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ABSTRACT

The linear elastic fields occurring in a cementitious material are numerically computed and
analyzed in order to determine the spatial arrangement between the microstructure and high-
stress regions in the matrix. The microstructure is obtained by segmentation of a mortar sample
microtomography whereas fields are evaluated on the 3D image grid using the FFT algorithm
for both hydrostatic and shear strain loading. Different contrasts, i.e. ratios of the Young moduli
between aggregates and matrix are considered: 10, 3, 100, 1000 and 10*. Various components
of the stress tensor are successively analyzed, corresponding to the component “parallel” to the
applied loading and invariant components. Regions of stress concentration are correlated to the
skeleton by influence zone of the aggregates phase. Moreover, when hydrostatic strain loading is
applied, the highest values of the von Mises component of the stress tensor are both on the
aggregates skeleton and at low distance from aggregates.

Similar analysis of the local fields are carried out on a simulated microstructure made of
boolean random polyhedra and compared with results on the real mortar microstructure.

1. INTRODUCTION

The purpose of this work is to study the effect of the microstructure on the mechanical
properties of mortar composites, and in particular, on the local elastic response. The
microstructure of mortar and other cementitious media is complex ; among others, it results
from a usually dense arrangement of gravels in space, and of a certain granulometry, i.e. a multi-
scale distribution of sizes and shapes for the grains. Additionally, such materials often contain
both micro and macro pores. In situation of low contrast of properties between the grains and
matrix, and at low porosity, the effective (i.e. macroscopic) linear elastic response depends on
the grains and pores volume fraction ; to investigate more physically relevant behavior,
typically viscoelasticity, a detailed description of the microstructure is required.



Numerous attempts to study numerically concrete materials have been made. (Nagai 1998) used
a 3D concrete microstructure reconstructed from 2D successive sections to investigate both
linear elastic behavior and cracks along the interface between aggregates and matrix.
Microtomography has been used by (Hain 2007) to study linear elastic and viscoplastic behavior
of hardened cement paste by the finite element method (FEM). Various random models of
cementitious materials have been developed as well. For mortar and cement material, the model
of (Bentz 1997) which takes into account hydration process, has been used by (Hain 2007,
Haecker 2005; Bernard 2008) to investigate linear elasticity of cement paste and of mortar.
(Smilauer 2010) also used Bentz model combined with Fast-Fourier Transform method to study
viscoelastic behavior of cement paste. They considered random microstructures of various sizes,
the largest containing 200x200x200 voxels, and low Young modulus contrast between matrix
and aggregates. (Bary 2009) modeled cement paste as inclusions and pores embedded in the C-
S-H matrix.

The purpose of this work is two-fold : to investigate not only the effective properties of
mortar composites, but also the local elastic response in a mortar sample, and link it with
geometrical parameters computed from the microstructure. To this aim, a 3D gray-level
microtomography image is segmented into three phases : voids, gravels and cement (matrix).
The elastic fields are readily computed using the numerical "FFT method", which is directly
applied to the segmented microstructure. The cement/matrix contrast of properties is used to
monitor different behavior for the composites: small in cases of strongly damaged media, close
to 1 for real mortar samples, and large to anticipate the needs for viscoelastic computations
(Sanahuja 2011). To study the spatial correlation between the microstructure and regions of
stress concentration, two methods are used: the first method evaluates the mean of a given
component of the stress field in the matrix as a function to the distance to a set (for example
aggregates or voids phase); the second method evaluates preferential association between two
sets (one region of the matrix corresponding to a range of values of the considered component of
the stress tensor and one set derived from the microstructure).

In the second part of this work, a basic microstructure model is proposed to account for the
microstructure granulometry. It is emphasized that the model is one-scale, but could easily be
generalized to multi-scale materials. Such model allows for the systematic study of
microstructure/properties relation. Some of these results are presented here.

2. EFFECTIVE AND LOCAL ELASTIC RESPONSE
In the following, the elastic response of two types of microstructures are considered: a real
mortar microstructure in section 4 and a Poisson polyhedra Boolean random model in section 5.
The local linear elastic response in the matrix and aggregates is defined by means of the local
linear elastic tensor L, which relates the second order strain and stress tensor fields ¢ and ¢ by:

;= Lg‘j,klng (1)

where the stress (resp. strain) field satisfies the equilibrium (resp. admissibility) condition, i.e.:



0.0,=0, &, =1/200,u, +0u,). (2)

In the above, the local displacement field is noted u;, and small deformation is assumed. It is
assumed that each phase of the microstructure is isotropic, so that the local elastic tensor L is
determined by its Poisson ratio and Young’s modulus. Note that, in the voids, L =0, i.e. the
stress is zero and the strain is finite.

As measured by (Granger 1996), the Poisson ratio is taken as a phase-independent constant
equal to 0.2 (matrix and aggregates phases). As a result, the problem only depends on the
Young’s moduli aggregate-matrix contrast, defined as Y = E‘“/E" . Values of contrast y equal
to 10_8, 3, 100, 1000 and 10* are successively considered. The value Y =3 is close to that found
in real mortar samples.

The material is subjected to hydrostatic as well as shear strain loading, defined respectively
as:

<£..> = &0,

ij°

g if ij=xyorij=yx,
{ ,.,.>:{ ° 3)

0 otherwise,

where g is a scalar.

Full-field computations are undertaken using the “augmented Lagrangian” algorithm (Michel
2001), one of the Fast Fourier Transform that is especially efficient for handling infinitely-
contrasted media. The algorithm is best understood in its original form, derived by (Moulinec
1994). Referring to the Lippmann—Schwinger equations (Egs. (4) and (5)) :

£,(x)=(g,) ~ [d X' G (x = x)7, (x), )

7,(x) =0,;(x)— Ly}, 1 £,(%), (5)

where L™ is a given “reference” elastic tensor that is homogeneous and G is its associated
Green's function. Eq. (4) is computed in the Fourier domain while Eq. (5) is computed in the
real space, with Fast Fourier transforms used to iterate between the two. The authors refer to
(Michel 2001) for details of the augmented Lagrangian scheme, not given here. Among the main
advantages of the method, the FFT algorithms do not require meshing of the microstructure
images, hence it handles arbitrarily complex images. Second, numerical experiments show that
large-size systems are efficiently handled by this algorithm, in terms of speed and memory,
including for highly-contrasted composites.

3. MORPHOLOGICAL TOOLS FOR MEASURING SPATIAL SET CORRELATIONS

To determine quantitatively spatial correlation between one of the material phases (i.e.
aggregates or voids) and regions of stress concentration, two methods are considered. Both
involve the use of the dilation operation (Serra 1982) of a set A by a structuring element (of
increasing size r) B(r) defined as 4Ll B(r) Z{D B (r),x0] A} , with By(r) the translation of B(r)



by x. The structuring element B(r) used for dilations is a rhombicuboctahedron of radius 7, to
numerically approximate a ball (see Fig. 1).

Fig. 1. 3D view of a rhombicuboctahedron
The first method consists in evaluating the mean m;(r) of the stress field in the matrix as a
function of the distance 7 to a given set A;. Equivalently, m;(7) is the average of the field on the
region

X, =(4,0B0))n (4, 0B0-D) n 4, (6)

where ¢ denotes the complementary set, and A, is the matrix phase. A 2D slice of an example of
the sets used in this method is given in Fig. 2.

Fig. 2. 2D section of sets used to evaluate the mean m,(r) of a field in the matrix at a distance
r =5 voxels of aggregates. Aggregates are given in gray and the set X; is given in white.

The second morphological tool, based on the “increasing neighborhoods method”, is used to
measure the spatial “arrangement” between two sets (Jeulin 1986). This method evaluates, for
increasing values of r, the function p; which is defined as



CD_/(r) 1-p,
04, 0B} -p, p, (7)
®,(r) = P{x0(4, 0 BG)) n 4},

Pi ()= P{x

where p; (resp. py) is the volume fraction of the phase A; (resp. Ax). A 2D slice of an example of
the sets used in this method is given in Fig. 3. The function p; depends on the two functions F
and Fj, the distribution of distances of a random point X in A" to the boundary of Ay, and the
distribution of distances of a random point x in A; to the boundary of Ay respectively:

P{XD(Ak 0 B(’"))}_pk

F(l’) = P{d(x,Ak) <r,Xx DAZ} =

I_Pk
F(r)=Pld(x, 4)<r,x04} = ®,0 )
_E®) |
pj(r) - F(l") s

The interpretation of the function p;(r) is as follow: at the scale r, there is a preferential
association (resp. a repulsion effect) between sets Ay and A; when p;(r)>1 (resp. pj(r)<lI).
Hereafter, the increasing neighborhoods method is applied to one of the material phases and to a
set obtained by the thresholding of one of the stress field component in the matrix (resp. A; and
Ay in the equations above).

Fig. 3. 2D section of the sets used to evaluate the function p;(r) at r= 5 voxels. Aggregate phase
(set Aj) is given in dark gray, 4, U B(r) (Axcorresponds to a range of values of the considered
stress field component) is given in light gray and their intersection is given in white.



4. LOCAL ELASTIC RESPONSE OF A MORTAR MICROSTRUCTURE

In this section, a real mortar material microstructure is considered. It was obtained by
segmentation of a 3D microtomography image of mortar (Escoda 2011) into three phases:
aggregates, voids and matrix (cement paste). A 2D cut of the microtomography image as well as
a 3D view of the mortar microstructure are given in Fig. 4. Two-dimensional cuts of the field
maps, obtained using the FFT algorithm, are given, for both hydrostatic strain loading and shear
strain loading in (Fig. 5 and Fig. 6 resp.).

(b)

Fig. 4. 2D section of a 3D mortar image obtained by microtomography (a) and 3D view of the
corresponding mortar microstructure (b). The mortar microstructure results from the
segmentation of the gray-level image (a) into three phases: matrix, aggregates and voids. In the
microstructure (b), aggregates are represented in blue, voids in red, and the matrix is transparent.

4.1. Component of the stress field “parallel” to the applied loading

Evaluation of the function m;(r) for various sets A; In the following, the function m;(r) is
computed for the component of the stress field parallel to the applied loading, i.e. o, or o, when
hydrostatic or shear strain loading is applied, respectively. Sets A; made of aggregates, voids or
the skeleton by influence zone (SKIZ), as defined by (Lantuejoul 1980), of the aggregates, are
considered first (see Fig. 7 for a representation of the SKIZ). In order to obtain a more accurate
determination of the localization of high stress field regions, a subset of the SKIZ aggregates is
also considered.

Graphs of the functions m,(r) and my(r) (mean at the distance 7 to the aggregates phase and to
the SKIZ respectively, in the matrix) are shown in Fig. 8 for various contrasts and with either
hydrostatic or shear strain loading. The SKIZ is determined in 3D by taking the watershed of the
distance function to the aggregates (Fig. 7). Contrary to the aggregate set, regions far from the
aggregates correspond to small values of 7.
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Fig. 5. 2D sections of the normalized stress component am/[E('”) <g,>] at varying contrasts
x=E™/E™_ To emphasize the field patterns, the maps are thresholded according to the color-
scale as shown on the right. Hydrostatic strain loading is applied with <g,>= gy
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Fig. 6. 2D sections of the normalized stress component axy/[E(m) <&y, >/ at varying contrasts
XZE(“)/E('”) . The field maps are thresholded according to the color-scale as shown right. Shear
strain loading is applied with <g,,>= ¢y



Fig. 7. 2D section of the skeleton by influence zone (SKIZ) of the aggregates phase. Aggregates
are given in gray and the SKIZ is given in white.
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Fig. 8. Mean m, (r) of the parallel stress component o,, or oy, as a function of the distance r at
various aggregates/matrix contrasts y. The distance r is computed from the aggregates (a, b) or
from the aggregates SKIZ (c, d). Hydrostatic or shear strain loading is applied (a, c and b, d,
resp.). A straight horizontal line indicates the mean stress component in the matrix, associated to
each contrast value.

At large contrasts, it appears that the parallel stress field is statistically highest at large
distances r of the aggregates. Indeed, when y=10" or y=10°, independently of the loading



direction, m,(r) increases with » (Figs. 8(a) and 8(b)), whereas the inverse trend is observed for
ms(r) (Figs. 8(c) and 8(d)), i.e. when the distance is measured from the aggregates SKIZ.
Equivalently, the region of the matrix near the aggregates SKIZ is subjected to strain and stress
fields that are higher than the average applied field. These two results indicate that high-stress
regions are to be found far away from the aggregates. Such effect is in agreement with visual
observation of the maps (Fig. 9), where the stress field together with the aggregates SKIZ
superimposed in blue, are shown.

Fig. 9. 2D cut at z=cst of the parallel stress component o, and oy, (maps a and b, resp.) with
applied hydrostatic or shear strain loading, resp., with aggregates/matrix contrast y=10"*. The
stress field values correspond to the color scale at right (values outside of the range given at the
right of each map are thresholded). The aggregates SKIZ is superimposed on the maps and
shown in blue. The 3D image is of size 2.5 X 3 X 2.5 c¢m’ and of resolution 25 pm/voxel.

In order to study more accurately the location of zones of the matrix with high values of the
parallel component of the stress field, a subset of the SKIZ is used as follow. Indeed it appears
in Fig. 9 that regions of stress concentration are located around some specific parts of the SKIZ.
As such, it is useful to investigate whether the location of high-stress zones is linked with the
distance between adjacent aggregates. More precisely, it is unclear whether these regions
correspond to regions between aggregates close to each other, or equivalently to parts of the
SKIZ located at low distance from the aggregates. To this aim, the extinction function is used:
this function is defined on the SKIZ and is equal to the distance function to the aggregates
phase. The extinction function is thresholded between 0 and 7 voxels (the latter value being
visually determined): the result of this thresholding is the subset A. of the aggregates SKIZ
containing points at a distance lower than 7 voxels. The function m,(r) is then evaluated for
A=A.. The resulting graph of m.(r) is given in Fig. 10 for both hydrostatic and shear strain
loading. Accordingly, there is no preferential association between regions of stress concentration
and regions between aggregates close to one another. Indeed, with the hypothesis of such
association, m,(r) would have been significantly higher than m(7) at low values of , whereas in
the obtained results, the difference between m,(1) and m,(1) is about 1% for each contrast and
loading type.
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Fig. 10. Mean m.(r) of the parallel stress component o, or o, as a function of the distance 7 to
thresholded extinction function (between 0 and 7), at various aggregates/matrix contrasts y.
Hydrostatic or shear strain loading is applied (a and b resp.). At each contrast, a straight
horizontal line indicates the mean stress component in the matrix.

In order to evaluate the influence of voids phase on stress concentration zones spatial
repartition, graphs of the mean of the parallel stress field component in the matrix at a distance r
of the voids m,(r) are given in Fig. 11. There is no preferential association between voids and
regions of high values of stress component parallel to the applied loading. Indeed, for »>80
voxels, volumes on which the mean m, is evaluated are too small too obtain relevant values of
m,(r) and only the first part of the graph (»<80) is relevant.
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Fig. 11. Mean m,(r) of the parallel stress component o, or oy, as a function of the distance r to

voids, at various aggregates/matrix contrasts y. Hydrostatic or shear strain loading is applied (a

and b resp.). At each contrast, a straight horizontal line indicates the mean stress component in
the matrix.

Increasing neighborhoods method In this section, the increasing neighborhoods method is used
to determine the spatial correlation between some regions of the matrix containing specific
values of the parallel stress field component and the microstructure. To this aim, the field is
thresholded, to study successively regions containing high values and values closed to 0. The




function p;(r) is evaluated by taking the aggregates phase or the voids as the set A;, and noted
pa(r) and p,(r), resp.

First, for each loading mode, Ax is the region of the matrix where the parallel stress
component is higher than a chosen threshold. This threshold is so that the volume of Ay equals
5% of the matrix volume. Since this second method is based on the dilation of the set Ak (see
Eq. 6)), low values of » correspond to regions subjected to high stress. A 3D map of the
thresholded stress field is shown in purple and green in Fig. 12.

(a) | (b)

Fig. 12. 3D view of the microstructure (aggregates in blue, voids in red and transparent matrix),
and of the thresholded stress field component o, (resp. oy,) when hydrostatic (resp. shear) strain
loading is applied, in purple (a) and green (b) respectively. The matrix/aggregates contrast
x=10"is fixed.

The resulting functions p,(r) and p,(r) are plotted as functions of the distance r at various
contrasts y, with hydrostatic and shear strain loading conditions in Fig. 13. Consistently with the
results obtained using the mean stress functions m,(7), regions of high stress are not located
close to grains. The grains concentration is indeed significantly lower than 1 when r is small, i.e.
in regions subjected to high stress, independently of the loading direction (Figs. 13(a) and
13(b)). Additionally, at high contrasts, high stress regions are not located around voids. Indeed,
as shown in Figs. 13(c) and 13(d), the function p,(r) is always smaller than 1, except at low-
contrast and when the grains behave as voids (y=3 and y=10"", resp.). At low aggregates/matrix
contrast, indeed, the effect of aggregates is negligible and the elastic response is analogous to
that of a matrix with isolated voids, around which stress is concentrated.

The histogram of the stress component parallel to the applied loading in the matrix (see Fig.
14) contains a shouldering when the value of the field goes through 0, similar to a jump at 0. To
investigate the regions responsible for this behavior, the increasing neighborhoods method is
used, for a contrast y=10*, with the regions A4, =1X, Jm(x)| <1.5; and 4, :l{x,‘axy(x)‘ <2( in the
case of hydrostatic and shear strain loading respectively, whereas the set A; is successively equal
to the aggregates phase and voids phase (see Fig. 15). These two sets are used to determine the
spatial arrangement between the “shouldering” regions and these two phases. These graphs




indicate that the regions corresponding to the shouldering in the histograms are located at a low
distance from aggregates.
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Fig. 13. Function p, () used to measure the correlation between one of the material phase (a, b:

aggregates, c, d: voids) and regions of high-stress. Hydrostatic or shear strain loading is applied

(a, c and b, d, resp.). High-stress regions are determined by a thresholding of the parallel stress
component g, Or 0y,

(b)

Fig. 14. Field histograms Po,(t) and Poy, (1), 1.e. probability density values, of the mean stress
field o,, and of the shear stress component oy, (a and b resp.), at varying contrasts
¥=E@/E™=10"%, 3, 100, 1000, 10*. Inserted graphs: behavior of the distribution at high stress
values (¢ large) in log-log scale.
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contrast y=10" is considered in this analysis.

4.2. Local analysis of the invariant components
In this section, three other components of the stress field are considered: the von Mises
component o, defined as

—3/200 -1/207, 9)

where repeated indices are summed; the highest principal stresses (i.e. the highest eigenvalues of
the stress tensor), and its trace

o,=1/30.. (10)

For each of these components, and for both hydrostatic and shear strain loadings, graphs of
the mean m,(r) and m(r) of the field in the matrix phase at distance » from aggregates and from
their SKIZ respectively are given.

In Fig. 16, functions m, () are computed for the von Mises component. As for the study of
the parallel stress component, a concentration of the von Mises component occurs around the
aggregates SKIZ, for both hydrostatic and shear strain loadings. In the case of hydrostatic strain
loading, the graph also indicates a concentration of high values of the von Mises component at
small distance of the aggregates phase (Fig. 16(a)).

Finally, the functions m, «(7) are evaluated for the trace of the stress tensor g, (see Fig. 17).
In the case of an hydrostatic strain loading, the results were already given in the section 4.1
(Figs. 8(a) and 8(c)). For the shear strain loading case, the graph 17(a) indicates there is local
traction at medium distance of the aggregates (distance between 5 and 20 voxels).

The functions m, () evaluated for the highest principal value (see Fig. 18) gives similar
results to the functions m, «(7) evaluated for the parallel stress component and leads to the same



conclusion of a stress concentration on the aggregates SKIZ: high-stress regions of the principal
stress values are located preferentially close to the SKIZ.

m (r) m (1)
sk T T T T ] sF T T T . .
3
5‘\X=\{O4 x=10 i A /x=104 y=10 i
4 / \ ] B’ \ / \ ]
\ A
3 NZIOZ N ’W\/_—
Tl “ 3 ———
”&,{0 5 L e —

I \_)_\\f& ”/ﬂ

hydr;.;fatic ) )
10 20 30

40 0 10 20 30 0
r (voxels) r (voxels)
(a) (b)
m(r) m(r)
5 T T 4 T 3 4 T 4 T T
—x=10  x=10 1=103,
= 2 /
4 B . ]
3F — 3 3
1=10" 2t x:k\\x—“’ A~
_8 = S e NESEE
2+ =10 \ - .
s i ¥ =
. -8
hydrostutlic X_3| =y shear . y=10 ‘ \‘\\
10 20 30 0 10 20 30
r (voxels) r (voxels)
() (d)

Fig. 16. Mean m, ,(r) of the von Mises component o, as a function of the distance r at various
aggregates/matrix contrasts y. The distance r is calculated from the aggregates (a, b) or from the
aggregates SKIZ (c, d). Hydrostatic or shear strain loading is applied (a, ¢ and b, d, resp.). At each
contrast, a straight horizontal line indicates the mean stress component in the matrix.
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aggregates SKIZ (b). Shear strain loading is applied. At each contrast, a straight horizontal line
indicates the mean stress component in the matrix.
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Fig. 18. Mean m, +(r) of highest principal value of the stress tensor as a function of the distance r
at various aggregates/matrix contrasts y. The distance r is calculated from the aggregates (a, b)
or from the aggregates SKIZ (c, d). Hydrostatic or shear strain loading is applied (a, c and b, d,

resp.). At each contrast, a straight horizontal line indicates the mean stress component in the
matrix.

5. RANDOM MICROSTRUCTURE MODELS FOR MORTAR COMPOSITES

5.1. Boolean polyhedra random model

In this section, mortar models are proposed where gravels are approximated by polyhedra.
Realizations of 3D random Poisson polyhedra Boolean models are considered (Quenec’h 1992).
Each realization consists of a set of interpenetrating Poisson polyhedra, located on Poisson
points. Hence, the number of points in the image follows the Poisson distribution:

Pln=4 =e-N%k, (1)

where N is the expectation of the distribution. In our model, Poisson points are distributed
uniformly in the image.

A Poisson polyhedron is generated from a Poisson tesselation of the image (implantation of
Poisson plane of density 1). Poisson polyhedra are defined as the complementary set of this
tesselation. For each polyhedra implantation on the Boolean model, a Poisson tesselation is
generated and one Poisson polyhedron is randomly selected (i.e. a selection by number is
undertaken, not by volume).



Accordingly to the classical relation for Boolean models, the polyhedra volume fraction p
and the Poisson points density € are linked by:

6
P :l—exp(—ﬁﬁ). (12)

A Boolean random model of size 5007 is generated (see Fig. 19). In this preliminary study,
the parameters p=10.1% and 41=0.045 are chosen in order to obtain an aggregates phase which
does not percolate and to get a representative volume.

Fig. 19. 2D slice of a 3D Boolean Poisson polyhedra realization

5.2. Local fields analysis

Local elastic fields are computed on this microstructure using the FFT method for both
hydrostatic and shear strain loading and for each contrast =10, 3, 100, 1000 and 10* (see
Figs. 20 and 21 for the map fields of the “parallel” stress component).

The mean of the “parallel” stress component is computed as a function of the distance to the
aggregates and to their SKIZ (see Figs. 20(f) and 21(f) for a representation of this SKIZ
superimposed to the map fields) for the two loadings modes, and for each contrast (see Fig. 22).
As for the mortar microstructure, this computation shows that highest values of the “parallel”
stress component are concentrated on the aggregate SKIZ.

CONCLUSION

Numerical elastic fields on a mortar sample for both hydrostatic and shear strain loadings
have been analyzed in order to determine the preferential association between highest values of
various components of the field and the material microstructure. Two methods were used: the
first one evaluates the mean of the stress field as a function of the distance to a given set,
whereas the second methods evaluates preferential associations between a set and a given range
of the stress field. Regarding the “parallel” (with respect to the macroscopic strain loading)
stress component, a first approximation of candidates zones of high-stress regions have been
found, namely on the aggregates SKIZ, i.e. midway between aggregates. This result holds



Fig. 20. 2D sections of the normalized stress component o,,//E™ <e,,>] at varying contrasts
¥=E@/E™_The field maps are thresholded according to the color-scale as shown right.
Hydrostatic strain loading is applied with <g,,>= ¢y. In (f), the polyhedra SKIZ is superimposed
in blue.



Fig. 21. 2D sections of the normalized stress component axy/[E(m) <&y, >/ at varying contrasts
XZE(”)/E(’”) . The field maps are thresholded according to the color-scale as shown right. Shear
strain loading is applied with <e,,>= ¢y. In (f), the polyhedra SKIZ is superimposed in blue.
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Fig. 22. Mean m,(r) of the parallel stress component ¢, or oy, as a function of the distance r at
various aggregates/matrix contrasts y. Fields are computed on a Boolean random Poison
polyhedra realization. The distance r is computed from the aggregates (a, b) or from the

aggregates SKIZ (c, d). Hydrostatic or shear strain loading is applied (a, ¢ and b, d, resp.). A
straight horizontal line indicates the mean stress component in the matrix, associated to each
contrast value.

likewise for the highest principal stress and von Mises criterion. Moreover, the stress
concentration on the SKIZ varies little with the distance between aggregates. In the hydrostatic
mode, there is an additional concentration of the von Mises field at small distance of aggregates,
whereas for the shear loading mode, local isotropic traction occurs at middle distance from
aggregates. As for the transverse stress component (i.e. shear stress in the hydrostatic mode and
vice-versa), regions of highest stress have been found both near the matrix/grains interface and
along the SKIZ, however results are more difficult to interpret in this case. Higher stress area
could be the location of damage initiation under load.

Finally, a preliminary microstructure model has been developed for mortar composites. It
consists of a Boolean model of Poisson polyhedra. It shows a similar distribution of the fields in
the matrix as the actual mortar. Such model may be easily generalized to multiscale Boolean
models, where the size parameters are optimized with respect to the aggregates granulometry,
and where the microstructure of simulations will be closer to the real microstructures, after
identification of the model.
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