Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

First order theory of cyclically ordered groups

Abstract : By a result known as Rieger's theorem (1956), there is a one-to-one correspondence, assigning to each cyclically ordered group $H$ a pair $(G,z)$ where $G$ is a totally ordered group and $z$ is an element in the center of $G$, generating a cofinal subgroup $\langle z\rangle$ of $G$, and such that the quotient group $G/\langle z\rangle$ is isomorphic to $H$. We first establish that, in this correspondence, the first order theory of the cyclically ordered group $H$ is uniquely determined by the first order theory of the pair $(G,z)$. Then we prove that the class of cyclically ordered groups is an elementary class and give an axiom system for it. Finally we show that, in opposition to the fact that all theories of totally Abelian ordered groups have the same universal part, there are uncountably many universal theories of Abelian cyclically ordered groups. We give for each of these universal theories an invariant, which is a pair of subgroups of the group of unimodular complex numbers.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00879429
Contributor : Francois Lucas <>
Submitted on : Sunday, November 3, 2013 - 5:38:21 PM
Last modification on : Monday, March 9, 2020 - 6:15:58 PM
Document(s) archivé(s) le : Tuesday, February 4, 2014 - 4:28:05 AM

Files

Gilu13.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00879429, version 1
  • ARXIV : 1311.0499

Collections

Citation

Michèle Giraudet, Gérard Leloup, Francois Lucas. First order theory of cyclically ordered groups. 2013. ⟨hal-00879429⟩

Share

Metrics

Record views

218

Files downloads

263