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Abstract: product quality level is a key concept for companies' competitiveness. Different tools may be used to 
improve quality such as the seven basic quality tools or experimental design. In addition, the need of 
traceability leads companies to collect and store production data. Our paper aims to show that we can ensure 
the required quality thanks to an "on line quality approach" based on exploitation of collected data by using 
neural networks tools. A neural networks ensemble is proposed to classify quality results which can be used 
in order to prevent defects occurrence. This approach is illustrated on an industrial lacquering process. 
Results of the neural networks ensemble are compared with the ones obtained with the best neural network 
classifier. 

1 INTRODUCTION 

One of the main goals in the mass customization 
context is the product quality control. Statistical 
process control is one of the most effective tools of 
Total Quality Management (TQM). The American 
Production and Inventory Control Society (APICS) 
defines Total Quality Management as "A 
management approach to long-term success through 
customer satisfaction. TQM is based on the 
participation of all members of an organization in 
improving processes, goods, services, and the 
culture in which they work". This definition is very 
related to the definition of Just in Time (JiT) because 
APICS presents JiT as “A philosophy of 
manufacturing based on planned elimination of all 
wastes and on continuous improvement of 
productivity. One of the main elements of JiT is to 
improve quality to zero defects. In the broad sense, it 
applies to all forms of manufacturing”. JiT and TQM 
are two major concepts related to Lean 
manufacturing –LM- (Vollmann et al. 1984). 
Different tools may be used to improve quality such 
as the seven basic quality tools (Ishikawa chart, 
check sheet, control charts, histogram, Pareto chart, 
scatter diagram, stratification), or experimental 
designs. These tools, along with the Taguchi 
Method, are well known in the industry. Initially, 

quality products was controlled a posteriori and this 
a posteriori control led to reject or to downgrade a 
large part of the production. Taguchi is the first to 
propose to control quality before the product 
origination with the set-up parameters control. this 
approach based on the experimental design present 
the drawback to be off-line.  

In addition, the seek of traceability imposes to 
companies to collect and store production data. We 
propose to exploit these data in order to perform on-
line quality monitoring. The proposed approach 
relies to the same philosophy as Taguchi approach. 
The main goal is to set-up production parameters in 
order to prevent defects occurence. This set-up is 
performed on-line by taking into account the 
variation in the operating range. 

The first step is to extrack from data, knowledge 
on the defects production. One important step of the 
knowledge discovery in data processus is the 
datamining step which may be performed by using 
neural networks. Other tools may be used to perform 
this step as fuzzy logic when expert knowledge is 
available or naïve Bayes or decision tree where only 
discret data are used. Neural network performs a 
local search of optimum. This fact implies that the 
neural network design needs to perform many 
learning with different initial weights sets in order to 
avoid local minimum trapping problem. These 



 

different learning produces different classifiers more 
or less performant. The simplest strategy could be to 
select the single, best performing classifier. Another 
approach consists to use an ensemble of these 
classifiers (Hansen and Salomon, 1990). This 
approach based on the Condorcet's jury theorem 
allows to improve the results. The second step is to 
performed an on-line optimal production parameter 
set-up based on the classifier ensemble results and 
which may vary in function of the operating range.  

The main goal of this paper is to evaluate the use 
of a neural network ensemble classifier for quality 
monitoring process comparing with a single neural 
classifier. The design of a Taguchi experiments by 
using these classifiers is also investigated in order to 
find optimal tuning of controllable parameters for 
considered operating point.  

First, we will recall succinctly the knowledge 
discovery in data process. In a second step, the 
neural network structure, its learning and pruning 
procedure are recalled before to present neural 
network ensemble. After, the industrial application 
case and the results obtained are presented before to 
conclude.  

2 KNOWLEDGE DISCOVERY IN 
DATA FOR QUALITY 

To control quality, we must understand it. So we 
need to know precisely factors affecting quality. 
These factors can be classified according to 6M 
(Ishikawa, 1986) of the Ishikawa chart (Machine 
(technology), Method (process), Material, Man 
Power, Measurement (inspection), Milieu 
(environment). When considering their 
controllability, only 4 of the 6M must be considered: 
� Environmental factors (Environment-Milieu) 

such as temperature or humidity. These factors 
are generally low- or non-controllable.  

� Technical factors (Machine and Method) 
resulting primarily from the machine state 
during operations. They are controllable 
factors.  

� Human factors (Man Power) in manual 
operations. They are difficult to take into 
account because they sometimes vary 
consequently between operators. So far, the 
attempts to control human factors 
(establishing standards, poka yoke) have 
limitations and constraints. 

Knowledge on the controllability of factors is 
needed in order to determine if a factor may be 

tuned or considered as constraint or even as noise. 
When the influential factors are correctly analyzed, 
we can focus on the challenge for quality control. 
The "zero defect" can be obtained in two ways: 
� By optimizing the initial settings of various 

factors. 
� By drifts monitoring and prevention. 

This paper focuses on the first way. Historically, 
there are two approaches to manage quality. The 
first one, and also the easiest, is to use the seven 
basic quality tools (Ishikawa chart, check sheet, 
control charts, histogram, Pareto chart, scatter 
diagram, stratification). In this approach, the 
finished parts are a posteriori controlled and 
improvement propositions are performed by using 
expert knowledge. In a second approach, the main 
goal is to control the process and no longer the 
finished parts in order to tune the technical factors 
off-line by using experimental design methods. 

In our approach, the production data collected 
are used in order to determine the conditions of 
defects apparition. To do that, a Knowledge 
Discovery in Data (KDD) process may be 
performed. KDD process is performed in different 
steps (Patel and Panchal, 2012). We assign a letter to 
each step in order to refer more easily to them later.  
� Selection: obtain data from various sources 

(a), 
� Preprocessing: cleanse data (b), 
� Transformation; convert to common format, 

transform to new format (c),  
� Data mining: obtain desired results (d), 
� Interpretation/Evaluation/Presentation: present 

results to user in meaningful manner (e). 
The two main steps are selection (a) and data 

mining (d). Data mining which is the core part of 
KDD is the process of analysing data and summarize 
it into useful information. Different approaches can 
be used to perform it such as artificial intelligence, 
machine learning, statistics and database systems. 
Data mining may perform different tasks: 
� Classification: maps data into predefined 

group or classes, 
� Regression: maps data from an input space to 

an output space, 
� Clustering: groups similar data together into 

clusters, 
� Summarization: maps data into subsets with 

associated simple descriptions, 
� Link analysis: uncovers relationships among 

data. 
In a quality monitoring problem, the data mining 

must perform a classification of data into 2 classes: 
defect occurrence and no defect occurrence.  



 

2.1 Selection (a), preprocessing (b) and 
transformation (c) of data 

An important task in KDD process is the data 
collection (a). It is possible to collect the values of 
the different factors that influence quality in the 
same way. The availability of data is a crucial point 
for the quality analysis. Ideally, the collect of data 
must be automated. In the case of manual data 
collection we need to increase operator awareness of 
the importance of this task. Manual data collection is 
often seen as a waste of time because the operator 
must stop his work to write information not used 
directly in production. If this task is not correctly 
performed, the whole database becomes unworkable. 
However, manual data collection is often inevitable, 
because quality checking is often manually 
performed. It is necessary to consolidate the two 
types of data (production information and quality 
factor values). The data must be preprocessed (b) in 
order, for example, to synchronize the different 
database, delete evident outliers, and digitize 
qualitative data as color (c)... 

2.2 Datamining (d) 

The volume of data to be analyzed is often weighty 
(Agard and Kusiak 2005). Companies collect and 
store data for traceability reasons but they rarely use 
their well of information and only as indicators for 
real-time management methods (Kusiak, 2001). Data 
mining is the part of Knowledge Discovery in Data 
which consists in analyzing data in order to 
summarize it into useful information. In our case, 
data mining should perform a classification of data 
into two classes: defect occurrence and no defect 
occurrence. To do that, different tools may be used 
such as Naïve Bayes, Decision tree, Support Vector 
Machine (SVM), neural networks (NN)... Decision 
tree is faster to classify data but does not work well 
with noisy data (Patel and Panchal, 2012). So in the 
case of industrial data, the use of this approach is not 
pertinent. Naïve Bayes is dedicated to the treatment 
of discrete data and the use of continuous ones needs 
to perform a discretization of these data. Support 
Vector Machine and Neural network both use very 
close concepts which lead to very close results. 
Sometimes, SVM gives better results (Meyer et al., 
2003), sometimes it is NN (Paliwal and Kumar, 
2009; Hajek and Olej, 2010). This work focuses on 
neural network tools which are presented in the next 
section.  

3 NEURAL NETWORK TOOLS 

3.1 Multilayers perceptron 

We propose the use of neural networks (NN) to 
model systems in order to classify quality products. 
The final goal is to determine the best on-line 
settings for each factor. The advantages of this 
approach are: 
� Exploitation of real data without carrying out 

dedicated experiments as in experiments plan 
by using database collected during the 
production. 

� Simple implementation of the approach 
because the neural model design is partially 
automated. 

� On-line tuning of the quality monitoring 
process by using actual production data in 
order to improve and adapt the process to 
change.  

In our approach, the neural model is performed 
by using production data representatives of all the 
conditions encountered in the past and so, it can 
adapt itself to these changeable conditions. This 
model is able to provide lower and upper limits for 
each controllable factor settings based on all non-
controllable factors. 

The multilayer perception (MLP) seems to be the 
neural network best suited to our case. Works of 
Cybenko (1989) and Funahashi (1989) have proved 
that a MLP with only one hidden layer using a 
sigmoïdal activation function and an output layer 
can approximate all non-linear functions with the 
wanted accuracy. Its structure is given by: 
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where 0
hx  are the n0 inputs of the neural network, 

1
ihw  are the weights connecting the input layer to the 

hidden layer, 1
ib  are the biases of the hidden 

neurons, g1(.) is the activation function of the hidden 
neurons (here, the hyperbolic tangent), 2

iw  are the 

weights connecting the hidden neurons to the output 
one, b is the bias of the output neuron g2(.) is the 
activation function of the output neuron and z is the 
network output. Because of the problem is to obtain 
a classification of product into two classes: defect 
occurrence and no defect occurrence, g2(.) being 
chosen sigmoïdal.  



 

3.2 Initialisation, learning and pruning 

Three steps must be performed in order to design the 
neural model.  

3.2.1 Initialisation 

The first one is the determination of the initial set of 
weights and biases. This step is important because 
learning algorithm performs a local search of 
minimum. So, in order to avoid local minimum 
trapping, different initial sets must be constructed 
which allow beginning learning in different zones of 
the criteria domain. Different initialisation 
algorithms have been proposed in the literature 
(Thomas and Bloch 1997). The initialisation 
algorithm used is the one proposed by Nguyen and 
Widrow (1990) which allows associating a random 
initialization of weights and biases to an optimal 
placement in input and output spaces. This step 
allows improving the diversity of the neural 
classifiers which is an important notion for neural 
network ensemble.  

3.2.2 Learning 

The second step is performed by the learning 
algorithm which must fit the network output with the 
data. In industrial application data are noisy and 
corrupted with many outliers. In order to limit the 
impact of outliers on the results, a robust Levenberg-
Marquardt algorithm is used (Thomas et al. 1999). 
Levenberg–Marquard algorithm allows associating 
the speed of the Hessian methods to the stability of 
the gradient methods. This is performed by adding a 
parameter multiplied by the identity matrix in order 
to permit the inversion of the Hessian matrix even if 
it is singular. The tuning of this parameter during the 
learning allows the Levenberg–Marquard algorithm 
to work as a gradient descent algorithm when this 
parameter is large and as a Gauss–Newton algorithm 
when this parameter is small. The use of a robust 
criterion allows avoiding the influence of outliers 
and, has a regularization effect in order to prevent 
overfitting. 

3.2.3 Pruning 

An important issue in neural network design is 
the determination of its structure. To determine it, 
two approaches can be used. The first is 
constructive, where the hidden neurons are added 
one after another (Ma and Khorasani 2004). The 
second approach exploits a structure with too many 

hidden neurons, and then prunes the least significant 
ones (Setiono and Leow 2000, Engelbrecht 2001). 
We focus on pruning approach that allows the 
selection simultaneously of the input neurons and 
the number of hidden neurons. The pruning phase is 
performed in two steps. First, the Engelbrecht 
algorithm is used which allows to quickly 
simplifying the structure and second the Setiono and 
Leow algorithm is used which is slower but also 
more efficient (Thomas and Thomas 2008). This 
step is also very important for neural networks 
ensemble because it allows improving performances 
of each classifier, and the diversity of different 
classifiers by differentiating there structures 
(pruning of inputs, hidden neurons or weights are 
different for the different networks). 

3.3 Neural networks ensemble 

Neural networks ensemble is an interesting approach 
to improve quality of classifier. Typically, an 
ensemble classifier can be built at four different 
levels (Kuncheva 2004): Data level (Breiman 1996), 
feature level (Ho, 1998), classifier level and 
combination level (Kuncheva 2002). We focus here 
on classifier and combination level. The principle of 
neural network ensemble is presented figure 1. 
Design of ensemble neural networks consists of two 
main steps: the generation of multiples classifiers 
and their fusion (Dai 2013). This leads to two 
problems: how many classifiers are needed and how 
to perform their fusion.  

 

Figure 1: A neural network ensemble. 

The classifier selection is a problem addressed 
by many authors (Ruta and Gabris 2005, Hernandez-
Lobato 2013, Dai 2013). Two approaches may be 
used to perform it (Ruta and Gabrys 2005):  
� Static classifiers selection. The optimal 

selection solution found for the validation set 
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is fixed and used for the classification of 
unseen patterns. 

� Dynamic classifiers selection. The selection is 
done on-line, during classification, based on 
training performances and also various 
parameters of the actual unlabelled pattern to 
classify.  

In order to preserve speed of classification, we 
use here a static classifiers selection. Different 
selection criterions have been proposed. Individual 
best performance is an universal indicator for 
selection of the individual best classifiers, which is 
the simplest and is reliable and robust is generally 
preferred in industrial applications (Ruta and Gabrys 
2005). This indicator calls minimum individual error 
(MIE) represents the minimum error rate of the 
individual classifier and promotes individual best 
classifiers selection strategy: 
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where ej(i) represents the error classification of 
classifier j on data i. 

We use this criterion to select 100 classifiers in 
order to benefit of a large classifiers set and to 
obtain directly a percentage of vote representative to 
the confidence of classification. Ensemble pruning 
algorithm may also be used in order to optimize the 
size of the classifiers ensemble (Tsoumakas et al. 
2009, Guo and Boukir 2013). 

The fusion of classifiers is generally performed 
by majority vote. Kuncheva et al. (2003) have 
proposed to implement limits on the majority vote 
accuracy in classifier fusion. They studied the 
problem of lack of independence in the classifiers 
which may limit the interest of classifiers ensemble. 
We implement majority vote which presents the 
advantage that it could be also used as a confidence 
interval on the classification results. This approach 
is applied on an industrial quality control.  

4 INDUSTRIAL APPLICATION 

4.1 Presentation of the process 

The considered company produces high quality 
lacquered panels made in MDF (Medium Density 
Fiberboard) for kitchens, bathrooms, offices, stands, 
shops, hotel furniture. Its main process is a robotic 
lacquering workstation. Even if this workstation is 
free of human factors, the production quality is 
unpredictable (we cannot know if there is a risk that 
products will have defects) and fluctuates (the 

percentage of defects may be of 45% one day and 
down to 10% the next day without changing the 
settings). After a brainstorming about the factors 
influencing the quality level, we were able to 
classify them in three categories specified in 
paragraph 2. We could imagine the potential drifts 
and associate a type of defect. This preliminary work 
results of expert knowledge. Only after the complete 
study can we know accurately which factors affect 
which defects. Thanks to a production and quality 
management system, data corresponding to the 
factors studied since february 2012 to september 
2012 have been collected. Upstream of the robotic 
lacquering workstation, experts decided to collect 
factors such as load factor, number of passes, time 
per table (lacquering batches), liter per table, basis 
weight, number of layers, number of products and 
drying time. We could add to these technical factors 
environmental ones such as temperature, 
atmospheric pressure and humidity. According to the 
experimental design approach, we can classify these 
variables into two types of factors: internal ones 
(load factor, number of passes, time per table, liter 
per table, basis weight, number of layers, number of 
products and drying time) and external ones 
(temperature, humidity, pressure). Two factors 
(passes number and number of layers) are discrete 
ones that can each take three states and that are 
binarized (Thomas and Thomas 2009).  

We have 15 inputs to apply to the neural network 
which 6 are binary ones. Downstream of the 
machine, we were able to detect up to 30 different 
types of defects. The first works with the neural 
network prediction concerning a type of defects: 
"Stains on back." We have a total of 2270 data we 
will split into 2 data sets for identification (1202 
data) and validation (1068 data). First, learning is 
achieved by exploiting 25 neurons in the hidden 
layer. Pruning phase can then eliminate spurious 
inputs and hidden neurons. This is done 150 times 
with different initial weights sets to avoid problem 
of trapping in local optimum. The 100 better 
classifiers are used in the neural networks ensemble 
and the performances of the neural networks 
ensemble are compared with the best neural 
classifier. The different initialisation sets and the 
pruning phase allows to assure diversity into the 
classifers set.  

During the validation phase, we therefore 
compare the results of the best neural classifier with 
the real defects detection. For the defect "Stains on 
back", we know that it occurs 127 times on the 1068 
data validation set. The best neural classifier can 



 

detect 112 defects which lead to a non-detection rate 
of 11.8%. The proportion of false positive is 19.2%, 
which may be partly explained by the fact that some 
defects haven’t been identified out of the machine. 
The quality control is performed manually. This fact 
induces that some defects are not notice.  

The using of neural networks ensemble on the 
same validation data set gives a non-detection rate of 
10.2%. The proportion of false positive is 16.4%. 
These results show an improvement of 14% of the 
non-detection rate and 15% on the false alarme rate. 
The same work performed on a second defect (grain 
on face, 477 defects on the 1068 data validation set) 
allows to reduce the non detection rate from 42% to 
32% (24% of improvement) and a false alarme rate 
from 21% to 16% (24% of improvement). 

Another advantage of the neural networks 
ensemble is that the result of the vote may be use as 
a confidence interval on the classification result. As 
example, for a data, a vote with 40% of defect and 
60% on non defect may induces to suspect the 
occurence of defect even if the classification result 
leads to a non defect classification. 

It is obvious that these defects are largely 
explained by the archived operating conditions and 
it’s possible to use neural networks ensemble 
upstream of the workstation to prevent the risk of 
defects. However, there are defects which cannot be 
predicted with the neural networks ensemble in the 
conditions described above. This is for example the 
case for “knock” where you get 73% non-detection 
for 11% false positives. The non predictable defects 
depend certainly on other factors that we need to 
determine and collect if we want to predict them. In 
total, on the 30 identified defects, 7 can be partially 
explained using the variables collected. For the 
predictable defects, there are 2 possible approaches: 

� Warning. By analyzing the inputs through the 
neural networks ensemble, it becomes 
possible to predict defects occurrence and 
report it when conditions are met to create 
risk.  

� Limitation. By using neural networks 
ensemble to limit the input factors by upper 
and lower limits and prohibit the production 
lot when one of the inputs is outside these 
limits. If it’s a controllable factor, operators 
can modify it to allow production. Otherwise, 
the production lot will be rejected. It must be 
scheduled later when conditions become 
acceptable. To do that, factors must be 
classified into controllable ones (load factor, 

basis weight, drying time, liters per table), 
non-controllable ones (temperature, humidity, 
pressure) and protocols (number of passes, 
time per table, number of layers, and number 
of products). The neural networks ensemble is 
then used instead of the real system to perform 
experiments that achieve an entire plan 
without increasing the cost. The results, 
however, still to be validated on the real 
system.  

Figure 2 and 3 present the results of an entire 
Taguchi plan in which 10 levels were chosen for the 
3 controllable factors. In this example, for protocol 
factors, we set the number of passes and layer to 1; 
the time per table, and the liter of lack to their 
average values; and the number of products to its  
median value. We also fixed non-controllable factors 
values to their average values. The effect of each 
factor xi to a level Ai is given classically by the mean 
of all the results (defect occurence) obtained when 
xi = Ai minus the mean of the results obtained with 
all the experiences. When an effect is positive, this 
implies that the considered level increase the 
occurence of defects, when it is negative, the 
considered level reduce the occurence of defects. 
The interractions between factor may be investigated 
in the same way. 

Figure 2 presents the results obtained with the 
best neural classifier. It shows that the load factor 
has a relatively small impact on the defects 
occurrence. However, the increase in weight has a 
significant effect. High basis weights tend to create 
more defects. Drying time has also an impact 
because too short drying time greatly increases the 
occurrence of defects.  

Figure 3 presents the same work performed by 
using neural networks ensemble. Due to the 
diversity of the different classifiers, the impact of 
each effect are presented in the forme of an 
enveloppe including the effects for all the classifiers. 
We can see that the information given by the neural 
networks ensemble is more complete than the one 
given by the best neural classifier. If, for the load 
effect, the neural networks ensemble confirms that it 
has a very small impact on the defects occurence, for 
the basis weight effect and dry effect, it shows that 
small and large values may lead to defects 
occurence.  

This information can not be obtained by using 
uniquely the best neural classifier. These results are 
useful to tune the process parameter to their best 
values under the constraint of uncontrollable factors 
as meteorological ones.  

 



 

Figure 2: Experiment plan results by using best NN classifier. 

 

Figure 3: Experiment plan results by using neural networks ensemble. 

As example, with the operating range considered 
here, the set-up of the basis weight may be tuned 
between 90 and 190 when the tuning of dry time 
may be tuned between 400 and 1100 in order to limit 
the risk of defects occurence.In order to obtain the 
same results by using an experiments plan, we need 
to use 5 modalities for drying time and basis weight 
and 2 for the load factor that lead to many 
experiments even using Taguchi plan. These 
preliminary results need to be confirmed by taking 
into account the variation of non-controllable factors 
(temperature, pressure and humidity) and validating 
the results on the real system. 

5 CONCLUSIONS 

This paper presents neural networks ensemble for 
quality monitoring comparing to single neural 
classifier. The approach is applied and tested on an 
industrial application. The results show that a neural 
networks ensemble allows improving greatly the 
classification performance. We show that neural 
networks ensemble, as single classifier, allows 
performing Taguchi experiments in order to find the 
best tuning of parameters in order to avoid defects 
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occurrence. Due to diversity of classifier, the results 
of Taguchi experiments obtained by using neural 
networks ensemble are more complete and useful.  

Two ways of improvement must be performed in 
the future works. The first one is to use pruning 
ensemble algorithm in order to optimize the size of 
the ensemble in function of the results. The second 
one is to improve the diversity of classifiers by using 
other classifiers tools as support vector machines, 
fuzzy logic or genetic algorithms. 
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