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Abstract: An adaptive control scheme for maximum power point tracking of a single-phase
grid-connected photovoltaic system is presented. The difficulty on design a controller that may
operate a photovoltaic system on its maximum power point (MPP) is that, this MPP depends
on temperature and solar irradiance, ambient conditions that are time-varying and difficult to
measure.
A solution using an on-line sliding mode estimator is presented. It estimates three different
parameters that depends on solar irradiance and temperature, eliminating the necessity of having
any sensor for these environmental variables. It is capable of estimate time-varying parameters.
A complete analysis was done taking into account the non-linearities showed by the closed-loop
system. A variation of the Lyapunov redesign technique was used to find a controller that give
globally asymptotically stable trajectories of the closed-loop system.
An adaptive law was found to substitute a perturbation bound and also to eliminate possible
chattering due to the discontinuous controller term.
Computer simulations are presented to show the good performance of the controller.

Keywords: Adaptive control; Parameter estimation; Global stability; Solar cells; Chattering.

1. INTRODUCTION.

The compromising situation of the environment due to the
pollution, and the high costs of fossil fuels have originated
new policies and regulations that have stimulated the in-
terest on alternative energy sources. Developing countries
have increased in an important way the penetration of
these energy sources (IEA [2012]).

One of the most widely used renewable energy systems are
the photovoltaic systems (PVS), which converts sunlight
directly into electricity by means of a semiconductive pro-
cess. PVS usually consists of a photovoltaic panel or array,
a power conditioning system (PCS), and occasionally, an
energy storage element. Most of the grid-connected PVS
(GPVS) consist of the first two elements.

Two of the topologies used for low and medium power
levels are the two-stage DC/DC + DC/AC, and the
single-stage DC/AC converter. In Jain et al. [2007], the
authors show the main advantages of the single-stage
against the two-stage topology. In Kjaer et al. [2005]
and Xue et al. [2004], the authors analyze advantages
and disadvantages of various single-phase grid-connected
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inverters topologies. The single-phase single-stage central
inverter DC/AC topology was chosen in this work, because
of its simplicity and low price.

The output power of a PV array is function of irradi-
ance and temperature. So, changes in these environmental
conditions will bring different power values. To increase
the efficiency of the overall system, PVS always needs to
work in its maximum power point (MPP), to deliver the
maximum amount of energy (Fig. 1). Hence, an algorithm
that can follow these power changes is needed. This is the
maximum power point tracking (MPPT) algorithm. There
are several MPPT algorithms like perturb and observe,
incremental conductance, extremum-seeking among oth-
ers. They compute the value of the voltage corresponding
to the MPP. This voltage is then used as a reference
value in the controller. In Femia et al. [2005] and Esram
et al. [2007], the authors present some improvements and
comparisons between these algorithms.

Previous works on MPPT control of PVS were done by
splitting the problem in two parts: a control capable of
tracking the MPP and a control capable of deliver a
sinusoidal current in phase with the grid voltage —unity
power factor—.

Solutions like feedback linearization and sliding mode
techniques were applied to the first part.
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Fig. 1. MPP of a typical PV array for different environmen-
tal conditions a) T = 25oC and different irradiance
values. b) G = 1000W/m2 and different temp. values.

Several solutions have been developed for the second
part, like the P+ resonant controller (see Zmood et al.
[2003]) where a better alternative to the PI controller is
introduced, and the adaptive resonant controller (Timbus
et al. [2006]) which is an improve of the proportional
resonant controller. However, these solutions are linear
based techniques. Approximations that doesn’t take into
account the nonlinear behavior of the PV array.

An interesting solution that uses the nonlinear model of
PVS was presented in Meza et al. [2008]. In this work,
the MPPT and the unity power factor tasks are satisfied
with a single passive control, based on the work of Sanders
et al. [1992]. MPPT is accomplished for time-varying
environmental conditions, with the help of an estimator
that compute a reference for the controller. However,
global stability with the use of this estimator is not proved.

In Meza et al. [2012] an attempt to prove global sta-
bility for the whole system was made. In this case, an
estimation of the parameter that depends on irradiance
and temperature is used together with the Lyapunov-based
controller to prove global stability. However, in that work
it is assumed that another two parameters that depends
on temperature are known, so, a temperature sensor and
a very precise knowledge of the part of the model that
depends on temperature are needed.

In El Fadil and Giri [2011] the authors solved the climatic
sensorless problem. The main difference with the present
work is the application: in that work they use the PVS
to charge a battery. The objective of deliver a current in
phase with the grid voltage is not present. Another impor-
tant difference is that the analysis was made considering
the time-varying parameters as constants.

In this paper, we are presenting a solution that uses
an adaptive scheme control that is capable of achieving
MPPT for changing environmental conditions and deliver
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Fig. 2. Photovoltaic system analyzed in this paper.

unity power factor current to the grid. In this solution, a
sliding mode estimator capable of estimate time-varying
parameters was designed and it estimates parameters that
depends on irradiance and temperature. No assumption
about known parameters were made and global stability
taking into account the nonlinear model and the estimates
of the parameters was proved. The main contribution con-
sists in the full analysis —nonlinear model, controller and
estimator— of the system, increasing of the robustness and
elimination of the necessity of irradiance and temperature
sensors with this estimator.

2. PROBLEM FORMULATION AND
MATHEMATICAL MODEL.

The system analyzed in this paper is shown in figure 2 and
consists in a photovoltaic array of solar cells and a DC/AC
PCS. The states of the system are given by the capacitor
voltage (x1) and the inductor current (x2). The PCS is a
full-bridge inverter driven by a bipolar PWM scheme. The
PWM gives two discrete complementary signals s and s̄
which turn on and off the four switches in the PCS. The
PWM block is fed by the control signal u ∈ [−1, 1].

2.1 Mathematical model.

The PV array is composed by PV cells arranged in series
and parallel. The PV cell model used in this work is the
single-diode model with no resistors. In Gow et al. [1999]
and Saloux et al. [2011], the authors present some models
and give explicit relations to get the electric characteristics
which are functions of irradiance and temperature. In
Aggarwal et al. [1997], the authors studied the PV array
modeling problem for nonidentical PV cells. A compara-
tive analysis was made in Bennett et al. [2012], and it is
shown that all models have no significant differences for
MPPT purposes.

The I−V characteristic curve of a PV array with identical
cells is given by:

I = Iph(G)Np − Io(T )Np

[
exp

(
qV

nNskBT

)
− 1

]
(1)

where Iph is the photocurrent, that depends on irradiance
G, Io is the saturation current, that depends on temper-
ature T , q is the absolute value of electron’s charge, n is
the quality factor of the diode, Np is the number of cells
connected in parallel, Ns is the number of cells connected
in series, kB is Boltzmann’s constant, T is the temperature
of the P-N junction and V is the capacitor voltage x1.

This equation can be written in a simple way:

I(x1) = c1 − c2e
c3x1 (2)



where c1 is function of irradiance and temperature and c2
and c3 are functions of temperature.

The model of the whole system is given by:

ẋ = f(t, x) +G(t, x)u (3)

where

f(t, x) ,


I(x1)

C

−vg(t)

L

 , G(t, x) ,


−x2

C

x1

L

 (4)

C and L are the known values of the capacitor and the
inductor respectively, and vg the grid voltage. The signals
that are measured are the states x ∈ R2, the voltage grid
vg ∈ R and the PV array current I ∈ R, which is a common
practice in this type of circuits.

u is the control signal composed by the terms:

u = un + w + δ(t, x) (5)

δ(t, x) is an uncertain term that satisfies the matching
condition (i.e. it enters at the same point that the control
signal u), w is the term that will be derived to compensate
the uncertain term and un is the control component that
turn the nominal system globally asymptotically stable. In
section IV, these components are explained in detail.

The nominal system is the system without the uncertain
term δ(t, x), hence:

ẋ = f(t, x) +G(t, x)un (6)

where f(t, x) and G(t, x) are defined in the same way that
before.

The main tasks that the signal control u must fulfill are:

(1) To track the MPP of the PV array, despite of the
changes in irradiance and temperature.

(2) To deliver a current in phase with the grid voltage.

Another important issue that must be taken into account,
is the total harmonic distortion (THD) injected in the
grid. One way to reduce this is computing the controller
references at the ending of each voltage grid cycle.

The controller needs two references to accomplish the main
tasks of the system.

The first reference is the voltage DC value in the capacitor

x̄1∗ ∈ R+ (7)

that provides the MPP and is given by a MPPT algorithm.

The second reference is the current value in the inductor
x2∗, which is taken from Meza et al. [2012]:

x2∗ , 2 vg(t) x̄1∗ I∗(x̄1∗, ci)

A2
(8)

and is the inductor current value that achieves MPPT, and
that has to be in phase with the grid voltage. I∗ is the PV
current (2) evaluated at the voltage x̄1∗, vg is assumed to
be sinusoidal with constant amplitude A and frequency ω,
vg = Asin(ωt).

However, the parameters ci in I∗ are unknown. Therefore,
an estimator was designed and it is presented here. It
allows to calculate the complete I∗ expression.

Hence, the second reference becomes:

x̂2∗ , 2 vg(t) x̄1∗ Î∗(x̄1∗, ĉi)

A2
(9)

where (̂·) indicate the estimate of (·).

3. ESTIMATOR DESIGN.

3.1 Reparametrization.

A reparametrization was made in order to be able to design
the next estimator.

From (2) and (6) the derivative of the current I is:

İ = −c2c3ẋ1e
c3x1 =

1

C
(ux2 − I)(θ1 − θ2I) = ΦT θ (10)

where:

θ ,
[
c1c3
c3

]
, ΦT , 1

C

[
ux2 − I, −ux2I + I2

]
(11)

also consider the following estimator and observer errors

respectively θ̃ = θ̂ − θ, Ĩ = Î − I.

3.2 Sliding mode estimator.

In Kenne et al. [2008] a new framework for nonlinear
systems time-varying parameter estimation using sliding
mode techniques was proposed.

The following notation is used in this subsection:

|xT |G = (|x1|, |x2|, ... |xn|)

diag(A) is the column vector whose elements are the
diagonal elements of a given square diagonal matrix A.

The function sign(·) : Rn → Rn is defined as

sign(xT ) = (sign(x1), sign(x2), ... sign(xn)) (12)

with
xT = (x1, x2, ... xn)

and

sign(xi) =


−1 for xi < 0

[−1, 1] for xi = 0

1 for xi > 0

Now, let us assume that

Assumption 1. The derivatives of the parameters vector
θ are bounded and these bounds are known:

θ̇i(t) ≤ µθi

where µθi are known positive numbers and i = 1, 2.

In order to design the time-varying parameter estimator
consider the following adaptive observer for the current I:

˙̂
I = vI +ΦT θ̂ (13)

where
vI = −KIsign(Î − I)

thus
˙̃I = vI +ΦT θ̃ (14)

For KI sufficiently chosen large

KI > |ΦT θ̃|
and assuming that θ̂ is bounded (the proof will be shown
later) then a sliding mode regime occurs on the manifold

Ĩ = 0 and 0 = vIeq +ΦT θ̃ then

vIeq = −ΦT θ̃ (15)



The following approximation is used (see the work of Utkin
[1992])

vIeq =
1

1 + τs
vI (16)

where s is the Laplace operator and τ → 0 is a positive
constant.

Hence
θ̃ = −Φ(ΦTΦ)−1vIeq (17)

and finally
˙̂
θ = −Kθsign(θ̃) (18)

Choosing the gain matrix for the estimator such that:

diag(Kθ)i > µθi (19)

then, the estimated parameters θ̂ will converge to their
real values θ(t) in finite time.

Proof. Let us consider the following Lyapunov candidate
function

V =
1

2
θ̃T θ̃ , β(θ̃) (20)

V̇ = θ̃T
˙̃
θ = θ̃T (−Kθsign(θ̃)− θ̇)

≤−|θ̃T |G(diag(Kθ)− µθ) (21)

From (19), one can see that V̇ is negative-definite for θ̃ 6= 0.

Therefore, the estimation error θ̃ will converge to 0 in finite
time. 222

4. CONTROLLER DESIGN.

In order to accomplish the control objectives, the problem
has been divided in two parts:

(1) To find the control portion that renders the nominal
system (6) globally asymptotically stable.

(2) To find the control portion that compensates the
uncertain term δ(t, x) and gives the whole system (3)
globally asymptotically stable.

4.1 Controlling the nominal system.

In this part of the analysis it is considered that the x2∗
reference is well known, i.e. the observer error is zero
Ĩ(t) = 0. The term δ(t, x) contains the perturbations due

to Ĩ(t) 6= 0 and the second portion of the control handle
it.

According to the idea given in Sanders et al. [1992], the
control is decomposed in two parts: one for the steady-
state stage u∗n and another for the dynamic stage eun.

The reference system is:

ẋ∗ = f(t, x∗) +G(t, x∗)u∗n (22)

Hence, the control component for the steady state is:

u∗n =
Lẋ2∗ + vg(t)

x1∗
(23)

Consider the following tracking errors and control variable
respectively:

e = x− x∗, eun = un − u∗n

ė = ẋ−ẋ∗ =

[
I(x1)− I∗

C
0

]
+

−e2u∗n

C
− (e2 + x2∗)eun

C
e1u∗n

L
+

(e1 + x1∗)eun
L


Let us propose the Lyapunov candidate function

Vn =
C

2
e21 +

L

2
e22

V̇n =Ce1ė1 + Le2ė2

= e1(I − I∗)− e1[e2u∗n + (e2 + x2∗)eun]

+e2[e1u∗n + (e1 + x1∗)eun]

=−c2e1(e
c3x1 − ec3x1∗)− eun(e1x2∗ − e2x1∗)

and choose the controller for the error dynamics of the
nominal system:

eun , e1x2∗ − e2x1∗ (24)

then

V̇n = −c2e1(e
c3x1 − ec3x1∗)− (e1x2∗ − e2x1∗)

2 (25)

From the fact that the first term of the right side of
(25) is < 0 ∀ e1 6= 0, the nominal system is globally
asymptotically stable (GAS). Thus, the control component
eun will drive the error dynamics e asymptotically to 0.

4.2 Controlling the whole system.

The control part of the nominal system was established in
(23) and (24). These equations are functions of ẋ2∗ and
x2∗, and these values are not exactly known. Therefore,
the control for the whole system is

u= u∗n(x2∗) + eun(x2∗) + ∆u∗ +∆eu

= u∗n(x2∗) + eun(x2∗) + δ(t, x) (26)

where

δ(t, x) , ∆u∗ +∆eu =
L∆ẋ2∗

x1∗
+ e1∆x2∗ (27)

is the uncertain term, and ∆ẋ2∗, ∆x2∗ are the perturba-
tions due to the transients in the observer, i.e. Ĩ 6= 0.

In order to find the controller for the whole system the
next assumption is needed.

Assumption 2. The uncertain term is bounded, i.e.

||δ(t, x)||2 < ξ

where ξ is a unknown positive number.

Since this uncertain term satisfies the matching condition,
a variation of the Lyapunov redesign technique (Khalil
[1996]) is used here to compensate it.

Now, a term w will be added to the controller to compen-
sate the uncertain term:

u = un + δ(t, x) + w (28)

where un = u∗n + eun

The closed loop system becomes

ẋ = f(t, x)+G(t, x)[u∗n+ eun]+G(t, x)[w+ δ(t, x)] (29)

and

ė = f(t, x) +G(t, x)[u∗n + eun]− ẋ∗ +G(t, x)[w + δ(t, x)]



Consider the following Lyapunov candidate function for
the whole system:

V =
C

2
e21 +

L

2
e22 + β(θ̃) (30)

where β(θ̃) was defined in (20).

Let us omit the arguments of the functions for the sake of
brevity. The time derivative is:

V̇ =
∂V

∂e
{f +G(u∗n + eun)− ẋ∗}+

∂V

∂e
{G(w + δ)}+ β̇

= V̇n + β̇ +
∂V

∂e
Gw +

∂V

∂e
Gδ (31)

To compensate the perturbation, the following term is
considered:

w , −ξ̂
∂V
∂e G

||∂V∂e G||2
(32)

with the adaptive law:

˙̂
ξ =

{
−kξ ξ̂ for |Ĩ| ≤ ε

α for |Ĩ| > ε
(33)

where kξ, α > 0 and ε ≥ 0.

First, let us analyze the system setting ε = 0. Then, when

Ĩ > 0, ξ̂(t) = αt + ξ̂(0), the perturbation term δ will be
bounded and > 0 and the next inequality will hold in finite
time:

ξ̂

∥∥∥∥∂V∂e G

∥∥∥∥
2

>
∂V

∂e
Gδ (34)

Thus, from (21), (25), (31), (32) and (34), V̇ will be
negative definite and the whole system will be globally
asymptotically stable (GAS) with the controller given by

un +w. Now, when Ĩ = 0 the perturbation term δ will be

zero also, and the adaptive term ξ̂ will converge to zero,
”turning off” in this way, the discontinuous term w, and
the whole system will be GAS.

In practice, the observer error Ĩ can’t be exactly zero for
a large time, even when the system variations are small.
This is why a small interval ε needs to be setting. Then,

when |Ĩ| ≤ ε, the adaptive term ξ̂ will converge to zero
and the whole system will continue being GAS due that
the perturbation term δ will be small enough that will be
dominated by the negative terms in (21) and (25). In this
way, we have GAS for the whole system and chattering
due to the discontinuous term w can be avoided.

5. SIMULATION RESULTS.

Numerical simulations were made in the Simulink/Matlab
platform to verify the performance of the adaptive con-
troller. The simulation consists in step changes in the irra-
diance and temperature variables. Its values were changed
by 50%. This is one of the worst conditions for MPPT
in PVS. The initial conditions in the plant and in the

adaptive term ξ̂ were zero and in the estimator was 1x10−5.
The MPPT algorithm used in these simulations was the
extremum seeking algorithm (ESA). The initial condition
in this algorithm has to be set > 0 to avoid singularities
in (23). Figures 3 and 4 show the results.

The step changes in irradiance and temperature are shown
in graphs a) and b) in figure 3.
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The graph a) in figure 4 shows the first reference x1∗,
given by the ESA, and the capacitor voltage x1. Both
signals are almost indistinguishable. In the graph b) of
the same figure we can see that the voltage grid and the
injected current (x2) are in phase. These graphs show that
the controller fulfill both objectives: MPPT of PV array
and unity output power factor, under these demanding
conditions.

The maximum power point current I∗ and the maximum
power point current estimated Î∗ are shown in graph
c) in figure 4. As we can see, the signals are almost
identical, showing the good performance of the sliding
mode estimator.

Graph d) in figure 4 shows the output power. This is
the maximum power that the PVS can deliver with the
irradiance and temperature given. It clearly follows the
environmental variations. At time 4 and 7 sec. we can



see small variations due to the stepping changes in the
temperature.

In graphs c) and d) in figure 3, the adaptive bound ξ̂

and the observer error Ĩ are shown. The adaptive bound
starts growing when the observer error is bigger than the
ε interval. These perturbations occur at time 5 and 11 sec.
due to the irradiance variations. The perturbations due
to the temperature variations are so small that they fall
into the ε interval. Once the observer error fall into the ε
interval, the adaptive bound ξ̂ decrease exponentially to
zero. The discontinuous controller term w is different from
zero only when medium and big perturbations occur, and
it will be zero again as soon as the perturbations cease. In
this way, the chattering problem is avoided.

6. CONCLUSION.

An adaptive control scheme for maximum power point
tracking of a single-phase grid-connected PVS was pre-
sented. The PVS driven by this control law is capable
of deliver the maximum power available under variable
environmental conditions.

An estimator was designed using sliding mode techniques.
It is capable of estimate time-varying parameters that
depends on irradiance and temperature.

A Lyapunov function that proves globally asymptotically
stability of the system was found. The analysis includes
the non-linear model of the system, the dynamics of the
estimator and the uncertainty in the second reference x2∗.

An adaptive law was proposed to substitute the perturba-
tion bound. This adaptive law helps the system to be GAS
under perturbations and it is zero when the perturbations
cease. The discontinuous controller term w is driven by
this adaptive law and the chattering problem is avoided in
this manner.

Numerical simulations were made to verify the perfor-
mance of the solution. It was showed the good performance
of the system even under very demanding conditions.
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