Jet-Stirred Reactors
Olivier Herbinet, Dayma Guillaume

► To cite this version:

HAL Id: hal-00880195
https://hal.archives-ouvertes.fr/hal-00880195
Submitted on 5 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Chapter 8
Jet-Stirred Reactors

Olivier Herbinet¹, Guillaume Dayma²

Abstract The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatography is classically used for the analysis of the species in the gas phase, but recent studies aimed at coupling new types of analytical devices to a jet-stirred reactor to observe new types of species and to gain accuracy in the identification and the quantification of species.

8.1 Overview of the Jet-Stirred Reactor

Gas phase kinetic studies are mostly performed using closed vessels, burners and continuous stirred-tank reactors. Among continuous stirred-tank reactors is the jet-stirred reactor. One of its major advantages relies on the efficient mixing of the gas phase which provides identical and homogeneous compositions of the outlet gas and of the gas inside the reactor. When operated at steady state and at constant residence time, temperature and pressure, this type of reactor is easily modelled by a very simple system of mass balances. Another advantage of this reactor is the possibility of being coupled with analytical techniques such as gas chromatography and mass spectrometry for the identification and the quantification of the species in the gas phase.

One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. Despite the strong pressure drop in the nozzles, this technique provides very intense internal recycle streams. The material used for the manufacturing of the reactor is of great importance. The use of metal is not recommended because of possible large wall effects and the use of Pyrex glass or fused silica is preferred.

The jet-stirred reactor has often been used to study the gas phase oxidation and the thermal decomposition of fuels. These studies consist in measuring the evolution of the mole fractions of species at the outlet of the reactor as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas (the fuel concentration and the equivalence ratio in combustion experiments). The reactivity of the fuel and the selectivity of the reaction products can be deduced from these data.

The residence time of the gas in the reactor (Eq. 8.1) is actually a mean residence time (or space time) which is defined as the ratio of the volume of the reactor, V, and of the volume flow rate of the gas flowing through the reactor, Q, which is also the volume flow rate at the outlet of the reactor, Q^o (Fig. 8.1).

To verify that the reactor can be considered as a continuous stirred-tank reactor, one can measure the residence time distribution by doing a short injection of a very small amount of tracer at the inlet and by recording the evolution of the concentration of the tracer at the outlet. The reactor is an ideal continuous stirred-tank reactor if the residence time distribution $E(t)$ can be represented by the expression given by Eq. 8.2.

$$\tau = \frac{V}{Q} \quad (8.1)$$

$$E(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right) \quad (8.2)$$

¹ O. Herbinet (✉)
Laboratoire Réactions et Génie des Procédés, 1 rue Grandville, 54000 Nancy, France
e-mail: olivier.herbinet@univ-lorraine.fr

² G. Dayma (✉)
Institut de Combustion Aérothermique Réactivité et Environnement, 1C Avenue de la Recherche Scientifique, 45071 Orléans, France
e-mail: guillaume.dayma@cnrs-orleans.fr
To our knowledge, glass or fused silica jet-stirred reactors have been used for gas phase kinetic studies by three research teams. It is largely used in Nancy (France) at the Laboratoire Réactions et Génie des Procédés for the study of the oxidation and of the pyrolysis of hydrocarbons and oxygenated fuels at atmospheric pressure (e.g., Marquaire and Côme 1978; Herbinet et al. 2007; Herbinet et al. 2011c; Hakka et al. 2009; Battin-Leclerc et al. 2010). A high pressure jet-stirred reactor is used in Orléans (France) at the Institut de Combustion Aérothermique Réactivité et Environnement for the study of the oxidation of various type of fuels (e.g., Dagaut et al. 1994; Mzé-Ahmed et al. 2010) and for the study of the kinetics of nitrous oxides formation and destruction (e.g., Dayma and Dagaut 2006). It was also used in Leeds (United Kingdom) at the Department of Physical Chemistry and Center for Combustion and Energy to study stationary-state and oscillatory ignition phenomena in fuel oxidation (e.g., Baulch et al. 1988; Griffiths and Inomata 1992). Metallic jet-stirred reactors have been used for the study of the low temperature oxidation of hydrocarbons (e.g., Cavaliere et al. 1993; Ciajolo and D’Anna 1998) and for the study of the cracking kinetics of biomass pyrolysis vapours (Baumlin et al. 2005).

8.2 Jet-Stirred Reactor Construction Rules

The basis for the design of spherical jet-stirred reactors was proposed by the team of Professor Villermaux in Nancy (France) in the seventies (Matras and Villermaux 1973; David and Matras 1975). A little earlier Bush (1969) proposed rules for the construction for cylindrical jet-stirred reactors. Although both designs can be used for gas phase kinetic studies, spherical jet-stirred reactors are preferred to minimize dead volumes. In this chapter we focus on the design of spherical jet-stirred reactors.

The jet-stirred reactor designed by the team of Villermaux is composed of a sphere in which the reaction takes place. The fresh gases enter the reactor through an injection cross located at the center of the sphere and composed of four nozzles providing the jets ensuring the mixing of the gas phase. Fig. 8.2 displays a picture of the jet-stirred reactor which is still in use at the Laboratoire Réactions et Génie des Procédés (Nancy, France) and which was developed from the rules of construction proposed by the team of professor Villermaux.

The rules of construction of a jet-stirred reactor rely on the theory of the free jet: the jet from a nozzle leads to the motion of the gas phase in which it flows and this motion results in the distribution of the initial kinetic energy in small turbulent pieces of gas phase. It is assumed that a jet provided by a nozzle in the reactor widens in form of a cone which bends along a circumference between two nozzles (Bush, 1969) as shown in (Fig. 8.3).
8.2.1 The Theory of the Free Jet

A jet is assumed to be free if the condition of Liepmann and Laufer (David and Matras 1975) is satisfied (Eq. 8.3). In Eq. 8.3, \(u_0 \) is the velocity of the gas at the outlet of a nozzle, \(R \) is the radius of the spherical reactor, \(\rho \) is the specific weight of the gas, and \(\eta \) is the dynamic viscosity of the gas. The velocity of the gas \(u_0 \) (Eq. 8.4) can be expressed as a function of the radius of the reactor \(R \), of the diameter of the nozzle \(d \) and of the residence time \(\tau \) which is given in Eq. 8.1. Replacing \(u_0 \) in Eq. 8.3 we obtain the condition given by Eq. 8.5.

\[
\frac{u_0 \pi R \rho}{2 \eta} \geq 7 \times 10^4 \tag{8.3}
\]

\[
u_0 = \frac{4 Q}{\pi d^2} = \frac{4 R^3}{3 \tau \pi d^2} \tag{8.4}
\]

\[
\frac{2 \pi}{3} \frac{\rho R^4}{\tau d^2 \eta} \geq 7 \times 10^4 \tag{8.5}
\]

This condition is always satisfied for reactors with a radius \(R \) greater than 1 cm and given the other conditions on the residence time \(\tau \) and the internal diameter of the nozzles \(d \) which are described in the following paragraphs.

Hinze and Hegge Zijnen (1949) experimentally established the expression of the velocity in a free jet with axial symmetry (Eq. 8.6 and Eq. 8.7). \(u_a(x) \) is the velocity on the axis of the jet at the distance \(x \) from the nozzle and \(u_r(x, r) \) is the velocity at the distance \(r \) from the axis of the jet and at the distance \(x \) from the nozzle (see Figure 8.4). The parameter \(\alpha \) in Eq. 8.7 is a dimensionless constant which depends on the nature of the gas and of the thermodynamic conditions (\(\alpha^{-1} = 0.016 \) for air at 293.15 K).

\[
u_a(x) = 6.39 \ u_0 \frac{d}{x+0.6 \ d} \quad \frac{x}{d} > 10 \tag{8.6}
\]

\[
u_r(x, r) = \frac{u_a}{\left(1 + \frac{d}{x} \right)^{\alpha}} \tag{8.7}
\]
Hinze and Hegge Zijnen (1949) experimentally measured u_a and u_r for different values of β which is the angle at the top of the cone as shown in Fig. 8.3 and in Fig. 8.4. It was observed that the velocity u_r is almost zero when β is greater than 11°. The volume flow rate $Q_S(x)$ through the section of the cone at the distance x of the nozzle is obtained from the integration of $u_r(x,r)$ on this section considering $\beta = 11^\circ$ as limit value for the upper bound of the integration interval. The expression of $Q_S(x)$ is given by Eq. 8.8. Q_0 is the volume flow rate of the gas at the outlet of the nozzle. The parameter A is an adimensional constant which is equal to 0.3 in the case of air at 293.15 K and at atmospheric pressure. Matras and Villermaux (1973) showed that the value of the parameter A increases with the temperature, leading to a better mixing of the gas phase ($A = \pi/4$ at 723.15 K and at atmospheric pressure).

$$Q_S(x) = A \frac{x}{d}$$ \hspace{1cm} (8.8)

8.2.2 Criteria of Construction

The homogeneity of the composition of the gas phase in the jet-stirred reactor relies on the three following criteria:

- The jets from the four nozzles must be turbulent; in other words the internal mixing in each of the four jets must be turbulent.
- The four jets must be able to provide a good mixing of the whole gas phase in the reactor; the jets must provide very intense internal recycle streams.
- The velocity of the jets at the outlet of the nozzles must not exceed the speed of sound.

The first and the third criteria fix the range of accessible residence times and the second criterion fixes the geometrical ratio between the internal diameters of the reactor and of the nozzles.

8.2.2.1 Turbulent Jets

The Reynolds number R_e of the jets from the nozzles must be turbulent. The expression of the Reynolds number is given by Eq. 8.9.

$$R_e = \frac{\rho (2\pi \eta Q_S(x))}{\pi r^2} = \frac{\rho (4 Q_S(x))}{2 \eta \pi x \tan(\beta)}$$ \hspace{1cm} (8.9)

Using Eq. 8.10, we obtained a new expression of the Reynolds number which does not depend on the distance x (Eq. 8.11).

$$4 Q_S(x) = 4 Q_0 A \frac{x}{d} = A \frac{x}{d} \frac{4 \pi R^3}{\tau}$$ \hspace{1cm} (8.10)

$$R_e = \frac{4 \rho A R^3}{6 \eta d \tau \tan(\beta)}$$ \hspace{1cm} (8.11)

Experimentally it is observed that the mixing is not good enough for Reynolds number R_e less than 800. The upper limit for the residence time τ is obtained from Eq. 8.12.

$$\tau \leq \frac{\rho A R^3}{230 \eta d}$$ \hspace{1cm} (8.12)

8.2.2.2 Recycling

The recycling rate R_r is defined as the ratio between the residence time τ and the time t which is needed to carry the whole volume of gas in the reactor from one nozzle to the following one. It is also the ratio between the volume flow rate $Q_S(x)$ at $x = \frac{\pi R}{2}$ (distance from one nozzle to the following one) and the volume flow rate Q_0 of the gas at the outlet of a nozzle (Eq. 8.13).
Using the geometrical relationship between the two volume flow rates with \(x = \frac{\pi R}{2} \) (Eq. 8.14), we obtained for \(R_r \) the expression given by Eq. 8.15.

\[
Q_5 \left(\frac{\pi R}{2} \right) = Q_0 \cdot \frac{\pi A R}{2d} \tag{8.14}
\]

\[
R_r = \frac{\pi A R}{2d} \tag{8.15}
\]

Experimentally it was observed that the recycling rate \(R_r \) must be larger than 30 to have a good mixing of the gas phase. This leads to the condition given by Eq. 8.16 that fixes the required ratio between the radius of the reactor and the internal diameter of the nozzles.

\[
\frac{R}{d} > 64 \tag{8.16}
\]

8.2.2.3 Sonic Limit

The velocity \(u_0 \) of the gas at the outlet of a nozzle must be lower than the speed of sound \(c_{\text{sound}}(T, P) \) at the temperature and the pressure of the reaction (Eq. 8.17). The velocity \(u_0 \) can be expressed as a function of the radius of the reactor \(R \), the diameter of the nozzle \(d \) and the residence time \(\tau \) (Eq. 8.18), which leads to the lower conditions on the residence time (Eq. 8.19).

\[
u_0 \leq c_{\text{sound}}(T, P) \tag{8.17}
\]

\[
u_0 = \frac{4Q_0}{\pi d^2} = \frac{4}{3} \frac{R^3}{d^2 \tau} \tag{8.18}
\]

\[
\tau \geq \frac{4}{3} \frac{R^3}{d^2 c_{\text{sound}}(T, P)} \tag{8.19}
\]

8.2.2.4 Verification of the criteria for Nancy JSR

For the verification of the criteria, it was considered that the gas flowing through the reactor was argon. Calculations were performed at a temperature of 723 K and a pressure of 10^5 Pa. The radius of the reactor, \(R \), and the internal diameter of the nozzle, \(d \), were taken equal to 3.10^{-2} m and 3.10^{-4} m, respectively.

The upper limit for the residence time is given by Eq. 8.12. At 723 K, the specific weight and the dynamic viscosity of argon are equal to 0.71 kg.m^{-3} and 4.23.10^{-5} Pa.s, respectively. The value of the parameter \(A \) is not known but it is assumed that it does not change significantly from one gas to another. For the calculation, the value of \(A \) for air at 723 K was used (\(A = \pi/4 \)). The calculation leads to a maximum residence time of 5.2 s.

The lower limit is given by Eq. 8.19. The speed of sound can be calculated from the equation for an ideal gas (Eq. 8.20).

\[
c_{\text{sound}} = \sqrt{\gamma RT/M} \tag{8.20}
\]

In Eq. 8.20, \(\gamma \) is the adiabatic index, \(R \) is the molar gas constant and \(M \) the molecular weight of the gas. For argon, at 723 K, \(c_{\text{sound}} \) is equal to 500 m.s^{-1}. The calculation leads to a minimum residence time of 0.8 s.

The recycling rate is given by Eq. 8.15. The calculation leads to a recycling rate of 123 which is more than the minimum required value of 30.
8.3 Improvements to Jet-Stirred Reactor

The jet-stirred reactor developed by the team of Professor Villermaux was later improved for the study of the oxidation and thermal decomposition of hydrocarbons and oxygenated molecules. One of the major improvements was to preheat the incoming mixture to obtain a more homogeneous temperature in the reactor. New versions of this type of reactor were then developed for studies at high pressure (up to 40 bars) and for studies of heterogeneous reactions.

8.3.1 Temperature Homogeneity

The homogeneity of the temperature in the reactor is of importance in gas phase kinetic studies as reaction rates are very sensitive to this parameter. The jet-stirred reactor, the rules of construction of which are presented in the previous part of this chapter, was designed to have a homogeneous composition of the gas phase but little attention was paid to the homogeneity of the temperature.

Azay and Côme (1979) studied the influence of gas preheating on the thermal gradient in a jet-stirred reactor designed according to the rules of David and Matras (1975). Temperature gradients up to 80 K were recorded in the gas phase inside the reactor with no preheating and a significant difference in the mole fractions of methane was observed in the oxidation of neo-pentane with and without preheating of the fresh gases.

Following the observations of Azay and Côme (1979), preheating was added to avoid the formation of temperature gradients due to cold fresh gases entering the reactor (Fig. 8.5). The design of the preheater was based on the work of Houzelot and Villermaux (1977). They showed that annular geometries with high surface-volume ratio perform very well for heat transfer as heating rates of 10 K.s\(^{-1}\) can be achieved.

The dilution in an inert gas also helps to reduce the formation of temperature gradients in the gas phase due to the strong exothermicity of the reaction in combustion experiments (or due to the endothermicity in pyrolysis studies). Gas phase kinetic studies are usually performed under high dilution conditions using an inert gas such as nitrogen, helium or argon. Fuel inlet mole fractions are typically in the range 10\(^{-4}\)-10\(^{-2}\).

The heating can be performed using either an oven or heating wires. The advantages of using heating wires are that there is very little thermal inertia and that it is possible to coil them directly around the different parts of the reactor and to heat the zones at different temperatures (Azay et al. 1981). Thus the preheating can be divided in several zones (typically two) to obtain progressive heating of the fresh gases before they enter the reactor. The measure of the reaction temperature is performed thanks a thermocouple which is slipped in the intra-annular part of the preheater with the extremity of the thermocouple located in the center of the sphere as shown in Fig. 8.5.

8.3.2 High-Pressure Gas Phase Kinetic Studies

In order to investigate the pressure effect on the reactivity and the homogeneity of the mixture some other improvements were made at the Institut de Combustion Aérothermique Réactivité et Environnement (Orléans, France). To extend the experimental investigation range to pressures above atmospheric, the quartz reactor is lo-
cated inside a stainless-steel pressure-resistant jacket (Dagaut et al. 1986). Working under high pressure is made possible by means of pressure balancing inside and outside the reactor. This was achieved by drilling four holes at the bottom of the propagation tube as shown in Figure 8.6. The pressure is kept constant in time in the apparatus by means of a pressure regulator on the exhaust line. A safety valve prevents any accidental pressure rise in the system.

Although built following the guidelines established by the team of Professor Villermaux, the design of the reactor was revisited. The reactor is still a sphere made of fused silica to prevent wall catalytic reactions, but the injectors were shifted towards the upper part of this sphere instead of being located in the equatorial plane. Nevertheless, the four nozzle outlets are still located in the equatorial plane of the spherical reactor so that the shape of the streams recommended by Matras et al. to ensure a perfect mixing is respected. This new design of the injectors allows a physical investigation of the whole volume of the reactor. By means of a system probe position adjuster, a thermocouple probe and a sampling sonic quartz probe can be moved along the vertical axis of the reactor. The thermocouple wires are enclosed in a thin-wall fused silica tube which is fixed against the sample probe. A residence-time distribution study was performed at 10 atm (~1MPa) by pulsed injection of argon at the inlet of this reactor at room temperature: this led to the same conclusions as Matras et al. with their own design. Thus, this reactor is perfectly stirred for mean residence times varying from 0.01 to several seconds in the pressure range of 1 to 10 atm. Moreover, the reactor’s homogeneity can be checked during experiments by measuring the temperature of the gases by means of a chromel-alumel thermocouple probe and by analyzing by gas chromatography the gases sampled with the sonic probe at different locations inside the reactor.

8.3.3 Study of Hetero-homogeneous Reactions

A special version of the jet-stirred reactor was developed at the Laboratoire Réactions et Génie des Procédés (Nancy, France) in the nineties for the study of the coupling of hetero-homogeneous reactions (Côme et al. 1996). The spherical jet-stirred reactor was modified to make it possible to add pellets of catalyst or matrix (for the study of the fabrication of composite materials) inside the reactor (Fig. 8.7): the upper part of the reacting zone is hemispherical (as in the original jet-stirred reactor) whereas the lower part is cylindrical with a removable piston. The catalyst is deposited on the surface of the piston.
This type of reactor was mainly used for the study of the catalytic partial oxidation of methane (Côme et al. 1996; Fleys et al. 2006) and for the study of surface reactions in chemical vapour infiltration of pyrocarbon (Ziegler et al. 2005).

8.4 Sampling Methods

The sampling of the species in the gas phase is of importance for the accuracy of the analysis. One major difficulty is to avoid any change in the composition of the gas between the outlet of the reactor and the analysis. Two types of methods can be used for the sampling: online and offline sampling.

The offline sampling consists in collecting the species in a vessel connected to the outlet of the reactor and to inject the content of the vessel in a gas chromatograph. The species can be kept in the gas phase with collection and storage in a low pressure (50 mbar) Pyrex bulb to avoid condensation of water and species with low vapor pressure (Dagaut et al. 1986) or can be condensed in the solid phase at liquid nitrogen temperature and afterward reheated with addition of a solvent such as acetone (Herbinet et al. 2007; Hakka et al. 2009). This second option (use of a solvent) can be problematic as there is a risk of reaction between unstable species (e.g., species with hydroperoxide functions) and the solvent.

The online sampling consists in sending the gas exiting from the reactor directly through the loop of the injection valve of a gas chromatograph. The tube used for connecting the outlet of the reactor to the injection system must be heated to avoid condensation of the species and it is better to use a tube the wall of which has been rendered inert to avoid adsorption phenomena and reactions at the wall (Herbinet et al. 2011a).

The sampling with species remaining in the gas phase is definitely the best manners to limit changes in the composition of the gas exiting from the reactor. Nevertheless it was observed that unstable species such as hydroperoxides still decompose before the analysis as they are very reactive and that there is still a risk that some species with low vapor pressures, such as polycyclic aromatic hydrocarbons, condense in the transfer line. For these heavy species it is better to use offline sampling for a more accurate quantification (Hakka et al. 2009; Bax et al. 2010).

The online sampling can be performed in the gas flowing in the outlet of the reactor or in the gas phase inside the reactor using a sonic probe. The second method is used when the reactor and the analytical apparatuses are working at different pressures (for example in the high-pressure oxidation studies or when the analytical device works at very low pressure). The use of a sonic probe, with a very small orifice, helps to maintain the difference of pressure between the reactor and the analytical device. The pressure drop through the orifice also leads to the
freezing of the reaction thanks the concomitant decrease of temperature and of the partial pressures. Fig. 8.8 displays a picture of a sonic probe and of a glass finger with a thermocouple inside used to sample species and measure the reaction temperature in the high pressure jet-stirred reactor used in Orléans (Dagaut et al. 1986).

Fig. 8.8 Picture of a sonic probe (in the left) and of a glass finger with a thermocouple inside (in the right) used to sample species and measure the reaction temperature in the high pressure jet-stirred reactor used in Orléans (Dagaut et al. 1986)

8.5 Analytical Devices

One of the advantages of the jet-stirred reactor is the possibility of easy coupling with several types of analytical devices. Gas chromatography is the most used technique for the quantification and the identification of species. This technique is well adapted to the analysis of most stable molecules such as hydrocarbons or permanent gases. However it is not well adapted to the quantification of some species (e.g., water and formaldehyde for which Fourier transform infrared spectroscopy is more suitable), of unstable molecules (such as hydroperoxides which are common intermediates in the low temperature oxidation of hydrocarbons), and of radicals. Thus tentatives of coupling of the jet-stirred reactor with new analytical techniques (e.g., mass spectrometry with direct sampling in the reactor and spectroscopic techniques) have been carried out to quantify an enlarged range of types of species.

8.5.1 Gas Chromatographic Analyses

Gas chromatography is a very common analytical technique that is widely used for the identification and the quantification of species in gas phase kinetic studies. This technique is mainly coupled to the following detectors: flame ionization detectors (FID) for the quantification of species containing carbon atoms, thermal conductivity detector (TCD) for the quantification of permanent gases and mass spectrometer which can be used for both the identification and the quantification of species. Fig 8.9 displays mole fraction profiles obtained in the experimental study of the oxidation of methyl decanoate using gas chromatographic analysis (Glaude et al. 2010).

The identification of the reaction products is most of the time performed using a gas chromatograph coupled to a mass spectrometer with electron impact ionization at 70 eV. The identification work becomes sometimes difficult in gas phase studies as the mass spectra of the species are not always in the databases and as the mass spectra of isomers are very similar. The deciphering of experimental mass spectra can be carried out when they are not available in the databases. For example, this is often the case for cyclic ethers which are very common and important intermediates formed by the propagation steps involved in the low temperature oxidation of hydrocarbons (Herbinet et al. 2011b).
8.5.2 Infrared Spectroscopy

Fourier transform infrared spectroscopy is a technique used to obtain the infrared spectrum (IR) of a molecule and since, in principle, each IR spectrum is unique it therefore aids identification. In addition the technique can be used quantitatively provided that standards are available whose spectrum can be obtained under the same set of conditions as the analytes themselves. This is because the structure of the spectra is sensitive to concentration, as well as pressure and temperature. Hence, the pressure and the temperature of the analysis cell are controlled and the cell is connected to the sampling probe of the reactor by means of heated line to avoid condensation. The cell is filled of the reacting mixture at the pressure and the temperature at which the standards of species targeted were performed. Finally, a software is able to deconvolute each experimental spectrum and recover the individual spectra and to quantify.

Fig 8.10 displays mole fraction profiles of CO, CO$_2$, H$_2$, O$_2$, NO, NO$_2$, and CH$_2$O obtained in the experimental study of the oxidation of a blend of n-heptane and toluene (80-20 mol%) in a jet-stirred reactor using Fourier transform infrared spectroscopy (Dubreuil et al. 2007).
Fig. 8.10 Mole fraction profiles of CO, CO₂, H₂O, NO, NO₂, and CH₂O using Fourier transformed infrared spectroscopy during the experimental study of the oxidation of a blend of n-heptane and toluene in a jet-stirred reactor (Dubreuil et al. 2007). Experiments were performed in a jet-stirred reactor at a pressure of 10 atm, a residence time of 0.5 s, fuel and NO inlet concentrations of 800 and 50 ppmv, respectively, and equivalence ratio of 2.

8.5.3 SVUV Photo-ionization Mass Spectrometry

A coupling of a jet-stirred reactor and a reflectron time-of-flight mass spectrometer (RTOF-MS) with tunable synchrotron vacuum ultra violet (SVUV) photo-ionization was achieved using a molecular beam sampling system (Battin-Leclerc et al. 2010; Herbinet et al. 2011a). The coupling was made through a cone-like nozzle which was pierced with a very small orifice (the diameter of which was about 50 μm) and which was inserted in the lateral wall of a spherical jet-stirred reactor (Fig 8.11). Fig 8.12 is a picture of the jet-stirred reactor connected to the mass spectrometer at the National Synchrotron Radiation Laboratory (Hefei, China).

This arrangement alleviates the problem of changes in the composition of the gas between the outlet of the reactor and the analytical apparatus. SVUV photo-ionization mass spectrometry is a very powerful method for the identification of molecules (especially unstable molecular intermediates) and radicals in gas phase kinetic studies (Hansen et al. 2009; Li and Qi 2010; Qi 2013). This analytical technique was already used to study the oxidation of hydrocarbons and allowed the identification of enols in flame experiments (Taatjes et al. 2005). Two major difficulties in this technique are the separation of isomers which are identified using their photo-ionization energies (which are sometimes very close) and the quantification of species which requires the knowledge of the cross sections of the species as a function of the photon energy.
The study of the low-temperature oxidation of n-butane was performed using a jet-stirred reactor coupled to the RTOF-MS (Herbinet et al. 2011a). No radical species were observed during this study due to the very low concentration of this type of species in a jet-stirred reactor (as an example, orders of magnitude of the concentrations of hydroperoxyl and hydroxyl radicals are 1 and 0.01 ppm, respectively). But this technique allowed the identification of an important class of molecules involved in the low temperature oxidation chemistry of hydrocarbons: hydroperoxides and ketohydroperoxides. Fig 8.13 displays the mole fraction profiles of hydroperoxides and ketohydroperoxides detected in the study of the low-temperature oxidation of n-butane (experiments performed at 106 kPa, a residence time of 6 s, fuel and oxygen inlet mole fractions of 0.04 and 0.26, respectively).

Fig. 8.13 Experimental mole fractions of hydroperoxides and ketohydroperoxides formed in the low temperature oxidation of n-butane. Experiments were performed in a jet-stirred reactor and using SVUV photo-ionization mass spectrometry (Herbinet et al. 2011a)
8.5.4 Cavity Ringdown Spectroscopy

A jet-stirred reactor has been coupled to a cavity where continuous wave cavity ring-down spectroscopy (cw-CRDS) can be performed at the Laboratoire Réactions et Génie des Procédés (Nancy, France) in collaboration with the laboratory PhysicoChimie des Processus de Combustion et de l’Atmosphère (Lille, France). cw-CRDS is a technique which has already been used to measure the concentrations of OH and HO₂ radicals in the photolysis of hydrogen peroxide (Parker et al. 2011). The coupling of the jet-stirred reactor and of the spectroscopic cell was achieved using a sonic probe as in flame experiments (Fig. 8.14). The use of a sonic probe instead of a molecular beam allowed the sampling of species in the gas phase in the reactor and the maintenance of a high enough pressure in the spectroscopic cell.

Studies of the oxidation of methane and n-butane were recently performed using this apparatus (Bahrini et al. 2012a and 2012b). The high sensitivity of this absorption technique allowed the quantification of some stable species in the oxidation of methane: water, methane and formaldehyde (Fig. 8.15), whose IR spectra around 1506 nm are well structured and well known, particularly for methane and formaldehyde. Hydrogen peroxide, which was not detected in the methane oxidation study because its concentration was too low, could be quantified in the n-butane study. The corresponding mole fraction profile is displayed in Fig. 8.16.

![Fig. 8.14 Scheme of a jet-stirred reactor coupled to a cavity cw-CRDS (Bahrini et al., 2012)](image1)

![Fig. 8.15 Mole fraction profiles of methane, water and formaldehyde obtained in the study of the oxidation of methane in a jet-stirred reactor using cw-CRDS and gas chromatography (GC) analyses (Bahrini et al. 2012a). Experiments were performed in a jet-stirred reactor at a pressure of 106 kPa, a residence time of 2 s, fuel and oxygen inlet mole fractions of 0.0625](image2)
8.6 Effect of Wall Reactions

It has long been known that the coating of the wall of a reactor can have an influence on the kinetics of combustion phenomena (Pollard 1977; Griffiths and Scott 1987). As an example, wall reactions can affect the reactivity of a fuel and can change the boundaries between the different oxidation phenomena (slow oxidation, cool flames, auto-ignition) that can occur in a batch reactor (Konnov et al. 2005). Brocard and Baronnet (1983), who studied the oxidation of methyl tert-butyl ether in different closed vessels (packed and unpacked, coated and uncoated) also observed large difference of reactivities that were attributed to wall effects. A catalytic effect was also observed in the oxidation of methyl and ethyl tert-butyl ethers in a jet stirred reactor (Glaude et al. 2000)

The effect of wall reactions in a jet-stirred reactor was numerically investigated by adding wall reactions involving the HO₂ radical in a detailed kinetic model for the oxidation of methane (Fig. 8.17). These wall reactions were taken from the work of Porter et al. (2008). The first reaction is the adsorption of the HO₂ radical at the wall and the second reaction is the reaction of adsorbed HO₂ radicals yielding water and oxygen. It can be seen in Fig. 8.17 that these wall reactions have a slight inhibiting effect on the reactivity.
8.7 Modeling and Simulation

One advantage of the jet-stirred reactor relies on the relatively easy modeling which simplifies a lot the simulations with detailed kinetic models (Scacchi et al. 1996). This type of reactor is modeled by two types of equations: the mass equation and the conservation of energy (Villermaux 1995).

The mass equation is given by Eq. 8.21. In this equation, \(F_j^i \) and \(F_j^o \) are the mole flow rates of the species \(j \) at the inlet and at the outlet of the reactor, respectively, \(V \) is the volume of the reactor, \(r_i \) is the rate of the reaction \(i \), and \(u_{ij} \) is the stoichiometric coefficient of the species \(j \) in the reaction \(i \) (\(u_{ij} \) is positive if the species \(j \) is formed in the reaction \(i \), and negative if it is consumed).

\[
F_j^o = F_j^i + \sum_i u_{ij} r_i V \tag {8.21}
\]

For the special case of a unimolecular reaction \(A \rightarrow P \), the expression of the concentration \(C_A^o \) of the species \(A \) at the outlet of the reactor (Eq. 8.22) can be easily deduced from the mass equation given by Eq. 8.21. In Eq. 8.22, \(C_A^i \) is the concentration of the species \(A \) at the inlet of the reactor, \(k \) is the kinetic constant of the reaction \(A \rightarrow P \), and \(\tau \) is the residence time.

\[
C_A^o = C_A^i / (1 + k \tau) \tag {8.22}
\]

The conservation of energy is given by Eq. 8.22. In this equation, \(h_j^i \) and \(h_j^o \) are the mole enthalpies of formation of the species \(j \) at the inlet and at the outlet of the reactor, and \(W \) is the reactor heat loss. Note that jet-stirred reactors are most of the time operated at constant temperature. In this case the heat loss term \(W \) in Eq. 8.23 disappears.

\[
\sum_j F_j^o h_j^o + W = \sum_j F_j^i h_j^i \tag {8.23}
\]

A system composed of \(j + 1 \) algebraic equations is obtained. This system can be solved using a Newton algorithm. PSR program included in Chemkin II (Glarborg et al. 1986) is largely used to performed jet-stirred reactor simulations. This program solves the system of algebraic equations using the damped modified Newton algorithm. This algorithm needs a starting estimate of the solution to begin the iteration. A difficulty is to provide a reasonable starting estimate. If no good starting estimate is available the software uses the equilibrium composition at an estimated temperature as starting estimates. For very difficult problems, it is recommended to start the calculation with a long residence time and a high temperature and then to use the continuation feature to shorten the residence time and decrease the temperature progressively. Sometimes the Newton method does not converge and a transient computation with integration of a system of ordinary differential equations using the backward-Euler method is performed before returning to the Newton algorithm.

8.8 Experimental Studies of Oxygenated Fuels

Jet-stirred reactors have been used for the studies of the oxidation and pyrolysis of numerous hydrocarbons and oxygenated compounds (Tran et al. 2012). Experimental studies of the oxidation and the pyrolysis of oxygenated compounds in a jet-stirred reactor are displayed in Table 1.1. It can be seen that many studies of the oxidation of alcohols and esters have been carried out. There is much less studies on ethers and particularly on cyclic ethers which can be derived from ligno-cellulosic biomass. Note that almost no jet-stirred experimental data study about the oxidation of aldehydes and ketones was reported while these species are important intermediates formed in the combustion of hydrocarbons and oxygenated species (Piperel et al. 2009).
Table 8.1 Experimental studies of the oxidation and the pyrolysis of oxygenated compounds performed in a jet-stirred reactor

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental conditions</th>
<th>T (K)</th>
<th>P (kPa)</th>
<th>Φ</th>
<th>τ (s)</th>
<th>x_{fuel}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethanol</td>
<td>1000-1200; 890-1250</td>
<td>101</td>
<td>0.2-2</td>
<td>0.04-0.24</td>
<td>0.003</td>
<td>Aboussi 1991</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25-2</td>
<td>0.07-0.7</td>
<td>0.002</td>
<td>Leplat et al. 2011</td>
<td></td>
</tr>
<tr>
<td>n-butanol</td>
<td>800-1250</td>
<td>101</td>
<td>0.25-2</td>
<td>0.07-0.7</td>
<td>0.001-0.012</td>
<td>Dagaut et al. 2009; Sarathy et al. 2009</td>
<td></td>
</tr>
<tr>
<td>2-butanol</td>
<td>770-1250</td>
<td>101</td>
<td>0.275-4</td>
<td>0.7</td>
<td>0.001-0.0015</td>
<td>Togbé et al. 2010a</td>
<td></td>
</tr>
<tr>
<td>iso-butanol</td>
<td>770-1250</td>
<td>101</td>
<td>0.275-4</td>
<td>0.7</td>
<td>0.001-0.0015</td>
<td>Togbé et al. 2010a</td>
<td></td>
</tr>
<tr>
<td>n-pentanol</td>
<td>770-1220</td>
<td>101</td>
<td>0.35-4</td>
<td>0.7</td>
<td>0.001-0.0015</td>
<td>Togbé et al. 2011a</td>
<td></td>
</tr>
<tr>
<td>iso-pentanol</td>
<td>530-1220</td>
<td>101</td>
<td>0.35-4</td>
<td>0.7</td>
<td>0.001-0.0015</td>
<td>Dayma et al. 2011</td>
<td></td>
</tr>
<tr>
<td>n-hexanol</td>
<td>560-1220</td>
<td>101</td>
<td>0.5-3.5</td>
<td>0.7</td>
<td>0.001-0.0015</td>
<td>Togbé et al. 2010b</td>
<td></td>
</tr>
<tr>
<td>Ethers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethyl ether</td>
<td>550-1275</td>
<td>101</td>
<td>0.2-2.5</td>
<td>1</td>
<td>0.001-0.002</td>
<td>Dagaut et al. 1996; 1998a</td>
<td></td>
</tr>
<tr>
<td>methyl tert-butyl ether; ethyl tert-butyl ether; tert-amyl methyl ester; dipropyl ether</td>
<td>800-1150</td>
<td>101</td>
<td>0.5-2.0</td>
<td>0.5</td>
<td>0.001</td>
<td>Goldaniga et al. 1998</td>
<td></td>
</tr>
<tr>
<td>dimethoxy methane</td>
<td>800-1200</td>
<td>507</td>
<td>0.444-1.778</td>
<td>0.25</td>
<td>0.0015</td>
<td>Daly et al. 2001</td>
<td></td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td>800-1100</td>
<td>101</td>
<td>0.5-1.0</td>
<td>0.1-0.5</td>
<td>0.001</td>
<td>Dagaut et al. 1998b</td>
<td></td>
</tr>
<tr>
<td>Aldehydes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propanal</td>
<td>800-1100</td>
<td>101</td>
<td>0.3-2.0</td>
<td>0.7</td>
<td>0.0015</td>
<td>Veloo et al. 2013</td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl-butanoate</td>
<td>850-1400</td>
<td>101</td>
<td>0.375, 0.75 & 1.13</td>
<td>0.07</td>
<td>0.00075</td>
<td>Gaïl et al. 2008</td>
<td></td>
</tr>
<tr>
<td>methyl-2-butenoate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl pentanoate</td>
<td>530-1220</td>
<td>101</td>
<td>0.5, 1 & 2</td>
<td>0.7</td>
<td>0.001</td>
<td>Karsenty et al. 2012</td>
<td></td>
</tr>
<tr>
<td>methyl hexanoate</td>
<td>500-1000</td>
<td>101</td>
<td>0.5-1.5</td>
<td>1.5</td>
<td>0.001</td>
<td>Dayma et al. 2008</td>
<td></td>
</tr>
<tr>
<td>methyl heptanoate</td>
<td>550-1150</td>
<td>101</td>
<td>0.6-2</td>
<td>0.7</td>
<td>0.001</td>
<td>Dayma et al. 2009</td>
<td></td>
</tr>
<tr>
<td>methyl decanoate</td>
<td>500-1100</td>
<td>106</td>
<td>1</td>
<td>1.5</td>
<td>0.0021</td>
<td>Glaude et al. 2010</td>
<td></td>
</tr>
<tr>
<td>methyl palmitate / n-decane</td>
<td>773-1123</td>
<td>106</td>
<td>0-14 pyrolysis</td>
<td>1.5</td>
<td>0.0218</td>
<td>Herbinet et al. 2011c</td>
<td></td>
</tr>
<tr>
<td>methyl oleate / n-decane</td>
<td>550-1100</td>
<td>106</td>
<td>1.0 & 1.5</td>
<td>0.00052/0.00018</td>
<td>Hakka et al. 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rapeseed oil methyl esters</td>
<td>800-1400</td>
<td>101</td>
<td>0.25-1.5</td>
<td>0.07-1</td>
<td>0.0005</td>
<td>Dagaut et al. 2007</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 1.1 there is a lack of JSR data for some types of molecules. Future studies could focus on large methyl esters that are present in biodiesel fuels (methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate) in order to study the influence of double bonds in the oxidation chemistry. Another interesting field of investigation is the study of the oxidation of the numerous molecules derived from the decomposition of ligno-cellulosic biomass (C2-C3 hydroxy-carbonyl species such as hydroxyl-acetone, anhydrosugars such as levoglucosan, furans such as furfural and aromatics such as guaiacol). In addition, the study of aldehydes, ketones and cyclic ethers will be valuable for the understanding of the oxidation chemistry of petrol based fuels.
8.9 Nomenclature

Latin symbols:
- A: adimensional constant which is equal to 0.3 in the case of air at 20°C and at atmospheric pressure
- c_{sound}: speed of sound
- C_i^p: concentration of a species A at the outlet of the JSR
- C_i^a: concentration of a species A at the inlet of the JSR
- d: diameter of a nozzle in the JSR
- F_j: mole flow rate of the species j at the outlet of the JSR
- F_j^i: mole flow rate of the species j at the inlet of the JSR
- h_f^p: mole enthalpy of formation of the species j at the outlet of the JSR
- h_f^a: mole enthalpy of formation of the species j at the inlet of the JSR
- i: index for reaction
- j: index for species
- P: pressure of the gas in the JSR
- Q: volume flow rate in the JSR
- $Q_d(x)$: volume flow rate of the gas at the distance x from the outlet of a nozzle in the JSR
- Q_0: volume flow rate of the gas at the outlet of a nozzle in the JSR
- r: radial distance from the axe of a jet from a nozzle in the JSR
- r_i: rate of the reaction i
- R: radius of the JSR
- R_e: Reynolds number
- R_r: recycling rate in the JSR
- t: time needed to carry the whole volume of gas in the JSR from one nozzle to the following one
- T: temperature of the gas in the JSR
- u_a: axial velocity of a jet from a nozzle in the JSR
- u_d: velocity of the gas at the outlet of a nozzle in the JSR
- u_r: radial velocity of a jet from a nozzle in the JSR
- V: volume of the JSR
- W: JSR heat loss
- x: axial distance from a nozzle in the JSR
- x_{fuel}: mole fraction of a fuel

Greek symbols:
- α: adimensional constant in the expression of the radial velocity of a jet from a nozzle in the JSR
- β: angle at the top of the cone formed by a jet from a nozzle in the JSR
- η: dynamic viscosity of the gas
- Φ: equivalence ratio
- ν_i: algebraic stoichiometric coefficient
- ρ: specific weight of the gas
- τ: residence time of the gas in the JSR

