from the reconvolution fit 

analysis of the decay profiles with the F900 analysis software and the fitting results were 

judged by the reduced chi-square value. 

Two-photon excitation cross-sections of chromophores 1-3 were determined by 

investigating their two-photon-excited fluorescence (TPEF) in solution (concentration ca. 

10−
4 M). These measurements provide the TPEF action cross-section σ2Φ. The corresponding 

σ2 values were derived by determining the fluorescence quantum yield Φ from standard 

fluorescence measurements. We emphasize that experiments were conducted in the 

femtosecond regime thus preventing contribution from linear non-resonant absorption or from 

excited absorption that is known to lead to artificially enhanced “effective” TPA cross-

sections when measurements are conducted in the nanosecond regime.  

TPEF measurements were conducted using a mode-locked Ti:sapphire laser operating 

between 700 and 1000 nm and delivering 80 fs pulses at 80 MHz, following the experimental 

protocol described in detail by Xu and Webb.90 The quadratic dependence of the fluorescence 
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intensity on the excitation intensity was verified for each data point, indicating that the 

measurements were carried out in intensity regimes, in which saturation or photodegradation 

do not occur. TPEF measurements were calibrated relative to the absolute TPEF action cross-

section determined by Xu and Webb for fluorescein in water (pH = 11) in the 690-1000 nm 

range.90,91 For each data point, an additional control was performed using the known TPEF 

action cross-section of rhodamine B in methanol.90,91 The experimental uncertainty amounts 

to ± 10%. 

 

3. Linear spectroscopy 

3.1. Experimental results 

The photophysical characteristics of chromophores 1-3 in toluene are summarized in 

Table 1. All the chromophores show an intense absorption band in the near UV–blue visible 

region (Figure 2b). The molar extinction coefficients are found to increase almost linearly 

with the number of branches, indicating a nearly additive behavior (Table 1). Gathering 

dipolar units (chromophore 1) via a common electron-donating nitrogen to obtain either V-

shaped (two-branched compound 2) or trigonal (three-branched compound 3) branched 

molecules leads to a slight red shift of both the absorption and emission bands (Figure 2), 

with a more pronounced effect on absorption than on fluorescence spectra. 

All three chromophores show a marked positive emission solvatochromism: increasing 

solvent polarity leads to a pronounced bathochromic shift of the emission band (Figure 3 and 

Supplementary Material). Solvent polarity allows tuning of the photoluminescence in a 

significant way, varying typically from blue in toluene (Table 1) to green or yellow (λem = 

541, 556 and 570 nm for chromophores 1, 2 and 3 respectively) in acetonitrile. In contrast, no 

noticeable shift is observed for the absorption band (Figure 3 and Supplementary Material). 

Accordingly, the Stokes shifts significantly increase with increasing solvent polarity. Such 

behavior is consistent with a stabilization of highly polar emitting excited-states by polar 

solvents. In addition, as shown in Figure 4, the solvatochromic behavior follows the Lippert-

Mataga relationship:92,93 

 

( ) consthcafgg
f
eeemabs +Δ−=− )/(2~~ 32)( µµνν  (6) 
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where absν~  and absν~  are the wavenumbers of the absorption and fluorescence maxima, h is the 

Planck constant, c is the light velocity, a is the radius of the solute spherical cavity, and Δf is 

defined as: 

 

Δf = (ε – 1)/(2ε + 1) – (n2 – 1)/(2n2 + 1) (7) 

 

where ε is the dielectric constant and n is the refractive index of the solvent. 

The photoluminescence characteristics were found to depend on the dimensionality of 

the molecule. Even so chromophores 1-3 have similar emission spectra (Figure 2a), two- and 

three-branched chromophores 2 and 3 exhibit higher fluorescence quantum yields than their 

one-dimensional dipolar analogue 1 (Table 1). This seems to originate mainly from slower 

non-radiative decay. Interestingly, we also observe that the derived radiative lifetimes (τ0 = 

τ/Φ) are almost constant for the whole series (Table 1). 

 

3.2. Discussion and interpretation 

Quantum chemistry results: Quantum-chemical calculations indicate that in 

chromophores 1-3 the triphenylamine moiety adopts a propeller-shaped structure, the phenyl 

rings being twisted with respect to the trigonal planar nitrogen (dihedral angle smaller than 

1°). Optimized ground state geometries of 1-3 at the HF level are shown in Figure 5. HF 

results yield larger twist angles (between 38° and 51°) than B3LYP results (between 35° and 

48°). These results are consistent with crystallographic data.94 The conjugated stilbenyl 

branches are found to be almost planar at the B3LYP level while the two phenyl rings are 

substantially twisted at the HF level with phenyl-vinyl twist angles between 18° and 23°. The 

bond-length alternation parameter defined as the difference between single and double bonds 

on the vinyl bridge is 0.15 Å. This parameter reflects the degree of conjugation along the 

molecular backbone.95 Overall, all branches in 2 and 3 have ground state geometries similar to 

the geometry of the parent molecule 1. This implies that branched compounds have higher 

symmetries (e.g. C3 for chromophore 3). 

However, excited state geometries are different. First of all, the structure of the 

stilbenyl branch in 1 becomes planar with vanishing bond-length alternation parameter. This 

is a generic phenomenon observed in many extended molecular systems such as conjugated 

polymers.95,96 The structures of multi-branched chromophores 2 and 3 do not retain their 

symmetries: roughly, one branch adopts geometry similar to the excited state geometry of 
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molecule 1, whereas the other branch(es) remain(s) in the ground state geometry. This is an 

indication that fluorescence of 2 and 3 originates from an excitation localized on a single 

branch rather than from a fully delocalized state. It should be stressed that we do not observe 

any level crossing in these molecules. The nature of the lowest excited state does not change 

upon vibrational relaxation as evidenced by examination of appropriate transition orbitals (see 

below). Moreover, the other excited states are always well separated from the state in question 

during geometry optimizations. Thus this scenario is completely different from the formation 

of so called twisted intramolecular charge transfer states, which may possibly lead to 

observation of dual fluorescence. The latter is linked to the presence of a conformational 

degree of freedom having multiple minima for the ground- and the excited-states, as 

previously reported in several molecular systems, for example, in DMABN.97,98 

Some calculated electronic quantities are given in Table 2. The global agreement 

between experiment and theory is better emphasized in Figure 6, where experimental 

absorption of chromophores 1 and 2 are compared to spectra calculated for the HF and the 

B3LYP geometries. As expected,65 the best agreement is obtained for HF geometries, which 

will be used for discussion.  

Frenkel exciton model: The red-shift of absorption band at increasing branching 

character (Figure 2b) is indicative of electrostatic coupling between the dipolar branches that 

can be described using the Frenkel exciton model (Scheme 2). The first excited state 

corresponds basically to an electron transfer from the triphenylamine moiety to the conjugated 

branch(es) and is common to all three molecules (Figure 7). The two-branched V-shaped 

chromophore 2 is found to display the largest half-bandwidth. This can be qualitatively 

explained by the exciton model, which predicts the presence of two splitted excited states 

(separated by an energy 2V, see Scheme 2), both being one-photon allowed due to the angle 

formed between the two interacting branches. The value of the angle in particular allows to 

predict that the state at the bottom of the exciton band is more allowed, carrying the greatest 

oscillator strength (3/4 of the total for an angle of 120°). This is nicely confirmed by the 

following procedure: subtracting to the normalized absorption spectra of the V-shaped 

compound the absorption band of the dipolar compound (after normalization and an energy 

shift as to have coincident maximum positions) leads to a residual band with maximum at 

about 372 nm (see Supporting Information), i.e. almost symmetrically displaced from the 

monomer band with respect to the other (lowest energy) contribution. This means that the 

splitting is symmetric with respect to the first excited state of the monomer, as predicted by 

the Frenkel exciton model (Scheme 2). The deduced band also allows deriving a crude 
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estimate of the ratio between the oscillator strength corresponding to the first and second 

excited state (fe/fe') of about 4. This estimate is in very good agreement with that derived from 

TD-DFT calculations based on the HF geometries, as they lead to fe = 1.12 and fe' = 0.26. 

Thus calculations confirm that the broad and asymmetric absorption band of compound 2 

(Figures 2 and 6) results from the overlap of two close electronic transitions, in correlation 

with the presence of two low-lying excited states. This can be also appreciated by comparing 

absorption and fluorescence spectra of chromophore 2, which are far from being mirror 

images, as it is instead almost the case for chromophores 1 and 3. From both experimental and 

theoretical results, the coupling constant V is estimated to be ~ 0.14 eV. The V values 

obtained from calculations vary between 0.133 eV and 0.147 eV (see Table 2). This same 

value can be obtained as a result of point-dipole interactions by imposing a distance of 8 Å 

between the (point-like) transition dipole moments. Considering the geometry of the branched 

structures, this distance corresponds to a length of ~ 9 Å of each dipolar branch, which is a 

reasonable estimate, in accord with what can be deduced from the optimized geometries and 

from the analysis of solvatochromic data (see below). 

In the three-branched chromophore 3, for which the two first exited states are 

degenerate (fe = fe' = 0.97), the third excited state is predicted to have vanishing oscillator 

strength (fe'' = 0.0). As a matter of fact, the first absorption band of chromophore 3 does not 

show any spectral broadening due to the presence of additional excitonic states. This 

observation also confirms that chromophore 3 possesses a three-fold symmetry axis. The 

energy difference between the degenerate first two excited states and the first excited state of 

the monomer leads again to a coupling constant V of about 0.14 eV. This value is again in full 

agreement with those deduced from TD-DFT calculations (see Table 2). The triphenylamine 

moiety imposing similar angles (ca. 120°) and distances between branches in chromophores 2 

and 3, it is not surprising to find similar estimates for the coupling V. The position of the third 

excited state of chromophore 3 - which is one-photon forbidden but two-photon allowed - is 

thus predicted to show up at 0.42 eV (Scheme 2) above the two first excited states (i.e. at 

720 nm for two-photon excitation). 

Dipole moments and charge transfer: All chromophores investigated in the present 

work show a common feature: they exhibit large Stokes shifts. This indicates that significant 

reorganization takes place after excitation prior to emission. Such behavior can be related to 

the electronic redistribution occurring upon excitation. The ground and lowest energy excited 

electronic states of push-pull molecules are often described as a combination of neutral and 

zwitterionic basis states represented by corresponding molecular resonance forms.99,100 
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Calculations reveal that pronounced intramolecular charge transfer occurs within the 

chromophores upon excitation. Indeed, the transition orbitals of the first excited state(s) 

shown in Figure 7 reveal pronounced electronic density shifts from the triphenylamine moiety 

to the conjugated branch(es) in all three chromophores. Thus the ground state is 

predominantly composed of the neutral form, while the excited state has a greater zwitterionic 

character (as also confirmed by the calculated bond-length alternation). However, all these 

states are not pure charge transfer ones (with electron and hole well separated spatially) but 

rather states which undergo electron density redistribution from the donor to the acceptor and 

thus have only partial charge transfer character. This further justifies usage of the hybrid DFT 

approaches. We further note that each excited state in question can be well represented as a 

transition between a single dominant pair of transition orbitals (with 95% or more 

contribution). 

The directional intramolecular charge transfer leads to a significant dipolar character 

of the first excited state for chromophores 1 and 2. In particular, calculations on molecule 1 

predict a 25.8 D dipole moment in the excited state, compared to 7.3 D ground state dipole. 

Excited state relaxation reduces (increases) the dipolar character in the excited (ground) state 

(Table 2) and subsequently the ratio of mixing between the neutral and zwitterionic states 

changes. This leads to an increase of the overlap between electron and hole wavefunctions 

and larger emitting transition dipole moment (11.7 D) compared to absorption (8.2 D). 

Whereas chromophore 1 is mainly dipolar, chromophore 2 combines dipolar and quadrupolar 

characteristics. This quadrupolar character shows up in the second excited state. For 

symmetry reasons, chromophore 3 undergoes upon excitation a two-dimensional 

intramolecular charge transfer from the trigonal core toward the branches (Figure 7). Even 

though the overall molecular dipole moments of the ground and excited states are 

considerably smaller in the branched structures compared to the monomer due to symmetry 

(Table 2), their local dipole moments on the emitting branch are very similar, which leads to 

large Stokes shifts.  

As demonstrated in Figure 4, the Lippert-Mataga relation for the dependence of the 

Stokes shift on solvent polarity holds true for all the chromophores and, even more, the slope 

of the Stokes shift vs. the polarity descriptor Δf is the same for all of them. The good linearity 

of the trends in Figure 4 suggests that the effective mesomeric dipole moment ( gg
f
ee µµ −)( )eff 

is almost constant at varying solvent polarity, in the studied polarity range. The fact that the 

slope is the same for all the compounds of the series is again an indication that the emitting 
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excited state has the same nature in all cases, i.e. that fluorescence stems from an excited state 

localized on one branch. Otherwise, a sensible decrease of the slope would be observed along 

the series 1→2→3 as due to the increased dimension of the solvent cavity. Thus even though 

formally calculated total permanent dipole moments in the branched structures are reduced 

compared to the parent dipole monomer due to symmetry cancellation effects, the underlying 

wavefunction of the emitting excited state interacts primarily with the dipole moment of the 

single branch where it is localized. Thus the effective difference ( gg
f
ee µµ −)( )eff is essentially 

the same for all molecules whereas the total magnitude of ( gg
f
ee µµ −)( ) substantially reduces 

with increasing branching. If the cavity radius is fixed as half the estimated distance between 

the donor and acceptor moieties on the branch (i.e. a ~ 5 Å), a value of ~ 13 D is obtained for 

gg
f
ee µµ −)( , which is in good agreement with the values obtained by theoretical calculations 

(Table 2). Even by using a more refined ellipsoidal cavity model  (which might be more 

appropriate for such elongated molecules) including shape and dipole position correction 

factors101 and taking into account the total length of the dipolar molecule (cavity radius ~ 7 

Å), we derive a change of dipole moment of about 14 D. 

Excited state localization: The experimental radiative lifetimes (obtained as τ0 = τ/Φ) 

are almost constant for the whole series (Table 1), also confirming that the emission does not 

stem from a delocalized excited state in branched molecules. Otherwise, a decrease of τ0 

would be expected as a result of the linear increase in the molar extinction coefficients with 

the number of branches.102 The theoretical computations of radiative lifetime (Table 1) 

reproduce trends observed in experiment but, however, underestimate the experimental 

values.103 While the small decrease in measured excited-state radiative lifetime with 

increasing branched character (1→2→3) is well within the experimental incertitude, the slight 

decrease given by calculations is probably due to slightly larger “emitting” transition dipoles 

in the branched structures (12.8 D) compared to 11.7 D in 1 (Table 2). This indicates a minor 

delocalization of the emitting excited states in 2 and 3 (Figure 8), which may be further 

reduced by the solvation effect and/or temperature bath, left unaccounted in our calculations.  

 As a matter of fact, transition orbitals representing the emitting state (Figure 8) clearly 

show a localization of the excitation on one branch, compared to the respective absorbing 

states (Figure 7). The very similar nature of the emitting excited states for all the 

chromophores is also confirmed by the very similar fluorescence frequencies and by the trend 

of the Stokes shift: within the Frenkel exciton model, if one assumes that the emitting excited 
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state has the same nature and energy for all three chromophores, the magnitude of the Stokes 

shift is predicted to be reduced by V (0.14 eV) from chromophore 1 to chromophores 2 and 3. 

This is close to being the case (Table 1). The reported calculations demonstrate that 

localization of the excitation is mainly due to molecular vibrations. This trend has a sounding 

counterpart in the Frenkel exciton model, where it is well known that vibrational relaxation 

introduces diagonal disorder, which leads to localization of the excitation itself.104 Solvation 

interaction can play an important role too, but in our case the non-dipolar nature of the chosen 

solvent (toluene) rules out a major effect due to the solvent. Practically calculations for the 

excited state predict an almost complete localization of the excitation as induced by nuclear 

relaxation only.  

 Thus both theory and experiment consistently predict localization of the emitting state 

on a single branch. This is a general feature of the class of systems studied here. Actually, this 

phenomenon has also been reported for other octupolar trigonal derivatives, as proven by 

analogous photophysical studies105,106 and time-resolved fluorescence anisotropy 

measurements.107,108 In particular, the latter technique estimates the characteristic time scale 

for nuclear relaxation to be on the order of few ps. Excitation localization to a single 

monomer upon vibrational relaxation has also been predicted by recent theoretical 

investigations79,96 in other coupled aggregates composed by conjugated molecules. All these 

observations suggest that the phenomenon of localization of excitation is a quite common 

feature in interacting multichromophoric systems, where photoexcited individual branches 

undergo a significant vibrational relaxation and, in particular, in systems where the excited 

states are characterized by (partial) charge-transfer character. Bardeen and coworkers recently 

reported results on photoexcitation dynamics in small phenylacetylene dendrimers,109,110 

where quantum confinement ensures strong participation of the branching core and a strong 

interaction among branches in all excited states. In these systems, in addition to the dipolar 

interaction (Förster limit), there exists a considerable through-space exchange interaction 

(Dexter mechanism). In the absorbing state, interaction among branches cancels out due to 

symmetry reasons resulting in a very small total excitonic coupling. In contrast, vibrational 

relaxation (which leads to a localized state in our study) breaks the symmetry and the 

described above cancellation, which results in a large excitonic coupling for the emitting state 

in the case of small molecules. These observations are complementary to our findings. 

 

4. Two-photon absorption 

4.1. Experimental results 
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The TPA spectra of chromophores 1-3 are shown in Figure 9. The first TPA maximum 

of the two- and three-branched chromophores 2 and 3 is red-shifted with respect to that of the 

dipolar chromophore 1 as a result of the aforementioned exciton splitting (Scheme 2). A 

comparison between one-photon absorption (OPA) and (rescaled) TPA spectra is given in 

Figure 10, as to emphasize the correspondence between the one- and two-photon allowed 

transitions. In particular, for the dipolar chromophore 1 (panel a) the only band in the visible 

region is both one- and two-photon allowed. For chromophore 2 (panel b) the slightly allowed 

higher energy one-photon visible band (due to excitonic coupling) becomes the dominant 

contribution in the two-photon spectrum. For compound 3 (panel c) again the one-photon 

visible band is also two-photon allowed, but the dominant contribution is due to the higher 

energy excited state, which appears due to the electronic coupling between the branches. 

The measured TPA cross-section peak values increase with increasing number of 

branches, but for consistently comparing the responses of the components of the series, some 

normalization criterion must be set. A first normalization procedure is based on the molecular 

weight, as to obtain a relevant figure of merit for applications such as optical limitations. 

Examination of TPA values normalized following this criterion (i.e. σ2/MW where MW is the 

molecular weight) at the first local maxima gives preliminary clues to the branching effect: 

we observe that branched chromophores 2 and 3 show larger normalized TPA than the one-

dimensional chromophore 1 (Table 3). This slight cooperative enhancement is similar for the 

two- and three-branched derivatives (about 1.5-1.6). Furthermore, the branched chromophores 

2 and 3 show larger normalized TPA (σ2/MW) than the dipolar chromophore 1 in the whole 

spectral range, indicating that the branching approach is a valid strategy for obtaining 

materials with increased TPA figure of merit. 

Another normalization criterion can be chosen by simply rescaling the TPA response for 

the number of branches. This analysis yields better information on the intrinsic charge-

symmetry and branching effect, allowing distinguishing additive behavior from cooperative 

effects. As shown in Figure 11, the so-normalized TPA responses of branched compounds 

always show an enhancement with respect to the dipolar analogue. This enhancement is also 

wavelength dependent. In particular, it is weak near the first TPA maxima (i.e. close to 800 

nm) but significantly increases in the low-energy edge of the TPA band for both 

chromophores 2 and 3. This enhancement is mainly related to the red-shift of the lowest 

energy one-photon absorption band that results from the coupling between dipolar branches.  
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It is interesting to note that related compounds were recently shown to lead to only 

slight enhancement of their effective TPA cross-sections (derived from non-linear 

transmission measurements conducted in the nanosecond regime) close to 800 nm.31 The 

TPEF experiments reported here provide experimental evidences that the TPA enhancement 

is strongly wavelength dependent. The TPA enhancement also significantly increases close to 

the visible region (Figure 11). Chromophore 2, which combines dipolar and quadrupolar 

contributions, is the most efficient of the molecules in terms of normalized TPA in the 740-

800 nm region, where a second and more intense TPA band appears (Figure 9). This band is 

directly related to the contribution of the higher excited state lying close to the first excited 

state as a result of the coupling between the dipolar branches (Scheme 2). The energy gap 

between the first (815 nm) and second (740 nm) TPA maxima amounts to 0.30 eV. This 

splitting value is again consistent with the coupling of 0.14 eV derived from the one-photon 

absorption bands using the Frenkel exciton model. Moreover, we observe that the maximum 

TPA cross-section of the V-shaped chromophore 2 is found to be nearly 5 times larger than 

that of the dipolar model 1 (Table 2), revealing a cooperative enhancement (i.e. 

σ2max(n)/nσ2max(1)) of about 200%, which is definitely larger than experimental error. 

The octupolar chromophore 3 leads to the highest TPA normalized efficiency close to 

the visible red region (i.e. at 700 nm). In this spectral region, the TPA cross-section is found 

to be more than 10 times larger than that of the peak TPA of the dipolar branch (Table 3), 

revealing a cooperative enhancement of more than 300%, again much larger than 

experimental error. This indeed shows that assembling dipolar chomophores of type 1 via the 

donating moiety in a trigonal structure is a very efficient route towards enhanced TPA.  

 

4.2. Discussion and interpretation 

In Figure 12, experimental TPA spectra (circles) are compared with calculated results. 

Dotted lines correspond to spectra obtained in the framework of the Frenkel exciton model. 

For these results, dipole moments values obtained with quantum-chemical calculations for the 

monomeric model have been used for each dipolar branch; the value of 0.14 eV has been 

exploited for the excitonic coupling (which is consistent with a point-dipole distance of 8 Å); 

an angle of 120° has been imposed between the dipolar unities. No local-field factor 

corrections have been introduced. While the qualitative agreement of these results with 

experimental spectra is reasonable, one can notice that the enhancement of the TPA cross 

section with the number of branches is caught but underestimated by the excitonic calculation 

(see also Supporting Information). 
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The same figure reports TPA spectra obtained by ab initio calculation. For a better 

comparison, calculated spectra have been obtained by introducing a local field factor 

(spherical cavity), which accounts for toluene (n = 1.494) as solvent. Given the uncertainty of 

the TPA cross-section line-width, we did not apply more sophisticated cavity/solvent models. 

However, to emphasize the expected trends, we conducted TD-B3LYP calculations of the 

excited structure and TPA profiled using polarizable continuum model implemented in 

Gaussian 98.64 In all molecules in question, these calculations show a consistent 

solvatochromic red-shift of TPA excitation frequencies by ~30-60 meV and an increase of the 

corresponding cross-sections by ~10% (most notably in the dipolar compound). In Figure 12 

responses calculated by taking into account diagonal contributions only (dashed lines) and the 

total results (diagonal + non-diagonal) (continuous lines) are reported. Obviously, only 

diagonal terms contribute to the TPA response of the dipolar chromophore 1 (panel a), while 

for compounds 2 and 3 off-diagonal contributions are non-negligible. In particular, for 

chromophore 2 (panel b) one can notice that the lowest energy band (corresponding to the 

most intense OPA) is two-photon allowed only through off-diagonal tensor components, as 

can be predicted by symmetry. The second (higher energy) band is instead dominated by 

diagonal terms, even though non-diagonal contributions are apparent. For chromophore 3 

(panel c), both bands are two-photon allowed through diagonal terms, but they both have 

large off-diagonal contributions. The global agreement between experimental and calculated 

spectra is good: a part from deviations due to global line-width, computational results for 

chromophores 1 and 2 are very satisfactory. The comparison formally worsens for the higher 

energy band of chromophore 3, which experimentally is displaced towards higher energy (the 

error is within 0.1 eV and still provides a fortuitous consistency between theory and 

experiment). Calculations predict a strong enhancement due to the two degenerate excited 

states, with a maximum at about 730 nm. But the experimental TPA cross-section still 

increases between 730 and 705 nm. This might be due to a higher-lying intense TPA-allowed 

excited state in the red-visible region. This state should be related to the second excited state 

of the dipolar branches, which shows up at λabs = 300 nm. As a matter of fact a more detailed 

analysis is prevented by limited experimental data in the red visible region. The branching 

enhancement in the long-wavelength region is also underestimated by calculations: this can be 

explained by the fact that calculations disregard molecular vibrations and inhomogeneous 

broadening effects (as due, for example, to conformational disorder for branched 

chromophores, which increases with increasing number of branches). 



J. Phys. Chem. A, 2005, 109 (13), pp 3024–3037 DOI: 10.1021/jp047353v 
 

19 

The large, amplified TPA response shown by branched chromophores is related to the 

interaction between the branched dipolar unities. We stress that this enhancement is 

underestimated by the Frenkel exciton approach, while it is much better reproduced by 

quantum-chemical calculations using supramolecular approach (see Figure 12 and Supporting 

Information). Thus correct prediction of the enhancement in the TPA response of branched 

chromophores requires accounting for the presence of coherent interactions between branches 

(beyond dipolar model)107 and higher lying excited states.27 Moreover, we observe that the 

three-branched compound leads to a larger cooperative effect than the analogous two-

branched systems. This suggests that further TPA enhancement could be achieved in n-

branched systems (n > 3) built from a core allowing significant coupling between the 

branches and from branches ensuring pronounced intramolecular charge transfer between the 

center and the periphery upon excitation.  

 

5. Conclusion 

A deeper understanding of the branching effect of dipolar entities on linear and 

nonlinear optical properties of multichromophoric structures has been achieved by a 

combined theoretical and experimental approach on a series of branched structures made up 

with prototype chromophores.  

Theoretical modeling of one- and two-photon absorption spectra using time-dependent 

density functional theory is in a very good agreement with experiment. In particular, an 

agreement within 0.1-0.2 eV for excited state energies (for both absorption and emission 

spectra) and 50% for absolute amplitudes of TPA cross-sections (given the uncertainty of 

line-widths and solvent effects) is achieved. Such good performance of TD-DFT approach 

can be partially rationalized by a “single-particle” nature of all excited states involved. HF 

(TD-HF) geometries of ground (excited) states and B3LYP functional for excited state 

calculations proved to be a successful blend of quantum-chemical approaches for given 

molecular systems. Complementary analysis of calculated spectroscopic observables and 

natural transition orbitals further allowed to confirm experimental trends and understand the 

underlying physical phenomena.  

Both experimental and theoretical findings consistently show that while the absorbing 

state of the branched molecules can be qualitatively understood in terms of delocalized 

Frenkel exciton states, the emitting state is localized on a single branch, corresponding to a 

breakage of coherent coupling between the arms. Our calculations demonstrate that this 

localization is a consequence of nuclear relaxation, suggesting that this phenomenon has a 
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quite general appearance in multibranched structures and is not linked to particular 

environmental conditions, nor to the peculiar chromophores studied in this paper. The 

predicted and observed localized nature of the emitting state allows maintaining high 

fluorescence quantum yield, a very important feature for imaging applications. 

The interaction between branched chromophores is also responsible for splitting 

between degenerate excited states, so that the amount of coupling can be extracted within the 

Frenkel exciton scheme. The value thus extracted agrees well with the calculated estimate, 

and can also be assessed through a point-like dipole model. A simple excitonic splitting is 

already responsible for TPA enhancement in regions where TPA bands of the different 

(branched and non-branched) compounds overlap, and for TPA activation in spectral regions 

where the dipolar analogue is almost two-photon transparent. But we clearly demonstrate 

(through comparison of excitonic results with ab initio calculations) that the presence of 

coherent interactions between branches and high-energy excited states provides a significant 

TPA enhancement as well. It should be stressed that the enhancement is much larger than 

experimental errors and that the fs regime excludes contribution from excited-state absorption 

and artificial enhancement. It is also worthwhile to stress that single-wavelength 

measurements of TPA cross sections are not enough in order to estimate the possible 

enhancement of the response: a large spectral region should be investigated, because of 

Davydov’s splittings due to excitonic interactions. Also close relations between one- and two-

photon absorption spectra exist due to symmetry, even if they are not always recognized. 

These allow simple estimates of TPA maxima starting from OPA data. This, together with the 

use of simple approaches, such as the Frenkel exciton model, can constitute a powerful 

guideline for the rational design of multichromophoric structures with optimized response, by 

taking advantage from symmetry, electronic coupling, and coherent interactions. 

We argue that the appropriate tuning of the number of branches, the coupling between 

them, the symmetry and the modulation of the intramolecular charge transfer from the core to 

the periphery could constitute a substantial way for obtaining amplification of aimed 

properties in desired spectral regions. This is not only appealing for various applications, but 

it also represents an opportunity on a more fundamental vein. Here we demonstrate that a 

more rational design of optimized structures can be achieved through a “bottom-up” approach 

that involves not only the synthetic route (from molecular to supramolecular) but also the 

interpretative and modeling approaches. 
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Table 1 

Photophysical data of chromophores 1-3 (in toluene) 

 
exp
absλ  a 

(nm) 

calc
absλ  b 

(nm) 

εmax 

(cm-1 mol-1 L) 

FWHM c 

(cm-1) 
geµ  

(D) 

exp
emλ d 

(nm) 

calc
emλ e 

(nm) 

Stokes 

Shift 

(cm-1) 

Φ f 
τ g 

(ns) 

exp
0τ  h 

(ns) 

calc
0τ i 

(ns) 

1 392 400 (423) 2.9 104 3630 6.2 456 454 3580 0.58 1.4 2.5 1.5 

2 409 420 (453) 5.0 104 4250 8.9 459 480 2660 0.74 1.6 2.1 1.3 

3 410 419 (456) 7.0 104 3595 10.4 463 486 2790 0.72 1.7 2.3 1.3 

a Experimental one-photon absorption maximum. 
b Calculated one-photon vertical absorption maximum at TD-B3LYP/6-31G//HF/6-31G* (B3LYP/6-31G*) level. 
c Halfbandwidth. 
d Experimental one-photon emission maximum. 
e Calculated one-photon vertical emission maximum at TD-B3LYP/6-31G //TD-HF/6-31G level. 
f Fluorescence quantum yield determined relative to fluorescein in 0.1 N NaOH. 
g Experimental fluorescence lifetime determined using time-correlated single-photon counting (TCSPC). 
h Radiative lifetime derived from fluorescence quantum yield and lifetime values (experimental values). 
i Radiative lifetime derived from quantum-chemical calculations using eq. (4) (calculated at TD-B3LYP/6-31G //TD-HF/6-31G level). 
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Table 2 

Theoretical results for chromophores 1-3 obtained at TD-B3LYP/6-31G//HF/6-31G* and TD-B3LYP/6-31G//TD-HF/6-31G levels. 

Superscript (f) denotes the lowest excited state optimal geometry corresponding to fluorescence. Dipole moments are given only as 

contributions on the xy plane, since contributions along the z axis are only relevant to local dipole moments due to SO2Me terminal 

groups (3-4 D per group). Beyond the modulus of each dipole moment, the main polarization direction is indicated in parentheses. 

State 1e 1e(f) 2e 2e(f) 2e’ 3e/3e’ 3e(f) 3e’’ 

geΩ a (eV) 3.10 2.73 2.95 2.58 3.23 2.96 2.55 3.36 

geµ b (D) 8.2 (x) 11.7 (x) 10.0 (x) 12.9 (x) 4.6 (y) 9.3 (xy) 12.8 (x) 0 

ggµ c (D) 7.3 (x) 10.4 (x) 6.7 (y) 8.0 (y) 6.7 (y) 0 1.9 (x) 0 

eeµ d (D) 25.8 (x) 19.2 (x)  14.0 (y) 13.1 (y)  13.8 (y)  11.9 (xy) 8.9 (x)  0 

a Transition frequency; b Transition dipole moment; c Ground state dipole moment; d Excited state dipole moment. 
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Table 3 

Two-photon absorption data of chromophores 1-3 (in toluene) 

 

Cpd Neff
 a 

2 absλ  

(nm) 

max1
TPAλ  

(nm) 

max2
TPAλ  

(nm) 

σ2 
b 

(GM) 

σ2/Neff
 

(GM) 

σ2/MW 

(GM.g-1.mol) 

at max1
TPAλ  at max2

TPAλ  at max1
TPAλ  at max2

TPAλ  at max1
TPAλ  at max2

TPAλ  

1 18.1 784 770 - 90 - 4.97 - 0.17 - 

2 23.4 818 815 740 195 420 8.33 17.95 0.24 0.52 

3 27.7 820 815 ≤705 290 >995 10.46 35.92 0.27 >0.92 

 

a effective number of π electrons in the conjugated systems.111 b TPA cross-sections; 1 GM = 10-50 cm4 s photon-1; TPEF measurements 

were performed using a mode-locked Ti:sapphire laser delivering 80 fs pulses at 80 MHz, calibrating with fluorescein. 
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Captions 
 

Figure 1. Series of structurally-related dipolar (1), V-shaped (2), and octupolar (3) analogues 

derived from the functionalization of a triphenylamine moiety. 

Figure 2. Normalized fluorescence (a) and absorption spectra (b) of chromophores 1-3 in 

toluene. 

Figure 3. Solvatochromic behavior of chromophore 3. 

Figure 4. Lippert-Mataga correlations for chromophores 1-3. 

Figure 5. Optimized geometry of chromophores 1-3 (HF/6-31G* level). 

Figure 6. Calculated and experimental absorption of chromophores 1 (a) and 2 (b). 

Figure 7. Natural transition orbitals of chromophore 1-3 (absorption). State labeling is given 

in Scheme 2. 

Figure 8. Natural transition orbitals of chromophores 1-3 (emission). 

Figure 9. Two-photon excitation spectra (σ2) of molecules 1-3 in toluene. 

Figure 10. Experimental one-photon absorption spectra (continuous lines) and rescaled two-

photon excitation spectra (symbols + dashed lines) of chromophores 1-3 in toluene. 

Figure 11. Wavelength dependence of branching effect on TPA. 

Figure 12. Calculated (lines) and experimental (circles) two-photon excitation spectra of 

molecule 1 (a), 2 (b) and 3 (c) in toluene. Dashed lines refer to TD-B3LYP diagonal 

contributions; continuous lines to the whole TD-B3LYP response. Dotted lines: excitonic 

results. 

 

 

Scheme 1. Synthesis of chromophores 1-3. 

Scheme 2. Schematic electronic level diagram of the single branch (left) and of the molecular 

systems built from gathering 2 (middle) or 3 (right) such branches within the excitonic model. 

|g> denotes the ground state, |e>, |e’> and |e’’> the excited states and V the coupling between 

adjacent branches. C3 symmetry has been assumed for the 3-branched system leading to a 

two-fold degenerated first excited state (|e> and |e’>). The structure of excitonic 

eigenfunctions shown on Figure 5 can be clearly identified in the respective transition orbitals 

of an electron in all branched chromophores. 
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Figure 1. Series of structurally-related dipolar (1), V-shaped (2), and octupolar (3) derivatives 

derived from the functionalization of a triphenylamine moiety. 

 

 

 
 

Figure 2. Normalized fluorescence (a) and absorption spectra (b) of chromophores 1-3 in 

toluene. 
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Figure 3. Solvatochromic behavior of chromophore 3. Spectra of chromophores 1 and 2 are 

given in the supplementary material. 

 

 

 

 
 

Figure 4. Lippert-Mataga correlations for chromophores 1-3. 
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Figure 5. Optimized geometry of chromophores 1-3 (HF/6-31G* level). 

 

 

(a)  (b)  

 

Figure 6. Calculated and experimental absorption of chromophores 1 (a) and 2 (b). 
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State Hole Electron 
1e 

  
1φ  

2e 

  
)(2/1 21 φφ −  

2e’ 
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3e 

  
321 79.058.021.0 φφφ +−−  
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3e’ 

  
321 21.058.079.0 φφφ −−  

3e’’ 

  
)(3/1 321 φφφ ++  

 
Figure 7. Natural transition orbitals of chromophores 1-3 (absorption). State labeling is given 

on Scheme 2.78,79 
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State Hole Electron 
1e(f) 

  
2e(f) 
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Figure 8. Natural transition orbitals of chromophores 1-3 (emission).78,79 
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Figure 9. Two-photon excitation spectra (σ2) of molecules 1-3 in toluene. 

 

 

 
Figure 10. Experimental one-photon absorption spectra (continuous lines) and rescaled two-

photon excitation spectra (symbols + dashed lines) of chromophores 1-3 in toluene. 
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Figure 11. Wavelength dependence of branching effect on TPA. 
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Figure 12. Calculated (lines) and experimental (circles) two-photon excitation spectra of 

molecule 1 (a), 2 (b) and 3 (c) in toluene. Dashed lines refer to TD-B3LYP diagonal 

contributions; continuous lines to the whole TD-B3LYP response. Dotted lines: excitonic 

results. 
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