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Some Banach spaces of Dirichlet series
Maxime Bailleul, Pascal Lefèvre

Abstract
The Hardy spaces of Dirichlet series denoted by Hp (p ≥ 1) have been

studied in [12] when p = 2 and in [3] for the general case. In this paper
we study some Lp-generalizations of spaces of Dirichlet series, particularly
two families of Bergman spaces denoted Ap and Bp. We recover classical
properties of spaces of analytic functions: boundedness of point evalua-
tion, embeddings between these spaces and "Littlewood-Paley" formulas
when p = 2. We also show that the Bp spaces have properties similar to
the classical Bergman spaces of the unit disk while the Ap spaces have a
different behavior.

1 Introduction

A Background and notations

In [12], the authors defined the Hardy space H2 of Dirichlet series with
square-summable coefficients. Thanks to the Cauchy-Schwarz inequality, it is
a space of analytic functions on C 1

2
:= {s ∈ C, <(s) > 1

2} and this domain is
maximal. This space is isometrically isomorphic to the Hardy space H2(T∞)
(see [7] for the definition of H2(T∞)).

F. Bayart introduced in [3] the more general class of Hardy spaces of Dirichlet
series Hp (1 ≤ p < +∞). We shall recall the definitions below.

In another direction, McCarthy defined in [19] some weighted Hilbert spaces
of two types: Bergman-like spaces and Dirichlet-like spaces.

It is the starting point of many recent researches on spaces of Dirichlet series,
for instance in [21], [22] and [23], some local properties of these spaces are stud-
ied and in [3], [4], [16], [25] and [26] some results about composition operators
on these spaces are obtained.

We recall some known facts about Dirichlet series. The study of Dirichlet se-
ries may appear more complicated than the study of power series. For instance,
there is a first important difference: all the notions of radius of convergence co-
incide for Taylor series but Dirichlet series has several abscissas of convergence.
The two most standard ones are the abscissa of simple convergence σc and the
abscissa of absolute convergence σa (see [24], [29]).

Let f be a Dirichlet series of the following form

f(s) =
+∞∑
n=1

ann
−s (1).

We shall need the two other following abscissas:

σu(f) = inf{a | The series (1) is uniformly convergent for <(s) > a}
= abscissa of uniform convergence of f.

σb(f) = inf{a | The function f has an analytic, bounded extension for <(s) > a}
= abscissa of boundedness of f.
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Actually, the two previous abscissas coincide: for all Dirichlet series f , one has
σb(f) = σu(f) (see [5]). This result due to Bohr is really important for the
study of H∞, the algebra of bounded Dirichlet series on the right half-plane C+

(see [18]). We shall denote by ‖ · ‖∞ the norm on this space:

‖f‖∞ := sup
<(s)>0

|f(s)|.

Let us recall now the principle of Bohr’s point of view on Dirichlet series: let
n ≥ 2 be an integer, it can be written (uniquely) as a product of prime numbers
n = pα1

1 · · p
αk
k where p1 = 2, p2 = 3 etc . . . If s is a complex number and if we

consider z = (p−s1 , p−s2 , . . . ), then we have by (1)

f(s) =
+∞∑
n=1

an(p−s1 )α1 · · (p−sk )αk =
+∞∑
n=1

an z
α1
1 · · z

αk
k .

So we can see a Dirichlet series as a Fourier series on the infinite-dimensional
polytorus T∞. We shall denote this Fourier series D(f). This correspondence
is not just formal. For instance, let P be the set of prime numbers, Bohr proved
the next result.

Theorem ([5]). Let f be a Dirichlet series of the form (1). Then∑
p∈P
|ap| ≤ ‖f‖∞.

The infinite-dimensional polytorus T∞ can be identified with the group of
complex-valued characters χ on the positive integers which satisfy the following
properties {

|χ(n)| = 1 ∀n ≥ 1,
χ(nm) = χ(n)χ(m) ∀n, m ≥ 1.

To obtain this identification for χ = (χ1, χ2, . . . ) ∈ T∞, it suffices to define χ
on the prime numbers by χ(pi) = χi and use multiplicativity. We shall denote
by m the normalized Haar measure on T∞.

Now, let us recall how one can define the Hardy spaces of Dirichlet series
Hp. We already precised the case p =∞, nevertheless, it is easy to see that the
following description also applies to the case p = ∞. We fix p ≥ 1. The space
Hp(T∞) is the closure of the set of analytic polynomials with respect to the norm
of Lp(T∞, m). Let f be a Dirichlet polynomial, by the Bohr’s point of viewD(f)
is an analytic polynomial on T∞. By definition ‖f‖Hp := ‖D(f)‖Hp(T∞). The
spaceHp is defined by taking the closure of Dirichlet polynomials with respect to
this norm. Consequently Hp and Hp(T∞) are isometrically isomorphic. When
p = 2, H2 is just the space of Dirichlet series of the form (1) which verify

+∞∑
n=1

|an|2 < +∞.

Let D be the space of functions which admit representation by a convergent
Dirichet series on some half-plane. When a function f belongs to D and σ > 0,
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we can define the function fσ ∈ D, the translate of f by σ, i.e. fσ(s) := f(σ + s).
We can then define a map from D to D by Tσ(f) = fσ.

For θ ∈ R, Cθ is the half-plane defined by {s ∈ C, <(s) > θ}.
We shall denote by P the space of Dirichlet polynomials, that is to say the

vector space spanned by the functions en(z) = n−z, where n ≥ 1. At last, in

the sequel, for p ≥ 1, we write p′ its conjugate exponent:
1
p

+
1
p′

= 1.

B Organization of the paper

In the present paper, we introduce two classes of Bergman spaces of Dirichlet
series. We give some properties of these spaces, precise the growth of the point
evaluation of functions belonging to these spaces. At last, we compare them to
the Hardy spaces of Dirichlet series: it appears some very different phenomena.

Definition 1. Let p ≥ 1, P be a Dirichlet polynomial and µ be a probability
measure on (0,+∞) such that 0 ∈ Supp(µ). We define

‖P‖Apµ =
(∫ +∞

0

‖Pσ‖pHp dµ(σ)
)1/p

.

Apµ will be the completion of P with respect to this norm.
When µ(σ) = 2e−2σ dσ, we denote these spaces simply Ap. More generally, let
us fix α > −1 and consider the probability measure µα, defined by

dµα(σ) =
2α+1

Γ(α+ 1)
σα exp(−2σ) dσ.

The space Apµα will be denoted simply Apα in this case.

Definition 2. On the infinite dimensional polydisk D∞, we consider the mea-
sure A = λ ⊗ λ ⊗ · · · where λ is the normalized Lebesgue measure on D. For
p ≥ 1, the space Bp(D∞) is the closure of the set of analytic polynomials with
respect to the norm of Lp(D∞, A). Let f be a Dirichlet polynomial, we set
‖f‖Bp := ‖D(f)‖Bp(D∞). The space Bp is defined by taking the closure of P
with respect to this norm.

In section 2, we prove that the point evaluation is bounded on the spaces
Apµ for any s ∈ C1/2. More precisely, let δs be the operator of point evaluation
at s ∈ C1/2, which is a priori defined for Dirichlet polynomials (or convergent
Dirichlet series). We prove that the operator extends to a bounded operator
which we still denote by δs and we obtain that there exists a constant cp such
that for every s ∈ C1/2,

‖δs‖(Ap)∗ ≤ cp
( <(s)

2<(s)− 1

)2/p

.

We also show that the identity from H2 to Ap is not bounded when p > 2 but
is compact when p = 2. Finally we obtain a Littlewood-Paley formula for the
Hilbert spaces A2

µ.
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In section 3, we prove that the point evaluation is bounded on the space Bp
for any s ∈ C1/2 and we have

‖δs‖(Bp)∗ = ζ(2<(s))2/p.

By a result of hypercontractivity, we obtain that the injection from Hp to B2p

is bounded. This phenomenon is similar to what happens in the classical frame-
work of Hardy/Bergman spaces in one variable. Nevertheless, concerning com-
pactness, we have the following curiosity: the injection from Hp to Bp is not
compact. We also obtain a Littlewood-Paley formula for the space B2.

2 The Bergman spaces Apµ

A Hilbert spaces of Dirichlet series with weighted `2 norm

First, we recall some facts of [19]. We changed the definition in order to
include the constants in these spaces, which seems to us more natural.

Let w = (wn)n≥1 be a sequence of positive numbers, the space A2
w is defined

by

A2
w :=

{
f ∈ D, f(s) =

+∞∑
n=1

ann
−s,

+∞∑
n=1

|an|2wn < +∞
}
.

Of course, if w ≡ 1, A2
w is just the classical Hardy space H2. In order to

obtain good properties for these spaces, we need to impose some properties on
the weights.

Definition. [19] Let µ be a probability measure on (0,+∞) such that 0 ∈ Supp(µ).
We define for n ≥ 1

wn :=
∫ +∞

0

n−2σdµ(σ).

In this case, we say that the space A2
µ := A2

w is a (hilbertian) Bergman-like
space and that w is a Bergman weight.

Example. When µ = δ0, the Dirac mass at point 0, we get the Hardy space H2.
In the opposite situation, when µ({0}) = 0, it is easy to see that the sequence
w converges to 0.

In the case µ = µα, where α > −1, we have wn = (log(n)+1)−1−α for n ≥ 1
and the associated space is A2

α. For α = 0, we recover the space A2 and we can
notice that the limit (degenerated) case α = −1 corresponds to H2.

Mac Carthy proved that these spaces are spaces of analytic functions on C 1
2
.

It is a consequence of the following lemma:

Lemma ([19]). Let w be a Bergman weight. Then w is non-increasing and w
decreases more slowly than any negative power of n, that is to say:

∀ε > 0,∃c > 0, wn > cn−ε ∀n ≥ 1.
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In addition, C 1
2
is a maximal domain. Indeed let us consider the Riemann

Zeta function ζ ([29]), for every ε > 0 and every weight w:

ζ
(1

2
+ s+ ε

)
=

+∞∑
n=1

1
n1/2+ε+s

∈ A2
w.

But these Dirichlet series admit a pole at 1
2 − ε.

B Point evaluation on Apµ
First we can easily compute the norm of the evaluation in the case of the

Hilbert spaces A2
µ. In this case the point evaluation is bounded on C1/2, it is

optimal and the reproducing kernel at s ∈ C1/2 is

Kµ(s, w) :=
+∞∑
n=1

n−w−s

wn

and ‖δs‖(A2
µ)∗ ≤

(+∞∑
n=1

n−2σ

wn

)1/2

for every s = σ + it ∈ C1/2.

In the general case, the next theorem provides us a majorization which gives
the right order of growth when the abscissa is close to the critical value 1/2.
Actually we are going to distinguish the behavior according to the valuation of
the function, so we shall need some estimates according the constant coefficient
vanishes or not. It would be interesting to work with truncated functions with
higher order i.e. when each an = 0 for n ≤ v, nevertheless we shall only
concentrate on the case v = 0 and v = 1, because these are the only needed
cases in this paper.

Definition 3. Let Hp∞ be the subspace of Hp of functions whose valuation
is at least 1, i.e. the space of Dirichlet series whose constant coefficient a1

vanishes (remember that a1 is actually the value at infinity, and this explains
our notation).

Let Apµ,∞ be the subspace of Apµ of functions whose constant coefficient
vanishes. In the particular case of the measure µα, we write Apα,∞. At last,
when α = 0, we simply use the natural notation Ap∞.

On the spaces Hp (resp. Hp∞), we define ∆p(s) (resp. ∆p,∞(s)) as the norm
of the evaluation at point s ∈ C1/2. We recall that we know from [3] that
∆p(s) = ζ(2<(s))1/p.

Theorem 1. Let p ≥ 1 and µ be a probability measure on (0,+∞) such that
0 ∈ Supp(µ).

Then the point evaluation is bounded on P ∩ Apµ (resp. on P ∩ Apµ,∞) for
any s ∈ C1/2. Hence it extends to a bounded operator on Apµ (resp. on Apµ,∞)
whose norm verifies

(i) ‖δs‖(Apµ)∗ ≤ inf
η∈(0,<(s)−1/2)

(‖∆p(<(s)− •)‖Lp′ ([0,<(s)−1/2−η], dµ)

µ([0,<(s)− 1/2− η])

)
.

(ii) ‖δs‖(Apµ,∞)∗ ≤ inf
η∈(0,<(s)−1/2)

(‖∆p,∞(<(s)− •)‖Lp′ ([0,<(s)−1/2−η], dµ)

µ([0,<(s)− 1/2− η])

)
.
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Proof. We prove only (i) since the proof for (ii) is the same. Let us fix η in
(0,<(s)− 1/2). We can assume that s = σ ∈ (1/2,+∞) thanks to the vertical
translation invariance of the norm on Apµ. Let P be a Dirichlet polynomial. We
have

P (σ) = Pε(σ − ε) for any ε ∈ (0, σ − 1/2).

We know that the point evaluation is bounded on Hp:

|P (σ)| ≤ ∆p(σ − ε)‖Pε‖Hp for any ε ∈ (0, σ − 1/2).

By integration on (0, σ − 1/2− η) we obtain

µ([0, σ − 1/2− η])|P (σ)| ≤
∫ σ−1/2−η

0

∆p(σ − ε)‖Pε‖Hp dµ(ε) .

Then, by Hölder’s inequality,

µ([0, σ − 1/2− η])|P (σ)| ≤ ‖P‖Apµ · ‖∆p(σ − • )‖Lp′ ([0, σ−1/2−η],dµ) .

Since η ∈ (0,<(s)− 1/2) is arbitrary, the result follows.

Corollary 1. Let p ≥ 1 and α > −1.

(i) The point evaluation is bounded on Apα for any s ∈ C1/2 and there exists
a positive constant cp,α such that for every s ∈ C1/2 we have:

‖δs‖(Apα)∗ ≤ cp,α
(

<(s)
2<(s)− 1)

)(2+α)/p

·

(ii) The point evaluation is bounded on Apα,∞ for any s ∈ C1/2 and there exists
a positive constant c′p,α such that for every s ∈ C1/2 we have:

‖δs‖(Apα,∞)∗ ≤
c′p,α

(2<(s)− 1)(2+α)/p
·

Proof. In this proof, we shall use that, for every x > 1: ζ(x) ≤ x

x− 1
· On

the other hand, in the sequel, A . B means that there exists some constant c
depending on p and α only such that A ≤ cB.

Fix s = σ ∈ (1/2,+∞) and η ∈ (0, σ − 1/2). In our framework, there exists
some constant Cα depending on α only, such that, for every A > 0:

µα([0, A]) ≥ Cα min
(
1, Aα+1

)
.

Let us prove (i).
We first consider the case p = 1. We choose η = (σ − 1/2)/2. Since

sup
ε∈[0, (σ−1/2)/2]

|ζ(2σ − 2 ε)| = ζ(σ + 1/2) ≤ 2σ + 1
2σ − 1

the conclusion follows from the preceding theorem.
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Now let us assume that p > 1 and p 6= 2 (we already know exactly the norm
of the evaluation in this case). We have

∫ σ−1/2−η

0

ζ(2σ − 2ε)p
′/p dµα(ε) . (2σ)p

′/p

∫ σ−1/2−η

0

εα

(2σ − 2ε− 1)p′/p
e−2ε dε.

We split our discussion in two cases, according to p > 2 or 2 > p > 1.
First let us assume that p > 2. We have p′/p < 1 hence the previous integral

converges for η = 0 and is majorized by∫ σ−1/2

0

εα

(2σ − 2ε− 1)p′/p
dε =

1
(2σ − 1)p′/p

·
∫ σ−1/2

0

εα(
1− (2ε)/(2σ − 1)

)p′/p dε
=

(2σ − 1)α+1

2α+1(2σ − 1)p′/p
·
∫ 1

0

tα(1− t)−p
′/p dt with t =

2ε
2σ − 1

·

Finally we obtain:∫ σ−1/2−η

0

ζ(2σ − 2ε)p
′/p dµα(ε) . (2σ)p

′/pB(α+ 1, 1− p′/p)
(2σ − 1)(p′/p)−α−1

where B is the classical Beta function ([9]). Finally with the choice η = 0 in
Theorem 1, we obtain

‖δσ‖(Apα)∗ .

(
B(α+ 1, 1− p′/p)
(2σ − 1)(p′/p)−α−1

)1/p′

· (2σ)1/p

min
(
1, (σ − 1/2)α+1

) .
This estimation is good when σ is bounded (and more precisely when σ is close
to 1/2). We have to look at the asymptotic behavior. So, coming back to the
integral and considering σ ≥ 1, we have∫ σ−1/2

0

ζ(2σ − 2ε)p
′/p dµα(ε)

we majorize it by∫ σ−1

0

sup
x≥2
|ζ(x)|p

′/p dµα(ε) +
∫ σ−1/2

σ−1

ζ(2σ − 2ε)p
′/p dµα(ε).

The first integral is uniformly bounded relatively to σ and the second one is
majorized by∫ σ−1/2

σ−1

εα(2σ)p
′/p

(2σ − 2ε− 1)p′/p
e−2ε dε . σα+p′/pe−2σ

∫ 1

0

1
up′/p

du . 1.

It proves that the norm of the evaluation is uniformly bounded when σ > 1.
Gathering everything, the conclusion follows and (i) is proved when p > 2.

Now for the case 1 < p < 2, we have p′/p > 1 and we cannot choose η = 0
because the integral is not convergent. But in fact, it suffices to choose the
middle point η = (σ − 1/2)/2. We conclude in the same way.
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Let us prove (ii). Obviously ‖δs‖(Apα,∞)∗ ≤ ‖δs‖(Apα)∗ , hence the conclusion
follows from (i) when the real part of s is bounded by 1.

It suffices to look at the behavior when σ > 1 and it will follow from the
(asymptotic) behavior of ∆p,∞:

∆p,∞(s) ≤ 1
<(s)− 1

.

Indeed, for every f ∈ P ∩Hp∞ ⊂ H1
∞, we have for any s ∈ C1:

f(s) = lim
T→+∞

∫ T

−T
ζ̃(s+ it)f(it).

where ζ̃(z) =
∑
n≥2

n−z. Hence

|f(s)| ≤ ‖ζ̃σ‖H∞‖f‖H1 ≤ 1
σ − 1

‖f‖Hp .

Now, the sequel of the proof follows the lines of the proof of (i) so we leave
the details to the reader.

Remarks.

(i) Let us precise why it is optimal in many cases: the behavior of ‖δs‖(Apα)∗

around the critical line σ = 1/2 cannot be a power of
<(s)

2<(s)− 1
better

than (2+α)/p. Indeed, let σ > 1/2, we would like to consider the function
(ζσ)2/p. Let us mention that we can define the function ζq (where q > 0)
through the Euler product:

ζq(z) =
∏
p∈P

[ 1
1− p−z

]q
.

Actually we first work with F being a partial sum of (ζσ)2/p, we obtain:

|F (σ)|p ≤ ‖δσ‖p(Apα)∗
‖F‖pApα . ‖δσ‖p(Apα)∗

∫ +∞

0

‖(Fε)‖pHpε
α exp(−2ε) dε

because F is a Dirichlet polynomial. Now if we assume that p > 1, we
know (see [1]) that (en)n≥1 is a Schauder basis for Hp hence there exists
cp > 0 such that:

|F (σ)|p . cp‖δσ‖p(Apα)∗

∫ +∞

0

‖ζ2/p
σ+ε‖

p
Hpε

α exp(−2ε) dε.

But
‖(ζσ+ε)2/p‖pHp = ‖ζσ+ε‖2H2 = ζ(2σ + 2ε)

and we get (since F was an arbitrary partial sum of ζ2/p
σ ):

|ζ(2σ)|2 . ‖δσ‖p(Apα)∗

∑
n≥1

n−2σ

(1 + ln(n))α+1
.
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When α < 0, we get |ζ(2σ)|2 . ‖δσ‖p(Apα)∗
(2σ − 1)α hence

1
(2σ − 1)(2+α)

. ‖δσ‖p(Apα)∗

which proves our claim, in a strong way: the majorization in (i) of Cor.1
is actually also (up to a constant) a minoration.

When α ≥ 0, we have

1
(2σ − 1)(2+α)| log(2σ − 1)|

. ‖δσ‖p(Apα)∗

which proves that we cannot get a better exponent than (2 + α)/p in (i),
Cor.1.

(ii) Let σ > 1/2 and µ = µα, we already know that the reproducing kernel at
σ is defined by

Kµα(σ,w) =
+∞∑
n=1

(1 + log(n))α+1n−σ−w , ∀w ∈ C1/2.

Then
Kµα(σ, σ) ≤ ‖δσ‖(A2

α)∗‖Kµα(σ, • )‖A2
α

and by the property of the reproducing kernel

Kµα(σ, σ)1/2 ≤ ‖δσ‖(A2
α)∗ .

The converse inequality is already known, then

‖δσ‖(A2
α)∗ = Kµα(σ, σ)1/2 =

(
Γ(2 + α)

(2σ − 1)2+α
+O(1)

)1/2

when σ goes to 1/2 (see [23] for the second equality) and so our result is
sharp when p = 2.

(iii) With the same notations, we have

Kµα(σ, σ)2 ≤ ‖δσ‖(A1
α)∗‖Kµα(σ, • )2‖A1

α
= ‖δσ‖(A1

α)∗‖Kµα(σ, • )‖2A2
α

and again by the property of the reproducing kernel, we obtain

Kµα(σ, σ) ≤ ‖δσ‖(A1
α)∗ .

We conclude as in (ii) and so the result is also sharp for p = 1.

(iv) In (i), we used that (en)n≥1 is a Schauder basis for Hp when p > 1.
This result is also true for Apµ when p > 1: just use the result on Hp,
then it suffices to make an integration and use the density of the Dirichlet
polynomials. This remark is also true for the spaces Bp.

Let us mention here that we are able to give a more precise majorization in
the particular case of an even integer p: constants are equal to 1. It immediately
follows from a general method explained in annexe at the end of our paper:
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Proposition 1. Let p be an even integer, µ be as in Th.1.

(i) For every s ∈ C1/2 we have:

‖δs‖(Apµ)∗ ≤ ‖δs‖
2/p
(A2

µ)∗ .

In particular,

(ii) For every s ∈ C1/2 we have:

‖δs‖(Ap)∗ ≤
(

(ζ − ζ ′)(2<(s))
)1/p

∼ 1
(2<(s)− 1)2/p

when <(s)→ 1/2.

As soon as a Bergman like space is defined, a Dirichlet like space is naturally
associated:

Definition 4. Let p ≥ 1 and µ be a probability measure on (0,+∞). We define
the Dirichlet space Dpµ as the space of Dirichlet series f such that

‖f‖pDpµ := |f(+∞)|p + ‖f ′‖pApµ < +∞.

Here f(+∞) stands for lim
<(s)→+∞

f(s) = a1, where f has an expansion (1).

Theorem 2. Let p ≥ 1 and µ be a probability measure on (0,+∞). For any
s ∈ C1/2, we have

|f(s)| ≤ 21/p′max

(
1,
∫ +∞

<(s)

‖δt‖(Apµ,∞)∗dt

)
× ‖f‖Dpµ .

Proof. Without loss of generality we may assume that s = σ ∈ (1/2,+∞). Now

|f(σ)−f(+∞)| =
∣∣∣∣ ∫ +∞

σ

f ′(t)dt
∣∣∣∣ ≤ ∫ +∞

σ

|f ′(t)|dt ≤
∫ +∞

σ

‖δt‖(Apµ,∞)∗dt×‖f ′‖Apµ,∞

since the constant coefficient of f ′ vanishes, i.e. f ′ ∈ Apµ,∞. So we get

|f(σ)| ≤ |f(+∞)|+
∫ +∞

σ

‖δt‖(Apµ,∞)∗dt× ‖f ′‖Apµ,∞

≤
(

1 +
(∫ +∞

σ

‖δt‖(Apµ,∞)∗dt
)p′ )1/p′

×
(
|f(+∞)|p + ‖f ′‖pApµ,∞

)1/p

thanks to the Hölder’s inequality. Now it suffices to remark that(
1 +

(∫ +∞

σ

‖δt‖(Apµ,∞)∗dt
)p′ )1/p′

≤ 21/p′max

(
1,
∫ +∞

<(s)

‖δt‖(Apµ,∞)∗dt

)
.

Corollary 2. Let α > −1 and p ≥ 1. There exists cp,α > 0 such that for every
s ∈ C1/2, we have

‖δs‖Dpα ≤


cp,α

1

(2<(s)− 1)
(2+α)
p −1

if α 6= p− 2.

cp,α log(2<(s)− 1) if α = p− 2.

10



Proof. The proof follows from Th. 2 and corollary 1.

Let us make a digression. The proofs of theorems 1 and 2 are based on the
fact that we work with Bergman spaces with axial weights. Replacing axial
weights by radial weights, the same idea can be adapted to classical Bergman
and Dirichlet spaces on the unit disk D. Let us precise here how we can easily
estimate the norm of the evaluation on weighted spaces of analytic functions
over the unit disc.

Let σ : (0, 1)→ (0,+∞) be a continuous function such that σ ∈ L1(0, 1). We
extend it on D by σ(z) = σ(|z|). For p ≥ 1, we consider the weighted Bergman
space

Apσ := H(D) ∩ Lp(D, σ(|z|)dλ(z))

where H(D) is the set of analytic functions on D and λ is the normalized
Lebesgue measure on D. This space is equipped with the norm

‖f‖Apσ =
(∫

D
|f(z)|p σ(z)dλ(z)

)1/p

.

We also consider the Dirichlet space Dp
σ(D): it is the space of analytic functions

on D such that the derivative belongs to Apσ. This space is equipped with the
norm

‖f‖Dpσ =
(
|f(0)|p + ‖f ′‖p

Apσ

)1/p

.

We know that the point evaluation at z ∈ D is bounded on the spaces Hp

(see [8]) and we have

‖δz‖Hp =
1

(1− |z|2)1/p
.

Theorem 3. Let p ≥ 1 and z ∈ D. The point evaluation at z is bounded on Apσ
and we have

‖δz‖(Apσ)∗ ≤ inf
η∈(0,1−|z|)

(‖r → (1− (|z|/r)2)−1/p‖Lp′ ([|z|+η, 1], σ(r)dr)

S([|z|+ η, 1])

)

where S(I) =
∫
I

σ(r)dr.

Example. When σ ≡ 1 (The classical Bergman space Ap), we recover

‖δz‖(Ap)∗ .
1

(1− |z|2)2/p
for any z ∈ D.

Theorem 4. Let p ≥ 1 and z ∈ D. We have

‖δz‖(Dpσ)∗ ≤ 21/p′max

(
1,
∫ |z|

0

‖δr‖(Apσ)∗ dr

)
.

11



C Apµ is a space of Dirichlet series

The results of the preceding section allow us to define, for each s ∈ C1/2, the
value of f ∈ Apµ at s as δs(f). Of course, it coincides with the natural definition
when f is a Dirichlet polynomial or when f ∈ D ∩Apµ. Now we want more: we
wish to check that we are actually working on spaces of Dirichlet series.

We first need the following tool.

Lemma 1. Let ε > 0 and µ be a probability measure on (0,+∞). Then

Tε

∣∣∣∣ P ∩ A1
µ −→ A2

µ

f 7−→ fε

is bounded.
This extends to a bounded operator (still denoted Tε) from A1

µ to A2
µ.

In the proof, we shall use the following sequence.

Definition. Let µ be a probability measure on (0,+∞) with 0 ∈ Supp(µ). We
define

w̃n :=
∫ +∞

0

n−σdµ(σ) ∀n ≥ 1.

Proof. We shall introduce three bounded operators.
First we define S1 : P ∩ A1

µ → H1 by

S1

( +∞∑
n=1

anen

)
:=

+∞∑
n=1

anw̃nen.

S1 is bounded because for any Dirichlet polynomial we have∥∥∥∥ N∑
n=1

anw̃nen

∥∥∥∥
H1

=
∫

T∞

∣∣∣∣ N∑
n=1

anw̃nz
α1
1 · · z

αk
k

∣∣∣∣dm(z)

=
∫

T∞

∣∣∣∣ ∫ +∞

0

N∑
n=1

ann
−σzα1

1 · · z
αk
k dµ(σ)

∣∣∣∣dm(z) by definition of w̃n.

≤
∫ +∞

0

∫
T∞

∣∣∣∣ N∑
n=1

ann
−σzα1

1 · · z
αk
k

∣∣∣∣ dm(z)dµ(σ) =
∥∥∥∥ N∑
n=1

anen

∥∥∥∥
A1
µ

.

By density, this operator extends to a bounded operator (still denoted S1).
Now we define S2 : H1 → H2 by

S2

( +∞∑
n=1

anen

)
:=

+∞∑
n=1

ann
−ε

√
w̃n

en.

S2 is bounded because Tε/2 : H1 → H2 is bounded (see [3]) and because, there
exists C > 0 such that w̃n > Cn−ε.

The third operator S3 : H2 → A2
µ is defined by

S3

( +∞∑
n=1

anen

)
:=

+∞∑
n=1

an√
w̃n

en.

S3 is bounded because wn ≤ w̃n for all n ≥ 1.
Hence S3 ◦ S2 ◦ S1 is bounded and clearly coincides with Tε.
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Theorem 5. The space Apµ is a space of Dirichlet series: every f ∈ Apµ ∈ D
with σu(f) ≤ 1/2.

Proof. It is obvious when p ≥ 2 since then Apµ ⊂ A2
µ. When 1 ≤ p < 2, since

Apµ ⊂ A1
µ, we only have to prove the conclusion of the theorem in the case p = 1,

but this follows from the preceding lemma. Indeed, let us fix f ∈ A1
µ, α > 1/2

and ε = α − 1/2 > 0. The function Tε(f) belongs to A2
µ so we can write for

every z ∈ C1/2

Tε(f)(z) =
∑
n≥1

a(ε)
n n−z.

On the other hand, f is a limit of a sequence of Dirichlet polynomials (Pk)k∈N
relatively to the space A1

µ. The continuity of Tε implies that Tε(f) is the limit
of
(
Pk(ε + •)

)
k∈N relatively to the norm of A2

µ. Invoking the continuity of the
point evaluation both at z + ε and at z, we get

f(z + ε) = limPk(ε+ z) = limTε
(
Pk
)
(z) = Tε(f)(z) =

∑
n≥1

a(ε)
n n−z.

In particular, for every s ∈ Cα, we have (with z = s− ε ∈ C1/2):

f(s) =
∑
n≥1

(
a(ε)
n nε

)
n−s.

Actually the coefficient do not depend on ε (by uniqueness of the Dirichlet
expansion). Since α > 1/2 is arbitrary, we get the conclusion.

An immediate corollary of this section is the following proposition

Proposition 2. In view of the results of this section, we actually have for every
ε > 0 that

Tε

∣∣∣∣ A1
µ −→ A2

µ

f 7−→ fε

is well defined and bounded.
Recall that fε(s) = f(s+ ε) = δs+ε(f).

It seems clear that Hp ⊂ Apµ for any p ≥ 1 and any µ. Indeed, the following
theorem precise this fact and that the way we may compute the norm remains
valid for general functions of Apµ.

Theorem 6. Let p ≥ 1 and µ a probability measure whose support contains 0.

(i) Hp ⊂ Apµ and, for every f ∈ Hp, we have ‖f‖Apµ ≤ ‖f‖Hp .

(ii) For every f ∈ Hp, we have ‖f‖Apµ =
(∫ +∞

0

‖fσ‖pHp dµ
)1/p

.

(iii) For every f ∈ Apµ, we have ‖f‖Apµ = lim
c→0+

‖fc‖Apµ .

Proof. For every Dirichlet polynomials f , we have ‖f‖Apµ ≤ ‖f‖Hp , since µ is a
probability measure and ‖f‖Hp = sup

c>0
‖fc‖Hp . Now, (in the spirit of the proof of

13



Th.5) a density argument, combined with the boundedness of point evaluation,
allows to conclude easily the first assertion.

Let f ∈ Hp and ε > 0. There exists a Dirichlet polynomial P such that
‖f − P‖Hp < ε. By the first assertion ‖f − P‖Apµ < ε and then

‖f‖Apµ ≤ ε+ ‖P‖Apµ = ε+
(∫ +∞

0

‖Pσ‖pHpdµ(σ)
)1/p

≤ ε+
(∫ +∞

0

‖Pσ − fσ‖pHpdµ(σ)
)1/p

+
(∫ +∞

0

‖fσ‖pHpdµ(σ)
)1/p

.

Now, Tσ is a contraction on Hp for every σ > 0 and so

‖f‖Apµ ≤ 2ε+
(∫ +∞

0

‖fσ‖pHpdµ(σ)
)1/p

.

By the same way we obtain a lower bound and finally the second assertion.
For the third assertion, we shall use that Tc is a contraction on Apµ for every

c > 0: as in the first assertion, it suffices to check it on Dirichlet polynomials
but in this case this is clear by definition of the norm for Dirichlet polynomials
and the fact that Tc is a contraction on Hp. Now let f ∈ Apµ and ε, c > 0. There
exists P a Dirichlet Polynomial such that ‖f − P‖Apµ < ε, then

‖f − fc‖Apµ ≤ ‖f − P‖Apµ + ‖P − Pc‖Apµ + ‖Pc − fc‖Apµ

≤ 2‖f − P‖Apµ + ‖P − Pc‖Apµ ≤ 2ε+ ‖P − Pc‖Apµ
and by the dominated convergence theorem ‖P − Pc‖Apµ goes to 0 when c goes
to 0 and so the result is proved.

D Vertical limits and Littlewood-Paley formula

Let f be a Dirichlet series absolutely convergent in a half-plane. For any
sequences (τn) ⊂ R, we can consider vertical translations of f ,

(fτn(s)) := (f(s+ iτn)).

By Montel’s theorem, this sequence is a normal family in the half-plane of
absolute convergence of f and so there exists a convergent subsequence f̃ . We
say that f̃ is a vertical limit of f . We shall use the next result.

Proposition ([12]). Let f be a Dirichlet series of the form (1), absolutely con-
vergent in a half-plane. The vertical limit functions of f are exactly the functions
of the form

fχ(s) :=
+∞∑
n=1

anχ(n)n−s where χ ∈ T∞.

In [12] it is shown that every element f in H2 admits vertical limit functions
fχ which converges m-almost everywhere on C+. We have the same result with
the Bergman spaces Apµ. This is a consequence of the following lemma.

14



Menchoff’s Lemma ([20]). Let (Ω,A, ν) be a probability space and (Φn) be an
orthonormal sequence in L2(Ω). Then

+∞∑
n=1

|cn|2 log2(n) < +∞⇒
+∞∑
n=1

cnΦn converge ν − ae.

Proposition 3. Let p ≥ 1, µ be a probability measure on (0,+∞) and let
f ∈ Apµ or Dpµ. For almost all χ ∈ T∞, fχ converges on C+.

Remark. It suffices to give the proof in the case of the Bergman-like spaces:
indeed if f is in Dpµ then f ′ ∈ Apµ and so f

′

χ converges on C+ for almost every
χ ∈ T∞ and the same hold for f .

Proof. First, we prove the result when p = 2. Let f ∈ A2
µ of the form (1) and

cn := ann
−σ−it where σ > 0 and t ∈ R. Clearly (χ(n)) is an orthonormal family

in L2(T∞). We have:
+∞∑
n=2

|cn|2 log2(n) =
+∞∑
n=2

|an|2wn
(

log2(n)
n2σwn

)
.

If w is a Bergman weight, we know that there exists a positive constant C
such that wn > Cn−σ for all n ≥ 1, so

log2(n)
n2σwn

≤ log2(n)
Cnσ

.

In this case, the right term of the previous inequality is finite and by the
Menchoff’s lemma, the proof is finished for p = 2.

Now we want to prove this result when p 6= 2. By inclusion on these spaces,
it suffices to prove the result for p = 1.

Let f ∈ A1
µ. By proposition 2, fε ∈ A2

µ for every ε > 0. So

for every ε > 0, for almost all χ ∈ T∞, (fε)χ converges on C+.

Then we have:

for every n ≥ 1, for almost all χ ∈ T∞, (f1/n)χ converges on C+.

Now we can invert the quantifiers:

for almost all χ ∈ T∞, ∀n ≥ 1, (f1/n)χ converges on C+.

Of course if (f1/n)χ converges on C+ for every n ≥ 1, fχ converges on C+ and
so we obtain result.

Now, following some ideas from [15] in the case of the unit disk, we consider
the case of the weighted Bergman-like spaces when dµ(σ) = h(σ)dσ where
h ≥ 0, ‖h‖L1(R+) = 1 and 0 ∈ Supp(f). Let wh be the associated Bergman
weight defined for n ≥ 1 by

wh(n) =
∫ +∞

0

n−2σh(σ)dσ.

For σ > 0, we define

βh(σ) :=
∫ σ

0

(σ − u)h(u) du =
∫ σ

0

∫ t

0

h(u) dudt.
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Remark. Point out that lim
σ→+∞

βh(σ)n−2σ = 0 for every n ≥ 2.

We can compute the two first derivatives of βh:{
β′h(σ) =

∫ σ
0
h(u)du,

β′′h(σ) = h(σ).

In order to obtain a Littlewood-Paley formula for the spaces A2
µ, we need

the following lemma.

Lemma ([4]). Let η be a Borel probability measure on R and f of the form (1).
Then

‖f‖2H2 =
∫

T∞

∫
R
|fχ(it)|2dη(t)dm(χ).

Theorem 7. ["Littlewood-Paley formula"] Let η be a Borel probability measure
on R. Then

‖f‖2Awh = |f(+∞)|2 + 4
∫

T∞

∫ +∞

0

∫
R
βh(σ)|f

′

χ(σ + it)|2 dη(t)dσdm(χ).

Proof. Let f ∈ A2
wh

of the form (1), the previous lemma applied to fσ where
σ > 0 gives∫

T∞

∫
R
|f
′

χ(σ + it)|2dη(t)dm(χ) =
+∞∑
n=2

|an|2n−2σ log2(n) ∀σ > 0.

Now we multiply by βh(σ) and integrate over R+:∫ +∞

0

∫
T∞

∫
R
βh(σ)|f

′

χ(σ+it)|2dη(t)dm(χ)dσ =
+∞∑
n=2

|an|2 log2(n)
∫ +∞

0

n−2σβh(σ)dσ.

Now, it suffices to prove that

wh(n) = 4 log2(n)
∫ +∞

0

n−2σβh(σ)dσ.

But by definition, we have

wh(n) =
∫ +∞

0

h(σ)n−2σdσ.

An integration by parts gives

wh(n) =
[ ∫ σ

0

h(u) du× n−2σ

]+∞
0

+ 2 log(n)
∫ +∞

0

∫ σ

0

h(u) du× n−2σdσ

=
[
β
′

h(σ)× n−2σ

]+∞
0

+ 2 log(n)
∫ +∞

0

β
′

h(σ)× n−2σdσ.

But we know that β
′

h(σ)→ 0 when σ → 0 (because h ∈ L1(R+)) and β
′

h(σ)→
‖h‖1 when σ → +∞ . So we have

wh(n) = 2 log(n)
∫ +∞

0

β
′

h(σ)× n−2σdσ.
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Using again an integration by parts, we obtain:

wh(n) = 4 log2(n)
∫ +∞

0

n−2σβh(σ)dσ.

Example. let α > −1 and f ∈ A2
α, we have βh(σ) ≈ σα+2 when σ is small.

Then

‖f‖2α ≈ |f(+∞)|2 +
2α+3

Γ(α+ 3)

∫
T∞

∫ +∞

0

∫
R
σα+2|f

′

χ(σ + it)|2 dη(t)dσdm(χ).

In the case of Dirichlet spaces, we obtain the following proposition.

Proposition 4. Let dµ = hdσ be a probability measure. Then for f ∈ D2
µ we

have

‖f‖2D2
µ

= |f(+∞)|2 + 4
∫

T∞

∫ +∞

0

∫
R
h(σ)|f

′

χ(σ + it)|2 dη(t)dσdm(χ).

Remark. These formulas are really useful to prove some criterion for com-
pactness of composition operators (see [2]). We can also use these formulas to
compare A2 and H2 norms. For example, assume that f ∈ A2

∞. Then for x > 0,
we have

‖f‖2A2 ≥ 4
∫ x

0

∫
T∞

∫
R
|f
′

χ(σ + it)|2 dη(t)dm(χ)σ2dσ.

But we know that∫
T∞

∫
R
|f
′

χ(σ + it)|2 dη(t)dm(χ) = ‖fσ‖2H2 ≥ ‖fx‖2H2

when σ ≤ x. So we have

‖f‖2A2 ≥ 4‖fx‖2H2 ×
∫ x

0

σ2dσ and so ‖fx‖H2 ≤
√

3‖f‖A2

2x3
∀x > 0.

Obviously we can do the same with the spaces A2
µ.

Corollary 3. Let ε > 0, we have: Tε(A2
µ) ⊂ H2 ⊂ A2

µ.

E Comparison between Ap and Hp.

We already saw that Hp ⊂ Ap. The goal of this section is to prove the
following theorem.

Theorem 8. Let p > 2. The identity from H2 to Ap is not bounded but the
identity from H2 to A2 is compact.

We need the following lemma (we did not find in the literature any such
formula).

Lemma 2. For n ≥ 1, we have:

+∞∑
k=0

(
n+ k

n

)2

zk =
1

(1− z)2n+1

n∑
k=0

(
n

k

)2

zk.
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Proof. Proof 1. For n = 1, we easily check that

+∞∑
k=0

(
k + 1

1

)2

zk =
1 + z

(1− z)3
.

We can now prove the equality by induction just by noting that(
n+ k

n

)
× (n+ k + 1)

n+ 1
=
(
n+ k + 1
n+ 1

)
.

Now it suffices to compute the second derivative of the equality for the rank
n to obtain the equality for the rank n + 1, nevertheless the computation is
fastidious and we leave it to the reader.

Proof 2. We give also a quick and elementary argument. Fix z ∈ D. We

want to estimate S =
∞∑
k=0

(
n+ k

k

)2

zk.

Since for every w ∈ D, we have
1

(1− w)n+1
=
∞∑
k=0

(
n+ k

k

)
wk, we point out

that
S =

1
n!
G(n)(1) where G(w) =

wn

(1− zw)n+1
·

Using now the Leibnitz formula, we get

S =
1
n!

n∑
k=0

(
n

k

)
n!
k!
· (n+ k)!zk

n!(1− z)n+k+1
=

1
(1− z)2n+1

S̃

where S̃ =
n∑
k=0

(
n

k

)(
n+ k

k

)
zk(1− z)n−k, which is the derivative of order n at

point w = z of the function

w 7−→ 1
n!

n∑
k=0

(
n

k

)
wn+k(1− z)n−k =

wn

n!
(
w + 1− z

)n
.

Hence with help of the Leibnitz formula once again, we obtain

S̃ =
1
n!

n∑
k=0

(
n

k

)
n!
k!
zk · n!

(n− k)!
(z + 1− z)n−k =

n∑
k=0

(
n

k

)2

zk.

We get the conclusion.

After this work was completed, M. De La Salle communicated to us a third
proof which relies on the computation of a residue.

Remark. By uniqueness, we obtain

min(m, 2n+1)∑
j=0

(−1)j
(

2n+ 1
j

)(
n+m− j

n

)2

=
(
n

m

)2

∀n, m ≥ 1.
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Definition 5. Let m ≥ 1 be an integer. We define dm as the following multi-
plicative function

dm(k) =
∑

d1...dm=k
d1,..., dk≥1

1.

Remark. If we denote ∗ the Dirichlet convolution, dm is multiplicative because
dm = 1I ∗ · · · ∗ 1I (m times) where 1I(n) = 1 for every n ≥ 1.

Proposition 5. Let m ≥ 1 be an integer. There exists γm > 0 such that

+∞∑
n=1

dm(n)2n−2σ ∼ γm
(2σ − 1)m2 when σ → 1/2.

Proof. We know that dm is multiplicative, so we have

+∞∑
n=1

dm(n)2n−2σ =
∏
p∈P

(∑
k≥0

dm(pk)2p−2σk

)
.

Now, we can compute each series in the product because:

dm(pk) =
∑

pα1 .. pαm=pk

α1,..., αm≥0

1 =
∑

α1+···+αm=k
α1,..., αk≥0

1 =
(
m+ k − 1
m− 1

)
.

So, by the first lemma, we have

+∞∑
n=1

dm(n)2n−2σ =
∏
p∈P

(∑m−1
k=0

(
m−1
k

)2
(p−2σ)k

(1− (p−2σ)k)2m−1

)
.

Now we have (m−1∑
k=0

(
m− 1
k

)2

zk
)
× (1− z)(m−1)2 = Q(z)

where Q(0) = 1 and Q′(0) = 0 because the coefficient of z is(
m− 1

1

)2

−
(

(m− 1)2

1

)
= (m− 1)2 − (m− 1)2 = 0.

We get that (Q(p−2σ))p ∈ `1 when σ ≥ 1/2 and the infinite product
∏
p∈P Q(p−2σ)

is convergent and has a positive limit when σ → 1/2. Finally we obtain

+∞∑
n=1

dm(n)2n−2σ =

∏
p∈P Q(p−2σ)∏

p∈P(1− p−2σ)(m−1)2+2m−1
=

∏
p∈P Q(p−2σ)∏

p∈P(1− p−2σ)m2 .

And so when σ → 1/2, we obtain

+∞∑
n=1

dm(n)2n−2σ = ζ(2σ)m
2
×
(∏
p∈P

Q(p−2σ)
)
∼ γm

(2σ − 1)m2 .
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An immediate corollary is

Corollary 4. Let m ≥ 1 be an integer, there exists cm > 0 such that

‖ζm(σ + ·)‖H2 ∼ cm
(2σ − 1)m2/2

when σ → 1/2.

Now we can prove Theorem 8.

Proof. of Th.8. Assume that the injection from H2 to Ap is bounded, then
there exists m ≥ 1 such that

2 <
2(m+ 1)

m
< p.

The identity from H2 to A
2(m+1)
m would be also bounded: there exists C > 0

such that, for every f ∈ H2,

‖f‖
A

2(m+1)
m
≤ C‖f‖H2 .

We apply this inequality to the m-th power of the reproducing kernels of H2:
s→ ζm(σ + s) with σ > 1/2. Then

‖ζm(σ + •)‖
A

2(m+1)
m
≤ C‖ζm(σ + •)‖H2

and thanks to the last corollary we know that

‖ζm(σ + •)‖H2 ∼ cm
(2σ − 1)m2/2

when σ → 1/2.

Now for the first term in the inequality we have

‖ζm(σ + •)‖
A

2(m+1)
m

= ‖ζm+1(σ + •)‖
m
m+1

A2 =
( +∞∑
n=1

dm+1(n)2n−2σ

log(n) + 1

) m
2(m+1)

.

By the previous proposition, we know that
+∞∑
n=1

dm+1(n)2n−2σ ∼ γm+1

(2σ − 1)(m+1)2
when σ → 1/2.

So by integration, we obtain( +∞∑
n=1

dm+1(n)2n−2σ

log(n) + 1

) m
2(m+1)

∼ γ̃m

(2σ − 1)
m2(m+2)
2(m+1)

for some γ̃m > 0.
Now using the inequality given by the boundedness of the identity, we obtain

for σ close to 1/2

1 . C × (2σ − 1)
m2(m+2)
2(m+1) −m

2/2 = (2σ − 1)
m2

2(m+1)

and this is obviously false.

To finish the proof we have to show that the injection from H2 to A2 is
compact but in fact it suffices to remark that this injection is a diagonal operator
on the orthonormal canonical basis

(
en
)
n≥1

of H2: the eigenvalues, equal to
1

log(n) + 1
, tends to zero.
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F Inequalities on coefficients

We shall give here some inequalities between the Ap norm and some weighted
`p norms of the coefficient of the functions. This follows the spirit of classical
estimates on Bergman spaces (see [10] p.81 for instance).

Theorem 9. Let p ≥ 1 and µ be a probability measure on (0,+∞) such that
0 ∈ Supp(µ) and (wn)n≥1 the associated weight.

(i) When 1 ≤ p ≤ 2 and f =
∑
n≥1

anen ∈ Apµ, we have

∥∥∥w1/p
n an

∥∥∥
`p′
≤ ‖f‖Apµ .

(ii) When p ≥ 2 and
∑
n≥1

wp
′−1
n |an|p

′
<∞, we have f =

∑
n≥1

anen ∈ Apµ and

‖f‖Apµ ≤

(∑
n≥1

wp
′−1
n |an|p

′

)1/p′

=
∥∥∥w1/p

n an

∥∥∥
`p′
.

An immediate corollary is

Corollary 5. Let p ≥ 1.

(i) When 1 ≤ p ≤ 2 and f =
∑
n≥1

anen ∈ Ap, we have

∥∥∥ an
(1 + ln(n))1/p

∥∥∥
`p′
≤ ‖f‖Ap .

(ii) When p ≥ 2 and
∑
n≥1

|an|p
′

(1 + ln(n))p′−1
< ∞, we have f =

∑
n≥1

anen ∈ Ap

and

‖f‖Ap ≤

(∑
n≥1

|an|p
′

(1 + ln(n))p′−1

)1/p′

=
∥∥∥ an

(1 + ln(n))1/p

∥∥∥
`p′
.

Proof. of Th.9. Let us detail the case 1 ≤ p ≤ 2.
For every integer n = pα1

1 pα2
2 . . . ≥ 1 and f ∈ Lp(R+ × T∞, dµ⊗ dm), let us

define

τn(f) =
∫

R+×T∞
f(σ, z)z̄(n)n−σdµ(σ)⊗ dm(z)

where z(n) = zα1
1 zα2

2 . . .

We point out that, when P is a Dirichlet polynomial P (s) =
∑
n≥1

ann
−s,

we can associate as usual f(σ, z) =
∑
n≥1

ann
−σzα1

1 zα2
2 . . . We have in that case

τn(f) = wnan.
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Then we consider Q(f) =
(
τn(f)

)
n≥1

.
Q defines a norm one operator from L1(R+ × T∞, dµ ⊗ dm) to L∞(ω) and

from L2(R+ × T∞, dµ ⊗ dm) to L2(ω), where Lq(ω) is the Lebesgue space on
positive integers with discrete measure whose mass at point n is given by 1/wn.
Indeed:

|τn(f)| ≤ ‖f‖1
and ∑

n≥1

|τn(f)|2

wn
=
∑
n≥1

|〈f, bn〉|2

where bn(σ, z) = z(n)n−σ/
√
wn is an orthonormal system in the Hilbert space

L2(R+ × T∞, dµ⊗ dm). So the Bessel inequality gives

∑
n≥1

|τn(f)|2

wn
≤ ‖f‖22.

Now by interpolation (apply the Riesz-Thorin theorem), Q is bounded from
Lp(R+ × T∞, dµ⊗ dm) to Lp

′
(ω):(∑

n≥1

|τn(f)|p′

wn

)1/p′

≤ ‖f‖p .

Writing this inequality in the particular case of f associated to a Dirichlet
polynomial (as described as the beginning of the proof), the result follows.

The other case is obtained (it is even easier) in the same way.

3 The Bergman spaces Bp

A The Bergman spaces of the infinite polydisk

Recall that A = λ ⊗ λ ⊗ · · · where λ is the normalized Lebesgue measure
on the unit disk D. For p ≥ 1, Bp(D∞) is the Bergman space of the infinite
polydisk. It is defined as the closure in the space Lp(D∞, A) of the span of the
analytic polynomials.

Remark. Let P be an analytic polynomial defined for z = (z1, z2, . . . ) ∈ D∞

by P (z) :=
N∑
n=1

anz
α1
1 · · z

αk
k . Then

‖P‖B2 =
( N∑
n=1

|an|2

(α1 + 1) · · (αk + 1)

)1/2

.

So clearly H2(T∞) ⊂ B2(D∞). In fact this is also true for any p ≥ 1, it
suffices to apply several times this property in the case of the unit disk.

Recall that the Bergman kernel at z, w ∈ D is defined by k(w, z) :=
1

(1− wz)2
.
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Definition 6. Let z ∈ D∞ and ζ ∈ D∞ ∩ `2. For n ≥ 1, we define

Kn(ζ, z) :=
n∏
i=1

k(ζi, zi) and K(ζ, z) :=
+∞∏
i=1

k(ζi, zi).

K is well defined thanks to the condition on ζ and the fact that (Kn) converges
pointwise to K.

Remark. We know that

‖k(ζi, • )‖22 = k(ζi, ζi) =
1

(1− |ζi|2)2
.

So K(ζ, · ) ∈ B2(D∞) and

‖K(ζ, • )‖2B2(D∞) =
+∞∏
i=1

1
(1− |ζi|2)2

.

Proposition 6. Let P be an analytic polynomial on D∞ and let ζ ∈ D∞ ∩ `2.
Then

|P (ζ)| ≤
(+∞∏
i=1

1
1− |ζi|2

)
‖P‖B2(D∞).

Proof. By the reproducing kernel property of the classical Bergman space used
several times, we obtain that:

P (ζ1, . . . , ζn) =
∫

Dn
P (z1, . . . , zn)Kn(ζ, z)dλ(z1)..dλ(zn).

The Cauchy-Schwarz inequality gives the result.

With the previous proposition, we can extend by density the evaluation
defined on the analytic polynomials for z ∈ D∞ ∩ `2. For every f ∈ B2(D∞),
we denote f̃(ζ) this extension and we have

|f̃(ζ)| ≤
(+∞∏
i=1

1
1− |ζi|2

)
‖f‖B2(D∞).

Moreover the norm of the evaluation is exactly
+∞∏
i=1

1
1− |ζi|2

. Actually in [7], the

authors proved (in a more general setting) that f̃ is holomorphic on D∞ ∩ `2.
We shall need the next lemma.

Lemma. ([7]) Let ζ ∈ D∞ ∩ `2, N ≥ 1 and a ∈ R, we set

GN (z) :=
N∏
i=1

(1− ζjzj)a.

Then {GN} is a bounded martingale in L2(T∞).
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Remark. Each element Gn belongs to B2(D∞) and we have

‖Gn‖L2(D∞) = ‖Gn‖B2(D∞) ≤ ‖Gn‖H2(T∞) = ‖Gn‖L2(T∞).

So {Gn} is a bounded martingale in L2(D∞). By the Doob’s theorem and by
closure we know that the product converges pointwise and in norm in B2(D∞).

We need to recall some notations and results from [7].

Let U be a uniform algebra on a compact space X and µ be a measure on
X. Hp(µ) is the closure of U in Lp(µ).

Proposition. ([7]) Let U be a uniform algebra on a compact space X, µ be a
probability measure on X, y ∈ X such that the evaluation extends continuously
to H2(µ). Assume that any real power of the reproducing kernel of this point
evaluation x→ K(x, y) belongs to H2(µ). Then for p ≥ 1, we have

|f̃(y)|p ≤ K(y, y)
∫
|f(x)|pdµ(x)

for every function f in Hp(µ) and the norm of the point evaluation at y is
exactly K(y, y)1/p.

With the last remark and this theorem, we obtain that the point evaluation
is bounded on Bp(D∞) for ζ ∈ D∞ ∩ `2 and we have

|f(ζ)|p ≤
+∞∏
i=1

1
(1− |ζi|2)2

‖f‖pBp(D∞).

Moreover f̃ is holomorphic on D∞ ∩ `2 thanks to [7].

B Point evaluation on Bp

In the sequel, R will denote the infinite product of the probability measures
2ridri on [0, 1].

Definition 7. Let P ∈ P of the form
∑N
n≥1 ann

−s. We define on P the norm

‖P‖Bp :=
(∫

[0,1]∞

∥∥∥∥ N∑
n=1

anr
α1
1 · · r

αk
k en(it)

∥∥∥∥p
Hp

dR

)1/p

.

Remark. The fact that this defines a norm follows from the next proposition.

Definition 8. Let p ≥ 1. We denote by Bp the closure of P relatively to the
norm ‖ · ‖Bp : it is the Bergman space of Dirichlet series.

Remark. We denote d(n) the number of divisors of n. For f as in (1), one has

‖f‖B2 =
( +∞∑
n=1

|an|2

d(n)

)1/2

.

First we use the Bohr’s point of view to precise the link between Bp and
Bp(D∞).
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Proposition 7. Let p ≥ 1.

(i) Let P ∈ P. We have ‖P‖Bp = ‖D(P )‖Bp .

(ii) D : P → Bp(D∞) extends to an isometric isomorphism from Bp onto
Bp(D∞).

Proof. The first fact is clear. For the second one, remember that Bp is the closure
of P and that Bp(D∞) is the closure of the set of analytic polynomials.

Theorem 10. Let p ≥ 1 and f ∈ Bp. The abscissa of uniform convergence of
f verifies σu(f) ≤ 1

2 . Moreover, when <(w) > 1
2 , we have

|f(w)| ≤ ζ(2Re(w))2/p ‖f‖Bp

and:
‖δw‖ = ζ(2Re(w))2/p.

In addition, there exists f ∈ Bp such that σb(f) = 1/2.

Proof. Let f ∈ Bp and s ∈ C 1
2
. We define zs = (p−s1 , p−s2 , . . .) ∈ D∞ ∩ `2. We

know that D(f) ∈ Bp(D∞) and so

|D(f)(zs)|p ≤
+∞∏
i=1

1
(1− |p−si |2)2

‖D(f)‖pBp(D∞).

But thanks to the last proposition ‖D(f)‖Bp(D∞) = ‖f‖Bp and

D(f)(zs) =
∑

n=p
α1
1 ... p

αk
k

n≥1

an(p−s1 )α1 . . . (p−sk )αk

=
∑

n=p
α1
1 ... p

αk
k

n≥1

an(pα1
1 . . . pαkk )−s =

∑
n≥1

ann
−s.

Then we have

|f(s)|p ≤
+∞∏
i=1

1(
1− p−2<(s)

i

)2 ‖f‖Bp = ζ(2<(s))2 ‖f‖pBp .

So f admits a bounded extension on each smaller half-plane of C 1
2
. By the

Bohr’s theorem we have σu(f) ≤ 1
2 .

To prove that the norm of the evaluation is exactly ζ(2Re(w))2/p, it suffices
to use the corresponding result from [7] on Bp(D∞).

C Comparison between Bp and Hp

In this section, we precise the link between Bp and Hp. This question is
natural as soon as we keep in mind the behavior of the injection from Hp(D) to
Bq(D) in the classical framework of one variable Hardy-Bergman spaces on the
unit disk. We recall that Hp ⊂ Bq if and only if q ≤ 2p and that this injection
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is compact if and only if q < 2p (see [17] for recent results on the limit case
q = 2p).

First, following ideas of [3], we obtain a result of hypercontractivity between
the spaces Bp.

Let 1 ≤ p ≤ q < +∞. For f ∈ Bp(D∞), z ∈ D∞ and k ≥ 1, we define
ẑk = (z1, . . . , zk−1, zk+1, . . . ). Let fẑk(zk) = f(z). Then∫

D∞
‖fẑk‖rLr(D)dm(ẑk) = ‖f‖rLr(D∞).

We consider a sequence of operators Sk : Bp(D) → Bq(D) for k ≥ 1 such
that Sk(1) = 1. If P is an analytic polynomial on D∞, we define{

P 1 = P,
P k+1 = Sk(Pẑk(zk)).

This sequence is not in general a sequence of polynomials but if P depends
of z1, . . . , zn then each term of this sequence too. So this sequence is stationary.

Proposition 8. If
∏+∞
k=1 ‖Sk‖ < +∞ then the sequence (P k)k≥1 converges to

some S(P ) of Bq(D∞). In addition, S extends to a bounded operator from
Bp(D∞) to Bq(D∞).

Actually, if we consider a sequence of operators Sk : Hp(D) → Bq(D), we
obtain the following similar result.

Proposition 9. If
∏+∞
k=1 ‖Sk‖ < +∞ then the sequence (P k) converges to some

S(P ) of Bq(D∞). In addition, S extends to a bounded operator from Hp(T∞)
to Bq(D∞).

We only give the proof of the second proposition.

Proof. It suffices to show that

‖P (k+1)‖Bq(D∞) ≤
( k∏
i=1

‖Si‖
)
‖P‖Hp(T∞).

One has

‖P (k+1)‖qBq(D∞) =
∫

D∞
|Sk(P kẑk(zk))|qdA(z)

=
∫

D∞

∫
D
|Sk(P kẑk(zk))|q dλ(ẑk)dA(zk)

=
∫

D∞
‖Sk(P kẑk(.))‖qBq(D)dA(ẑk)

≤ ‖Sk‖q
∫

D∞
‖P kẑk(·)‖qHp(T)dA(ẑk)

= ‖Sk‖q
∫

D∞

(∫
T
|P kẑk(χk)|pdm(χk)

)q/p
dA(ẑk).
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Since
q

p
≥ 1, we get, by the integral triangular inequality,

‖P (k+1)‖qBq(D∞) ≤ ‖Sk‖
q

(∫
T

(∫
D∞
|P kẑk(χk)|qdm(ẑk)

)p/q
dm(χk)

)q/p
By induction, we obtain the result.

We shall give some applications of these propositions, but we first need other
preliminaries, in the classical setting of the unit disk.In the following, for q ≥ 1,
the space Bq(D) (resp. Hq(D)) is the classical Bergman space (resp. the classical
Hardy space).

Lemma 3. The sequence
( 2
n+ 2

)
n≥0

defines a multiplier from B1(D) to H1(D)

with norm exactly equal to 1: for every f(z) =
∑
n≥1

anz
n ∈ B1(D), we have

∥∥∥∑
n≥1

2
n+ 2

anz
n
∥∥∥
H1(D)

≤ ‖f‖B1(D).

Proof. Let r < 1 and f ∈ B1(D) of the form f(z) =
+∞∑
n=0

anz
n. Then if we denote

by M this multiplier operator, we have

1
2π

∫ 2π

0

|Mf(reiθ)| dθ =
1

2π

∫ 2π

0

∣∣∣∣ +∞∑
n=0

2
n+ 2

anr
neinθ

∣∣∣∣dθ
=

1
2π

∫ 2π

0

∣∣∣∣ +∞∑
n=0

2
∫ 1

0

anρ
n+1rneinθ dρ

∣∣∣∣dθ ≤ 1
π

∫ 2π

0

∫ 1

0

∣∣∣∣ +∞∑
n=0

anρ
nrneinθ

∣∣∣∣ ρ dρdθ.
If r goes to 1, we obtain the result.

Lemma 4. Let r ≤ 2
3 . Then

(
rn n+2

2
√
n+1

)
n≥0

is a multiplier from H1(D) to

H2(D) with norm 1.

Proof. We adapt a proof from [6]. Let f ∈ H1(D), with norm 1, of the form

f(z) =
+∞∑
n=0

anz
n.

We considerer the factorisation f = gh where g and h are in H2(D) and verify
|g|2 = |h|2 = 1. Denote (bn) and (cn) the Fourier coefficients of g and h. Then
we have:

an =
n∑
k=0

bkcn−k.

We also know
+∞∑
n=0

|bn|2 =
+∞∑
n=0

|cn|2 = 1.
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We want to show that
+∞∑
n=0

∣∣∣∣anrn n+ 2
2
√
n+ 1

∣∣∣∣2 ≤ 1.

We can assume that the coefficients bn et cn are all non negative (At worst,
the modulus of an become bigger but we search a sufficient condition for the
inequality so this is not a problem).

So the last inequality is equivalent to

+∞∑
n=0

n∑
k=0

bkcn−kr
ndn

n+ 2
2
√
n+ 1

≤ 1

for all non negative sequence (dn) with `2-norm 1. This is equivalent to

+∞∑
k,n=0

bkcnr
n+kdn+k

n+ k + 2
2
√
n+ k + 1

≤ 1.

We will get this inequality as soon as

+∞∑
k,n=0

(
rn+k n+ k + 2

2
√
n+ k + 1

dn+k

)2

≤ 1.

But for any j, we only have j + 1 ways to write this integer as the sum of two
integers. So it suffices to prove the following inequality

+∞∑
j=0

r2j
(j + 2)2

4
d2
j ≤ 1.

And with the definition of (dn), it will be true as soon as

r2j
(j + 2)2

4
≤ 1 for any j ≥ 0.

This latter inequality is clearly true for j = 0 for any r, so we just have to
compute

r0 = inf
j≥1

(
2

j + 2

)1/j

.

We can check easily that x→ ln(2/(x+2))
x is increasing on [1,+∞[ so we obtain

r0 =
2
3
.

The following is obvious and is just a rewritting of the norms.

Lemma 5. (
√
n+ 1)n≥0 is a multiplier from H2(D) to B2(D) with norm exactly

equal to 1.

Now we can state a contractive type result on classical Bergman spaces.
Here Pr denotes the blow-up operator: Pr(f)(z) = f(rz).
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Theorem 11. If r ≤ 2
3
, Pr : B1(D) → B2(D) is bounded with norm 1. Con-

versely, if Pr : B1(D)→ B2(D) is bounded with norm 1 then r ≤ 1√
2
.

Proof. If r ≤ 2
3 , it suffices to apply the three previous lemmas.

Conversely assume that Pr : B1(D) → B2(D) is bounded with norm 1. Let
a ∈ R, we have

‖1 + arz‖2B2(D) = 1 +
a2r2

2

‖1 + az‖B1(D) = 1 +
a2

8
+ ◦(a2).

So we have

1 +
a2r2

2
≤
(

1 +
a2

8
+ ◦(a2)

)2

= 1 +
a2

4
+ ◦(a2).

And so r2 ≤ 1
2 .

Now we have another consequence of the preceding results, which will be
used in the next section, and is similar to Prop.2.

Proposition 10. Let ε > 0. Then Tε : B1 → B2 is bounded.

Proof. We consider the following sequence of operators (we keep the notations
of the preceding theorem)

Sk : B1(D) −→ B2(D),
f 7−→ Pp−εk

(f)

where Pr is the classical Poisson kernel. Indeed if we apply Prop.8 to this
sequence of operators and to a Dirichlet series f of the form (1), we obtain

S(f)(s) =
∑

n=p
α1
1 ·· p

αk
k ≥1

an(p−s−ε1 )α1 · · (p−s−εk )αk

=
∑

n=p
α1
1 ·· p

αk
k ≥1

ann
−s−ε = Tε(f)(s).

We know from the preceding theorem that ‖Pr‖B1(D)→B2(D) ≤ 1 for r quite
small and we obtain our result for Tε because p−εk → 0 when k goes to infinity
and so the infinite product of the norm is finite.

Notations. Let p ≥ 1. We denote HpP (resp. BpP)) the following subspace of Hp
(resp. Bp):

HpP = span(ek, k ∈ P)
Hp (

resp. BpP = span(ek, k ∈ P)
Bp)

.

Theorem 12. Let p ≥ 1.

(i) The identity from Hp to B2p is bounded with norm 1.

But,
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(ii) the identity from Hp to Bp is not compact. Actually, it is not a strictly
singular operator.

Proof. (i) Recall ([10]) that the identity from Hp(D) to B2p(D) is bounded with
norm 1 so it suffices to use Prop.9 to get the boundedness of our operator.

(ii) In [3], it is shown that HpP = H2
P and by the same way we obtain

that BpP = B2
P. But clearly H2

P = B2
P so Hp and Bp have isomorphic infinite-

dimensional closed subspaces and so the identity from Hp to Bp is not strictly
singular.

Remarks.

(i) When p = 1, (i) has already been proved by Helson (see [14]).

(ii) We can check easily that for every n 6= m we have:

‖epn − epm‖Bp ≥ ‖epn‖Bp =
(

2
p+ 2

)1/p

and then we obtain another proof of the non compactness in Th.12(ii).

(iii) Let us mention that it is immediate (without invoking Th.12(ii)) that the
identity from Hp to B2p is not compact: indeed if it were, by restriction
to the variable z1 = 2−s, the identity from Hp(D) to B2p(D) would be
compact but this is not the case.

Actually, we can prove that H2 ⊂ B4 by a simple computation on the coef-
ficients of the Dirichlet series. Let f be a Dirichlet series of the form (1). We
want to show that ‖f‖B4 ≤ ‖f‖H2 . We have

‖f‖4B4 = ‖f2‖2B2 .

But f2(s) =
+∞∑
n=1

bnn
−s with

bn =
∑
d|n

ad × an/d ∀n ≥ 1.

So

‖f2‖2B2 =
+∞∑
n=1

|
∑
d|n ad × an/d|2

d(n)
.

Now we apply the Cauchy-Schwarz inequality using the fact that the sum con-
tains exactly d(n) terms

≤
+∞∑
n=1

∑
d|n

|ad|2 |an/d|2.

We have n ≥ 1 and n = d× n

d
, then we can exchange the sums

=
+∞∑
d=1

|ad|2
∑
d|n

|an/d|2.
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But if n is a multiple of d, then
n

d
is in N, and

∑
d|n

|an/d|2 = ‖f‖2H2 .

At last, we get
‖f‖4B4 ≤ ‖f‖4H2 .

D Generalized vertical limit functions.

Definition 9. Let χ ∈ D∞ and f of the form (1). We denote by fχ the following
Dirichlet series:

fχ(s) =
+∞∑
n=1

anχ(n)n−s.

In this part, we apply the same trick than in [11] and [3] to obtain another
expression of the norm in Bp useful for the study of composition operators.

Let ϕ1(z) = 1+z
1−z the Cayley transform which maps D on C+. We will say

that a function is in Hp
i (C+) if f ◦ ϕ1 ∈ Hp(D) (The classical Hardy space of

the unit disk). In this case we have

1
2π

∫ π

−π
|f ◦ ϕ1(eiθ)|pdθ =

∫
R
|f(it)|pdλi(t)

where
dλi(t) =

dt

π(1 + t2)
.

Definition 10. Let t ∈ R. We define the Kronecker flow Tt on D∞ by
Tt(z1, z2, . . . ) := (p−it1 z1, p

−it
2 z2, . . . ).

Lemma 6. Let χ ∈ D∞, f ∈ Bp and t ∈ R. We set gχ(it) := D(f)(Ttχ). Then
for w a finite Borel measure on R, one has∫

D∞

∫
R
|gχ(it)|pdw(t)dm(χ) = w(R)‖f‖pBp .

Proof. The Kronecker flow (Tt) is just a rotation on D∞, so∫
D∞
|gχ(it)|pdm(χ) =

∫
D∞
|D(f)(Ttχ)|pdm(χ)

=
∫

D∞
|D(f)(χ)|pdm(χ) = ‖D(f)‖pBp .

We conclude using the Fubini’s theorem.

Proposition 11. Let χ ∈ D∞ and f ∈ Bp. Then gχ ∈ Hp
i (C+) and gχ is an

extension of fχ on C+.
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Proof. Thanks to the previous lemma, we already know that for almost every
χ ∈ D∞, gχ ∈ Lp(λi). So it suffices to show (we use here a characterisation of
the classical Hardy space)∫ ∞

−∞

(
1− it
1 + it

)n
gχ(it)dλi(t) = 0 for n ≥ 1.

We use the same ideas than in [11] and [3] but we have to adapt the proof
because here we do not work with Fourier series on T∞ but with functions in
Bp(D∞). We fix n ≥ 1 and define G(χ) by

G(χ) :=
∫ ∞
−∞

(
1− it
1 + it

)n
gχ(it)dλi(t).

Clearly G ∈ Lp(D∞) because∫
D∞
|G(χ)|pdm(χ) =

∫
D∞

∣∣∣∣ ∫ +∞

−∞

(
1− it
1 + it

)n
gχ(it)dλi(t)

∣∣∣∣pdm(χ)

≤
∫

D∞

∫ +∞

−∞
|gχ(it)|pdλi(t)dm(χ) = ‖D(f)‖pBp

where the last inequality follows from the preceding lemma.

Actually, G ∈ Bp(D∞). It suffices to show that there exists a sequence
of analytic polynomials which converges to G. Since f ∈ Bp(D∞), we have
D(f) ∈ Bp(D∞) and there exists a sequence (Pk) of analytic polynomials such
that

‖D(f)− Pk‖Bp(D∞) −→
k→+∞

0.

Then we define the analytic polynomial

Qk(χ) :=
∫ +∞

−∞

(
1− it
1 + it

)n
Pk(Ttχ)dλi(t)

and we claim that (Qk) converges to G. Indeed

‖G−Qk‖pBp(D∞) =
∫

D∞

∣∣∣∣ ∫ +∞

−∞

(
1− it
1 + it

)n
(gχ(it)− Pk,χ(it)) dλi(t)

∣∣∣∣pdm(χ).

We get, through the Fubini’s theorem,

‖G−Qk‖pBp(D∞) ≤
∫ +∞

−∞
‖(D(f)− Pk)(Tt(·))‖pBp(D∞)dλi(t)

but Tt is just a rotation:

‖G−Qk‖pBp(D∞) ≤
∫ +∞

−∞
‖(D(f)− Pk)‖pBp(D∞)dλi(t) = ‖(D(f)− Pk)‖pBp(D∞)

which goes to zero when k goes to infinity, and this proves our claim.
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We claim now that G vanishes almost everywhere. Since G belongs to
Bp(D∞), it suffices to prove that G is orthogonal to every monomial with posi-
tive index. Let q ∈ N. We have∫

D∞
χ(q)G(χ)dm(χ) =

∫ +∞

−∞

(
1− it
1 + it

)n ∫
D∞

χ(q)gχ(it)dm(χ) dλi(t).

Actually we have ∫
D∞

χ(q)gχ(it)dm(χ) = 0

because gχ(it) = Df(Ttχ) ∈ Bp(D∞). This is clear for the polynomials and by
density this proves the claim.

The proof that gχ is an extension of fχ is the same than in the case of Hp
(see [3]).

Now we shall denote fχ the extension instead of gχ. Like in the case of Hp
with p ≥ 1, this extension is almost surely simple.

Proposition 12. Let χ ∈ D∞ and f ∈ Bp for p ≥ 1. Then for almost every χ
(relatively to the measure A on D∞), fχ converges on C+.

Proof. Let f ∈ B2 of the form (1). We consider L2(D∞, A) and the orthonormal

sequence Φn(χ) =
√
d(n)χ(n). For σ > 0 and t ∈ R, let cn :=

ann
−σ−it√
d(n)

· We

point out that
(
an/
√
d(n)

)
n≥1
∈ `2 and that

(
n−σ log(n)

)
n≥1
∈ `∞ hence

+∞∑
n=1

|cn|2 log2(n) < +∞.

So the Menchoff’s lemma gives that
∑
cnΦn(χ) converges for almost every χ .

Therefore, we get the result when p = 2.
When p 6= 2, it suffices to prove the result for p = 1. As in the case of the

spaces Ap, the result follows from Prop.10.

Let f ∈ B2 , we know that for almost all χ ∈ D∞, fχ converges on C+ and
so gχ = fχ, we obtain for each probability measure w on R:

‖f‖2B2 =
∫

R

∫
D∞
|fχ(it)|2dA(χ)dw(t).

Theorem 13. Let f ∈ B2 and w be a probability measure on R. Then

‖f‖2B2 = |f(+∞)|2 + 4
∫

R

∫ +∞

0

∫
D∞

σ|fχ(σ + it)|2dA(χ)dσdw(t).

Proof. For σ > 0, we have∫
D∞

∫
R
|f
′

χ(σ + it)|2dw(t)dm(χ) = ‖f ′‖2B2 =
+∞∑
n=2

|an|2n−2σ log2(n)
d(n)

.
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We multiply by σ and it suffices to remark that:∫ +∞

0

σn−2σdσ =
1

4 log2(n)
·

E Inequalities on coefficients Bp

We shall give here some inequalities between the Bp norm and some weighted
`p norms of the coefficient of the functions (as in Th.9).

Theorem 14. Let p ≥ 1.

(i) When 1 ≤ p ≤ 2 and f =
∑
n≥1

anen ∈ Bp, we have

∥∥∥ an
d(n)1/p

∥∥∥
`p′
≤ ‖f‖Bp .

(ii) When p ≥ 2 and
∑
n≥1

|an|p
′

d(n)p′−1
<∞, we have f =

∑
n≥1

anen ∈ Bp and

‖f‖Bp ≤

(∑
n≥1

|an|p
′

d(n)p′−1

)1/p′

=
∥∥∥ an
d(n)1/p

∥∥∥
`p′
.

Proof. We do not give the details since it follows the same ideas as in the proof
of Th.9.

When 1 ≤ p ≤ 2.
For every integer n = pα1

1 pα2
2 . . . ≥ 1 and f ∈ Lp(D∞, dA), let us define

τn(f) =
∫

D∞
f(z)z̄(n) dA

where z̄(n) = z̄α1
1 z̄α2

2 . . .

We point out that, when P is a Dirichlet polynomial P (s) =
∑
n≥1

ann
−s,

we associate as usual f(z) = D(P )(z) =
∑
n≥1

anz
α1
1 zα2

2 . . . We have in that case

τn(f) = an/d(n).
Then we consider Q(f) =

(
τn(f)

)
n≥1

. This defines norm one operators from
L1(D∞, dA) to L∞(ω) and from L2(D∞, dA) to L2(ω), with ω(n) = d(n). The
same interpolation argument gives the conclusion.

4 Annexe: around the norm of the point evaluation

We wish to present here a principle to compare (relatively to p) the norm of
the point evaluation. We shall work in a rather general framework of subspaces
of functions of some Lp spaces. When one work on classical spaces of analytic
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functions (Hardy-Bergman spaces), this principle is useless, since one can essen-
tially work with any power of a function (up to some standard tools). In the
context of Dirichlet series, a big difficulty is the fact that we have no way to
consider fα when α is not an integer (and f ∈ D). The following method can
be helpful and gives very precise result in some particular cases.

In this section, we consider some subspaces Xp ⊂ Lp(Ω, ν) of functions on Ω,
where ν is a probability measure on Ω and p ≥ 1. We assume that there exists
some algebra P ⊂ ∩p≥1Xp which is dense in each Xp (think to the polynomials
in many contexts).

We fix some ω ∈ Ω and we assume that the point evaluation f ∈ Xp 7→ f(ω)
is bounded with norm Np.

Let us mention that the most often, thanks to the theory of reproducing
kernels, the value of N2 is known (and easy to get).

We give here several very simple observations which we used in this paper.

Proposition 13. With the previous notations,

(i) If
1
p

=
1
q1

+
1
q2
, then we have Np ≥ Nq1Nq2 .

(ii) Let q ≥ p ≥ 1. We have Np ≥ Nq.

(iii) Let m be an integer. We have for every p ≥ 1, Npm ≤
(
Np
)1/m.

In particular, N2m ≤
(
N2

)1/m.
Proof. (i) Let f and g in P where ‖f‖Lq1 = 1 and ‖g‖Lq2 = 1. The product fg
still belongs to P ⊂ Xp and we have

Np ≥ Np‖fg‖Lp = Np‖fg‖Xp ≥ |f(ω)|.|g(ω)|.

Taking now the upper bound relatively to f and to g, the first assertion follows.
(ii) is trivial.
(iii) Let us point out that, by an obvious induction, we haveNp ≥ Nq1 · · ·Nqr

as soon as
1
p

=
1
q1

+ · · ·+ 1
qr
· In particular, we can write

1
p

=
1
pm

+ · · ·+ 1
pm

(m times) so that Np ≥
(
Npm

)m
.
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