Laser-induced growth of nanocrystals embedded in porous materials - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nanoscale Research Letters Année : 2013

Laser-induced growth of nanocrystals embedded in porous materials

Résumé

Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows extracting the best experimental conditions to obtain an efficient particle production and to avoid stability or oxidation problems.
Fichier non déposé

Dates et versions

hal-00880231 , version 1 (05-11-2013)

Identifiants

  • HAL Id : hal-00880231 , version 1

Citer

Bruno Capoen, A. Chahadih, Hicham El Hamzaoui, O. Cristini-Robbe, Mohamed Bouazaoui. Laser-induced growth of nanocrystals embedded in porous materials. Nanoscale Research Letters, 2013, 8 (266), pp.266. ⟨hal-00880231⟩
35 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More