OrderSpan: Mining Closed Partially Ordered Patterns

Abstract : Due to the complexity of the task, partially ordered pattern mining of sequential data has not been subject to much study, despite its usefulness. This paper investigates this data mining challenge by describing OrderSpan, a new algorithm that extracts such patterns from sequential databases and overcomes some of the drawbacks of existing methods. Our work consists in providing a simple and flexible framework to directly mine complex sequences of itemsets, by combining well-known properties on prefixes and suffixes. Experiments were performed on different real datasets to show the benefit of partially ordered patterns.
Type de document :
Communication dans un congrès
IDA: Intelligent Data Analysis, Oct 2013, London, United Kingdom. Springer, 12th International Symposium on Intelligent Data Analysis, LNCS (8207), pp.186-197, 2013, Advances in Intelligent Data Analysis XII. 〈10.1007/978-3-642-41398-8_17〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00880290
Contributeur : Florence Le Ber <>
Soumis le : mardi 5 novembre 2013 - 16:59:15
Dernière modification le : jeudi 29 mars 2018 - 09:10:04

Identifiants

Citation

Mickaël Fabrègue, Agnès Braud, Sandra Bringay, Florence Le Ber, Maguelonne Teisseire. OrderSpan: Mining Closed Partially Ordered Patterns. IDA: Intelligent Data Analysis, Oct 2013, London, United Kingdom. Springer, 12th International Symposium on Intelligent Data Analysis, LNCS (8207), pp.186-197, 2013, Advances in Intelligent Data Analysis XII. 〈10.1007/978-3-642-41398-8_17〉. 〈hal-00880290〉

Partager

Métriques

Consultations de la notice

275