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ABSTRACT

This paper describes the modal interaction betveeeanel and a heavy fluid cavity when the
panel is excited by a broad band force in a givesguency band. The Dual Modal
Formulation (DMF) allows describing the fluid-sttue coupling using the modes of each
uncoupled subsystem. After having studied the cagyaree of the modal series on a test case,
we estimate the modal energies and the total erdrggch subsystem. An analysis of modal
energy distribution is performed. It allows us tody the validity of SEA assumptions for this
case. Added mass and added stiffness effects ofiuiteare observed. These effects are
related to the non resonant acoustic modes belohabave the frequency band of excitation.
Moreover, the role of the spatial coupling of teeanant cavity modes with the non resonant
structure modes is also highlighted. As a resh#,gnergy transmitted between the structure
and the heavy fluid cavity generally cannot be d@dedurom the SEA relation established for
a light fluid cavity.

Keywords:fluid-structure interaction, modal decompositibeavy fluid, energy analysis, radiated
noise



1 INTRODUCTION

The fluid-structure interaction between a flexibteucture and an air cavity has been studied
frequently by many authors [1;5in particular in the framework of Statistical Eger
Analysis (SEA) models [5-9].

The Dual Modal Formulation (DMF) [10] of the strupt-cavity system consists in
considering the in-vacuo modes of the structurethedigid wall modes of the cavity. The
modal equation of motion shows that each mode ofsobsystem is coupled with the modes
of the other subsystem. There is no direct couieigveen the modes of the same subsystem,
as shown in Fig. 1.
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Fig. 1. lllustration of the modal coupling for ain eavity-structure excited by a broad band
force.

As air is a light fluid (i.e. small bulk modulughere is considerable impedance discontinuity
between the structure and the cavity. The globales®f the system are similar in shape and
frequencies to the subsystem modes. The couplitvgelea the structure and the air cavity is
“weak”, which is an assumption of the classical SBadel [11, 12]. Indeed, under this
assumption, the SEA assumes that the interactibmelea the structure and the cavity for a
broad band excitation can be sufficiently describgdhe interactions between the resonant
modes of each subsystem, as illustrated in Fighgn, the energy sharing between the two
subsystems in a given frequency band can be estimfabm the energy sharing by its
resonant modes. Moreover, in the classical SEA tidation, the power flow between two
resonant modes is estimated from a relation estadadi for two coupled oscillators excited by
uncorrelated white noise.



Considering these two assumptions (i.e. resonanendodhination, power flow estimate by
pairs of modes) and assuming modal energy equtipartthe SEA model indicates that the
power flows from the structure to the caviB_, are proportional to the difference of the

mean of the modal energy of the structi@&@eand the cavityg, :
Es—>c = a)ch,73— c(_es__et) ! (1)
where «) is the central angular frequency of the frequebend consideredN, is the

number of resonant modes of the structure gnd is the Coupling Loss Factor (CLF)
between the structure and the cavity.

The Coupling Loss Factor expresses the couplingngth between the two subsystems.
Different methods exist for estimating this paraendor a structure-cavity system. It can be
approximated from the radiation efficiency of afleaplate. In this case, it is independent
from the damping loss factor of the structure. Amotmethod consists in summing the modal
coupling factors of pairs of resonant modes [7]hyFased this technique to estimate the
response of a containing structure to broad-banddom the enclosed air [7, 8]. The response
was usually found to be the same as that of as#ificoustic field in the external fluid above
a “lower limiting frequency” determined by the geetny and the mechanical properties of the
system. He also showed that few pairs of modegibaig significantly to the energy sharing
between the structure and the cavity due to thead@ad frequency coincidence phenomena.
Comparisons with experimental measurements werferpegd to validate his developments.
The cases considered by Fahy were academic: areigidngular box with a simply-supported
flexible wall and a closed cylindrical shell withet enclosed air. More recently, Torato and
Guyader [13] have extended this technique to complestems by extracting the modal
information with Finite Element models of each sydbem (i.e. structure, cavity). Culla and
Sestieri [14] studied the validity of the SEA rebat (1) for a structure-cavity system. The
results of a deterministic model were compared WithSEA results for a rigidly bounded air
cavity coupled with a simply supported plate ex¢ivy mechanical forces. The authors found
that the results agree well if the modal overlagdes of the plate and the cavity are greater
than one. This condition is one of the basic assiomp of the SEA method [6]. Indeed, the
modal energy equipartition assumption is not retguktor low modal overlap as highlighted
in [15]. Recently, Lei et al. [9] proposed an imped SEA model for predicting the structural
response and noise reduction of acoustical endesurhe model presented included the
resonant and the non resonant responses of p&mdsl agreement between the prediction
and measured results was observed even when fewsweaefe resonant.

All the works mentioned above concern a flexibleidure coupled with an air cavity. In this
paper, we are interested in studying the influenica heavy fluid in the cavity instead of a
light fluid like air. This case has applicationstire nuclear and the submarine industries. For
example, for the design of the Sonar dome of a swipe, it could be relevant to estimate the
noise level in the Sonar cavity when the dome isited by pressure fluctuations in the
turbulent boundary layer [16]. The dome may beeasgnted by a thin flexible structure, the
Sonar cavity by an enclosure filled with water dhd sea water by a “semi infinite” fluid
medium. In the present paper, the effect of thensstar on the dome will not be investigated.
Different studies have already highlighted the addeass effect of a “semi-infinite” fluid
environment on the vibrating structure for frequeadelow the critical frequency [17]. In
the present paper, we will focus our attention ba tnodal interaction between a thin
structure and a closed cavity filled with a healyidf In the SEA formulation, the two
assumptions described above (i.e. resonant modéndtam and power flow estimated by
pairs of modes) are generally valid for a lighidluwWe will study their validity in the case of



heavy fluid in order to apply an SEA method or avelop an adapted SEA method for this
case in the future. Liu et al. [18] were interestednodelling liquid-structure interactions
within the framework of statistical energy analyst®wever, in their work, they assume that
the SEA relation (1) is valid for cavities filledtw water, though without providing evidence
In another context, David and Menelle [19, 20] higiited the added mass and added

stiffness effects of a heavy fluid—filled cavity #vibrating structure. They used(a,¢)

formulation of the problem including the staticlescement potential and the static pressure.
Comparisons of their results with experimental mearments showed very good agreement.
The test case considered in [20] cannot be coresidier the present study because the plate
and the cavity have very few modes up to 5 kHz.tRerpurposes of validation, however, we
will present a comparison of the DMF results whkhit results.

Our analysis will be based on a test case compokadectangular flat plate coupled with a
parallelepiped water-filled cavity. This case hasrbehosen for its simplicity. The modal

information of each subsystem can be calculatedyt@relly. This enables us to facilitate

studying the convergence of the modal decompositorthe present case. Finite element
models could be used to extract the modal inforonator more complex cases [13], with

increased computing effort. This is not howeverdhgective of this study.

The present paper is organised as follow:

- In section Il, we will recall the results of tBeial Modal Formulation which enables
us to represent the fluid-structure interactiorthed thin structure — cavity system from the
interaction of the uncoupled modes of each subsydqt&ructure and cavity). We will
establish the relations between the modal ampktutiee modal energies and the total energy
of each subsystem. Finally, we describe the caioulgprocess used for evaluating the energy
for broad band excitation;

- Section Ill presents the plate-cavity test casa @ study of the convergence of the
modal series when the cavity is filled with a hefluyd (water). A reference result is obtained
by performing Finite Element calculations with aedt resolution. The comparisons highlight
the influence of the non-resonant modes of thee@dat the cavity. The DMF results are also
compared with the results obtained by David and éllerj20] in appendix A for the purposes
of validation;

- Section IV deals with the analysis of the modaérgy distributions between the
plate and the cavity considering the non-resonasdes. The effects of these non-resonant
modes are discussed on the basis of the modaliegsialhe well-known fluid added mass
effect is expressed in terms of non-resonant dautions and an added stiffness effect and the
role of the first non-resonant plate modes are [ggted. An approximate model of the modal
interaction is finally deduced.

- In section V, we will compare, for different damgiand different frequencies, the
energy responses obtained with the classical SEA tWwose obtained with the DMF (basic or
approximate models). The different effects describbe section IV are then studied as a
function of the frequency and the damping of tregeol
The paper will be concluded by perspectives orptlsent developments.

2 DUAL MODAL FORMULATION (DMF)

DMF can be used for calculating the force respasfsavo coupled subsystems from the
knowledge of the uncoupled subsystem modes. Tha&ahformulation has long been known
for describing the dynamic behaviour of a flexilskeucture coupled with a close acoustic



domain. A Green formulation [10, 21] or a variaabrformulation of the fluid-structure
problem [22] may be used for obtaining the modalatign of motion. Otherwise, DMF has
been extended to the general case of the couplingv@felastic continuous mechanical
systems [23]. The modal interaction diagram obtaiwéh this formulation is similar to the
diagram assumed in the classical SEA formulatigr{§ée Fig. 1). This approach is therefore
well adapted for investigating the effect of a he#ivid cavity on the SEA method.

2.1 Calculation of the forced response

1 F AW(M,Y)
()

Fluid (@)

M) Rigid wall (S)

Elastic thin-shell structures|

Fig. 2. Vibrating structure coupled with a healyd cavity and excited by a mechanical
force.

Let us consider the internal vibro-acoustic probjaesented in Fig 2. The vibrating structure
is coupled with a rigid-walled acoustic cavity oflmme Q. Sis the fluid-structure coupling
interface andS is the rigid wall surfaceThe structure is assumed to be thin, elastic and
homogeneoush, p, 7, are, respectively, the thickness, the mass deasitl the damping

loss factor of the structure. A random point foegmlied at pointz, excites this structure.
The Auto-Spectrum Density (ASD) of the for&s, is assumed to be constant (i.e. white
spectrum) in the frequency band with a central feeqy «. and a widthA« . The internal
fluid is modelled with the Helmholtz equatioq,, g,, /7, are the celerity, the mass density
and the damping loss factor, respectively, of thiel f

2.1.1 Formulation

Let us consider DMF which is based on modal decaiipas with the modes of each
uncoupled subsystem [10, 23]. The thin structurdescribed by a displacement field (i.e.
normal displacement) and its uncoupled-free modesif-vacuo structure modes) whereas
the cavity is described by a stress field (i.e.ustic pressure) and its uncoupled-blocked
modes (i.e. rigid wall cavity modes). These uncedpmodes can be easily calculated
analytically for academic cases ([7, 8]) or numahc with Finite Element models for
complex cases ([13]).



The modal expansions of the normal displacemeéftand the acoustic pressugemay be
written:

W(M.Q)= Y x, (4 (M) @
(M) = 26 (1) my (). ®

i -~ . . . h
where: -W, and y,, are, respectively, the displacement shape andithgitude of the'

mode of the structure;
- 5q and &,, are, respectively, the pressure shape and thétadepof theq™ mode of

the cavity.

Hereafter, the space and time dependencies ofdtation will be deleted but they are still
considered. DMF consists in introducing these egjoas (2-3) in a weak formulation of the
vibro-acoustic problem considered and using thbognality properties of the uncoupled
modes. For more details on this formulation, tleglez can study Ref. [10, 21-23].

Finally, with the change of variable,

&=¢, @
the following modal equation system is obtained
Mp()(’p+wp,71)(p+wp2)(p) _Z;quzq:':p D] ['190 [ (5)
q:

Ky (G2t gy +@28) + Wt =0, O [0 [
p=1

where:
- M, F, are the generalised mass and the generaliseddbroedep:

M, =p[hWdS and E =EW(Z,), (6)

with F,, the amplitude of the external force;
- K, is the generalised stiffness of mage
l ~ 2 7
p2dV ; (7)
PoCo’ i !
-, and w), are the modal angular frequencies of mpdadg, respectively,
- W,, is the work of interaction between maalandq:

qu = _[Wp pfl d<. (8)

Ky =

It can be observed that the equation system (5heanterpreted as the coupling between a
set of oscillators associated with the thin streetwith another set of oscillators associated
with the cavity. The coupling elements called ggogsc elements are related to the
oscillator’'s velocities without dissipation of eggr(due to the opposite signs in Eg. 5). On
the other hand, there is no direct coupling betwberoscillators of the same subsystem. This
configuration of mode coupling is exactly what $samed by SEA ([6]).

In theory, the modal decompositions (2) and (3dree infinite number of terms. In practice,
SEA considers only the resonant modes containdtlenfrequency band of excitation and
assumes that these modes are sufficient for dasgribhe vibro-acoustic behaviour of the



system considered. This assumption will be studiesections 3 and 4 of this paper. In the
present developments, we consider that the steichary be described By modes and the
cavity byQ modes without describing how these modes are select

2.1.2 Resolution

The time-averaged energy of each subsystem widhienated in section 2.3 from frequency
transfer functions. To evaluate these transfertfans in Fourier domain, assuming that the

excitation forceF (t) = F, xe!* and the solutiorx(t) = X x&“, the system of linear equations
(5) can be expressed in a matrix form as:

Z11 - janZ X1 — Fl 9)
+jaW12T ZZZ YZ O
with the matrices:
XiZ Xp| » Vo= Z_q R = IEp , (10)
* e * loa © Jpa

Z,= diag[ M, (—af + jway n + agz)_PxP, (11)

Z,= diag[ K, (—af + joway g + of)]QXQ, (12)

VV12 = |.\Npq]pr' (13)

The solution of this system is given by:
-1
Xl = (le_ wzwlzzzz_lvvlg) F:’ and,
Y, = = jwZ,, W, X, (15)

(14)

Since matrixZ,, is diagonal, its inverse is easily calculated. Bat) requires inverting a

square matrixPx P (i.e. matrix of dimensions equal to the structon@de number). The time
necessary for this calculation does not dependhenntode numbe® considered for the
cavity. It is then possible to consider a large smadmber for the cavity provided that these
modes can be calculated.

2.2 Relations between modal amplitudes, modal ener gies, and
subsystem energies

The modal amplitude calculated with relations (a3 (15) can be used to estimate the
modal energy distribution and the total energy athe subsystem. We establish here the
different relations for the cavity. Similar onesidze obtained for the panel.

Let us consider the instantaneous strain energjyeotavity given by
S(+) — 2 16
Ez(t)-zpcsz(M,t) dv. (16)

0~0 Q
Introducing the modal expansion of the acousticssuwee (3) and taking the mode’s

orthogonality into account, we obtain




e ()= 2 (), 7)

where E; (t) :% Ko (t)2 represents the kinetic energy of iftoscillator (of mas,).

The strain energy of the cavity is therefore reldi® the modal kinetic energy. This result,
which may appear surprising, is due to the fact tha displacement (i.e. amplitude) of the
oscillator corresponds to the modal pressure.

Similarly, the kinetic energy of the cavity is redd to the modal strain energy:
Q
E()=2E(. (18)
g=1

with ES (1) :% M.Z, (1)

By adding Egs. (17) and (18), we deduce that tted &mergy of the cavity is equal to the sum
of its modal energies (defined as the sum of mddattic energy and the modal strain

energy).

Then, if the considered modes are able to repreékentibro-acoustic behaviour of the panel-
cavity system, the total energy of a given subsystan be obtained by summing its modal
energies. This relies on the orthogonality of th#system modes, with no additional
assumptions.

2.3. Calculation process for estimating the time-av ~ eraged energies

To reach agreement with the SEA method, it is resngsto evaluate the time-averaged
energies of each subsystem considering the whige riorce in the frequency bafd. .

In what follows, the time averaged ener‘@ﬁt) is noted< E >, and defined by

+T
<E>=lim % E(t) dt. (19)
— too et

Applying the frequency decomposition adapted ttistary random processes [24], the time-
averaged energies for the mqulef the structure can be estimated by

<EX >t:% [ M&’s,, (&) dw <ES >t=% [ Mw?2s,, () da, (20)
Aw Aw
and for modeg of the cavity by,
<Ef >t:%j KS, (@) dw <Ej >t:%j K@/'S, . (@) dw (21)
Aw Aw

S, , (w), Sz (w) are the Auto-Spectrum Densities (ASD) of the maataplitudes, x,

/Yp/Yp
and ¢, respectively. These quantities can be calculasgtguthe ASD of the external force,

St (w) and the transfer functiond ., (w) andH, (w) using
i (22)

Sy (@)= S¢| My, (@) S, (@)= S| He (]



Hey, (w) (resp. He,, (w)) corresponds to the ratio of the modal amplitygéresp.{,) over

the force amplitude for an harmonic excitationted aingular frequencw. These quantities
can be calculated using relations (14) and (15gofion 2.1.2.

The integrals of (20, 21) cannot be solved anallyicln what follows, they will be estimated
numerically by using the rectangular rule with eginency stepdw defined in accordance

with the smallest damping bandwidths of the twossystems dw= agmin[ n, /72] /6). Thus

we can estimate the time-averaged energy of eaderaond deduce the total energy of each
subsystem by summation to obtain the quantitied bgeSEA.

3 NUMERICAL VALIDATION

3.1 Presentation of the test case

As shown in Fig. 3, we consider a system compos$edrectangular simply-supported plate
coupled with a parallelepiped cavity. The geomedrid mechanical parameters are chosen to
be relevant with a naval application concerningSloaear dome-cavity system of a submarine.
The elastic homogeneous plate 2 m long, 1.8 m widie8amm thick is made of steel (mass
densityp=7800 kg/mi, Young modulu€=2.10""Pa,#;=0.01). The cavity is filled with water
(mass density,=1000 kg/m, celerity c;=1500 m/s, damping loss fact@s=0.01) and has a
depth of 1.4 m. The behaviour of the plate may bsculeged by the Kirchhoff equation
whereas the Helmholtz equation may be consideneth@fluid domain. The excitation and
receiving points are defined in the coordinate ays{O,x,y,z)shown in Fig. 3. The plate is
assumed excited by a point force on the plate &t i 0.5 m, 1.4 m). For the purpose of
validation, this excitation is assumed here to déerfonic at the angular frequenay.

3.2 FEM simulation

A reference result is obtained by using the Fiitement (FE) method. The FE meshing
shown in Fig. 3 was defined to authorise calcutetiap to 800 Hz. The frequency range [1
Hz — 800 Hz] is well below the critical frequencfytbe 8 mm thick plate immerged in water
(around 28 kHz). For these frequencies, the fldxweavelength of the plate is much smaller
than the acoustic wavelength of the cavity. Theedah for the element size (i.e. 6 elements
per wavelength) was based on the flexural wavelengbth for the plate meshing and the
cavity meshing, in order to deal with coincidentsimiag. This makes it possible to provide a
fine description of the radiated pressure fielgselto the plate (due to evanescent waves).



Fig. 3. Finite Element meshing of the plate-cavitgtem.
45510 nodes, 40320 3D-elements, 1440 2D-elements.

The FE discretisation of the motion equation of tludfstructure problem for a harmonic
excitation on the plate may be written as:

5 wlio L o lof -

where: -U andP represent the nodal displacements of the structondethe nodal pressure in
the cavity, respectively;

- F are the nodal forces applied on the structure;

- Mg and K¢ are the mass and stiffness matrices, respectivktiie structure;

- M and K. are the mass and stiffness matrices, respectiottiie cavity;

- A is the fluid-structure interaction matrix, and safipt T refers to the transposed
matrix.

The damping effect is introduced by considering mglex Young modulus for the structure
and a complex celerity in the fluikg and K. are therefore complex matrices. Two Finite

Element codes were used to generate the matrixnsy&8): MSC/NASTRAN was used for
calculatingKg,M ., K. andA, whereas SDtools [25] gave the “consistent masdgtirmaof

the structure M ;. The use of SDtools was necessary because theofdilg lumped mass”

matrix calculated by MSC/NASTRAN did not give sadistiory results. Indeed, in this case,
the mass matrix was approximated by distributirgeglement mass in the nodal translational
directions. No inertial terms were considered fog hodal rotational direction. The results
converged slowly as a function of mesh finenessofeerved in [26]). On the contrary, the
“consistent mass” matrix was defined consistenhlie shape functions and the variational
formulation of the problem. It preserved angulammeatum (see Chap. 32 of [27] for details
on consistent mass matrices). We observed thag tioéstional terms played a significant role
in the interaction of the structure with the he#luyd and cannot be neglected.

The different matrices were imported in MATLAB artetsystem (23) was solved for each
frequency with the inverse matrix method. Theseuatmns were performed in the band [1
Hz — 800 Hz] with a frequency resolution of 1 Hze\WWhderline that these FEM calculations
did not use modal expansions and are quite ap@atepior studying the convergence of the
modal series of the DMF calculation.



3.3 Comparison between DMF and FEM results

DMF calculations were performed by considering shibsystem modes contained in the
enlarged frequency band [0 Hz — 1200 Hz]. 156 ptateles and 22 cavity modes were
therefore considered. The modal information andntioelal interaction work of the present
case are given in appendix B.

To ensure consistency with the hysteretic dampingleh@f the FE simulation, it was
necessary to consider a modal hysteretic dampstgad of a modal viscous damping in the
DMF equation (9). Then, for these validation caltoles, we considered the following
impedance matrices (instead of (11, 12)):

2,, = diag| M, (~o7 +@?(1+ j/)z))]PxP Z,, = diag K, (o +@?(1+ j@))LXQ. (24)
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Fig. 4. Comparison between 3 calculations: FEMItegtull line); DMF results taking the
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spatially coincident with the plate modes (dashee)] (a), velocity response on the plate at
point (1.55 m, 0.2 m, 1.4 m); (b), pressure responghe cavity at point (0.5 m, 1.4 m, 0.3

m).



In Fig. 4 we compare the DMF (dotted line) and EEuits (full line) for two receiving points:
one on the plate and the other one inside the ycaldrge discrepancies can be seen,
indicating that the modes considered and the DM&ggns cannot describe the behaviour of
the present system correctly. Contrary to a liggntdf the resonant modes of each subsystem
are not accurate here for describing the behawbuhe coupled subsystem. This is due to
significant contributions of the non-resonant atiwusodes which coincide spatially with the
resonant structure modes. As we will see latertiapacoincident acoustic modes create an
added mass effect to the structure which is notrtakto account in the DMF calculation.
These spatial coincidences intervene in the DMFaggus through the intermodal work
W, (see Eq. (B.7)). In order to highlight the strortggmatial couplings, in Fig. 5 we show the

couples of modewhich present significant values prq‘. The intermodal work is defined

here as significant in comparison with the highesue, W = mu%x‘vqu‘. If ‘qu‘ is greater
p
aQ
than half ofW, the intermodal work is significant. For the saKeclarity, only the cavity
modes with a null modal order in the direction eewhicular to the plate (i.eq, =0) are
considered in this figure.

Intermodal work

1000 ; ‘ ‘ ; T
L]
1 A
00|~ i ~e .

5 Ll -~
T 800 . ¥ 5

1 o - .
E 1 ‘e ,o’ «%

i £ 3 i d * *
~, 700 ] € 'ﬁ oo —
8 i (3 L " ! =4
T 800 : w Pty |
> i ..‘0 “O' . .

g i - :: - sy ‘o 'o‘
E 500 — = ", ) "',: :. o . _
(] M d
g 400 ; oo AR -
£ s = %% "" Py p -

L 1 v - |
% = ae,? "‘ o ':"50 "
s = £ -
o 200+ ' o =V i

; .t - 5 -‘“ e

1901~ e : =‘. ----..-:—-.-'. * N
. - s T T
PR L AP Ll i - \ \ \ \ ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cavity modal frequency (Hz)
Fig. 5. Positions of the significant intermodalrk®W,, as a function of the frequencies of

plate and cavity mode(swq, a)p) Only cavity modes with a null modal order in théirection
are considered (i.g, =0). Dashed line, frequencies given by Eq. (26).

We observe that the plate modes with a frequengiéeni than 100 Hz exhibit significant
intermodal work with non resonant cavity modes fnedes with a frequency higher than 800
Hz). These plate modes coincide spatially with nesenant cavity modes. Equation (B.7) of

the intermodal world/,, for a given couple of plate modal ord%nsk, py), with a variation of
the cavity modal orders (qx,qy), shows that W, is maximum for
d, = P, 1, andg, = p, t  , simultaneously. On the other hand, the magnitutjMpq‘ is

independent of the modal order in the directionppadicular to the plateg,. It is not
possible to establish a relation between the freges of the spatially coincident modes.



However, if we consider the modal conditions= p, d,,= p,, we obtain a relation between

the modal frequencies of the plag and the cavityf, :

2
: _ z |ph [ m,
fq(qz)-%\/zmp EJ{T] : (25)

This relation gives us a first approximation of tiiequency of the cavity modes which
coincide spatially with a given plate mode. Thiglligstrated in Fig. 5 where a dashed curve
corresponding to (25) witly, =0 is plotted. The significant intermodal works candeen on
either side of this curve. Fo’?p =800 Hz, we obtain fq (0)=4775 Hz. This indicates that for

the validation case, the “last” resonant plate misdgpatially coincident with cavity modes
g, =0 of frequency aroundt700 Hz. Moreover, this plate mode is also spatially camleat

with cavity modesq, >0 of frequency greater tha#700 Hz. These cavity modes are highly

non-resonant, but due to their spatial coincidema#is the resonant plate modes, they play a
significant role in the response of the presentdase.
A second DMF calculation including non resonant esdf the cavity was performed. The

modes of the cavity were chosen such that the mndars(qx, ay qz)verify:
q,0[0,] with g= mt[ max px]} 1,

d, D[O,ay] with Gz int[prmr[ﬁ?{ py]} 1

q,0[0,a™].

(26)

max

Taking g, =39, 8400 cavity modes were then considered and tgkeebt frequency of

these modes was 22213 Hz. The results of this geBdF calculation are plotted by a
dashed line in Fig. 4.

Contrary to the first DMF calculation including grthe modes below 1200 Hz, we observed
good agreement between this second DMF calculaiahthe FE one for the receiving point
on the plate as well as for the receiving pointdeghe cavity. The two curves (i.e. dashed
and full) appear to be almost superimposed. Taislates the convergence of the DMF for
the present case. Moreover, these results poirthatiit is necessary to take into account the
acoustic modes which coincide spatially with theudure modes, even if these acoustic
modes are non resonant and are in a high frequamge. These modes are associated with
the quasi-incompressibility of the fluid in [20] dware called the uncompressible acoustic
modes. It is needed to take them into accountderaio simulate the added mass effect of the
heavy fluid. This point contrasts with the claskf8BA assumption which only considers the
resonant modes of the frequency band of excitatiothe next section, we will analyse the
effect of these non resonant modes on the modagjgmkstribution of each subsystem. For
the final validation of the DMF calculation for hgafluid cases, a comparison with results
published in the literature [20] is proposed inemgix A.



4 ANALYSIS OF THE MODAL INTERACTION FOR A BROAD
BAND EXCITATION

4.1 Modal energy distribution

Here we consider the test case defined in sectibnThe excitation is a mechanical point
force at (0.3 m, 0.5 m, 1.4 m) having a white n@igectrum in a given one third octave band

(S =1/2m N’ /(rad/§). For the sake of clarity, numerical results arespnted for a single

one third octave band. Global energy results asnation of the third octave band will be

presented in section 5.

The one-third octave band considered is centre@50® Hz. In this band, the plate has 86
resonant modes and the cavity has 175 resonantsnéti¥e, the modes are said to be
“resonant” if their frequencies are contained ia tne-third octave band. DMF calculations
are performed by considering non-resonant mod@&s section 3. The plate and cavity modes

contained in the enlarged frequency beiﬁd 1.5fmax] are taken into account where, is

the upper bound of the one-third octave band f(j.g.=2825 Hz). Moreover, the cavity

modes conforming to the spatial coincidence coodi(26) are also taken into account.
Overall, 500 plate modes and 30159 cavity modes caresidered. Modal energies are
calculated using Egs. (20) and (21).

Modal Energy Distributions (MEDSs) for the plate afeé cavity are plotted as a function of
the modal frequency in Fig. 6. The cut frequen@éshe third octave are symbolised by
vertical dashed lines.

It can be seen that the highest energy modes oNMEi2 of the plate do not necessarily fall

inside the frequency band of excitation. Therefi®gquency shift which could be attributed to

an added mass effect of the fluid, as will be Saesection 4.2. Moreover, it can be observed
that the first plate modes have a slightly higheergy level than modes closer to the
frequency band of excitation. It will be seen laterthat this is due to spatial coincidences of
the first plate modes with the resonant cavity nsode

For the MED of the cavity, the highest energy moalescontained in the frequency band of
excitation. However, we also observe that the gnefgertain high frequency modes may be

significant. If we consider equation (25) with=2500 Hz, we obtain f,(0) = 8442 Hz

which is approximately the frequency above whiahhigh frequency modes have significant
energy. This seems to indicate that these modespaially coincident with the resonant
plate modes.
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Fig. 6. Modal Energy Distribution: (a), for the f@a(b), for the cavity.
White noise excitation in the third octave banaetral frequency 2500 Hz (cut-off
frequencies symbolised by vertical dashed line).

At this stage, we can underline that the total gyeof the plate (resp. cavity) is not
necessarily twice the kinetic energy (resp. stesiargy) as assumed in SEA. For example, for
the plate, is can be seen that for a first clasBemfuency modes well below the excitation
frequencies, their strain energies are negligibimgared to their kinetic energies while for a
second class composed of frequency modes insidelose to the frequency band of
excitation, their strain and kinetic energies halreost the same magnitudes. This difference
can be easily explained by Eqg. (20) and the diffeeebetween the modal frequency and the
excitation frequencies. The result is that for fir& class, the total energy (of a given mode)
can be approximated by its kinetic energy whiletfar second class, the total energy can be
approximated by twice its kinetic energy. Thisdatpproximation is classically used in SEA.
As pointed out here, it is valid only if the resahanodes contribute mainly to the subsystem
responses. As observed in Fig. 6, the non resonades of the cavity can make a significant



contribution, in which case conformity with the sd&cal SEA approximation may not
achieved for a heavy fluid cavity. For the pressage, we obtain a kinetic energy of -44.2 dB
(ref. 1 J) while the strain energy is -39.7 dB. é&mor of almost 2 dB can be introduced if we
consider that the total energy is twice the steaiargy (-36.7 dB against -38.7 dB for the true
value). This emphasises the fact that particulegntion should be paid to the relations
between the different energies when the contrilbubionon resonant modes is significant.

4.2 Added mass and added stiffness

Certain observations were made in the previousiseciVe now investigate the DMF
equations in order to analyze the modal interacéiod find explanations for the previous
observations.

4.2.1 Theoretical developments

Since a significant effect of the non resonant tyamodes is observed, we organise these
modes into three groug3,,, Q , Q. depending on their angular frequencies:

qbQ, = il [01 @n {1 a)[

a0Q = [wnfl a) @il d]

a0Q> o) Jaufl de [
where w,,, and @, are, respectively, the lower and upper cut-offudagfrequencies of the
frequency band considered aadis a margin coefficient. In what follows, we get 0.05.
Q, is the set of resonant modes whife,, Q. are the lower and upper sets of non resonant

modes, respectively.
We introduce approximations in (14). To do this, bveak down the matriceg,, and W,

accordingly with the different sets of modes:

(27)

Zy, 0 0 28)
Zp=| 0 Zy 0 [ =[WET W, W
0 0 zZ)
With this decomposition, Eq. (14) can be writtertha form
-1 rT I -1 Al I+ 1 T\
X,=| Zy=of (W25 W LZ WG W 2w )| (29)

Then, we introduce approximations of the modal idgmee matricesZ,,” andZj,” (with
regard to the modal frequencies and the excitat@guencies)

Z3;” = diag| - '%wz}qmq; 2z = diag| quqzquqir ’

while Z}, is unchanged (i.€Z}, = diag[ K (‘W2 +jwwn + “&Z)qu )-

(30)

These approximations are based on the fact thatehaviour of a non-resonant modeQ@j

is mainly controlled by its mass while a non-resamaode ofQ;, is controlled by its
stiffness.



Using (30) and neglecting the off diagonal termsl\@".\/\{”;‘T and W™, 2”T , (29) can be
rewritten as

X,=[Z,- e,z W, | F, (31)
with Z,, = diag[—( M, + I\_/Ip)w2 + joM ey +( K, +Rp)]PxP, and, (32)
2 2
= 1w = (W) (33)
M = _— P K = ALY S
’ qDZQrTr Kq { wq J ’ q%r Kq

M, and K, represent an added mass and an added stiffnese ghplate modeThe added
mass is induced by the stiffness response of theresonant mod&y, , and conversely, the
added stiffness is due to the mass response obiireesonant modeq,, .

We underline that added mass and added stiffnésst®fhave already been highlighted in
Ref. [20] for a plate coupled with a water fillechvity. These effects are related to

incompressible acoustic modes for heavy fluidghis reference, z(mu,qa) formulation (where

@ is a fluid displacement potential) is considereul @ahe static displacement potential is

taken into account. This last term is evaluatedviny techniques: a modal expansion on the
acoustic modes and an analytical calculation abkildor a rectangular plate coupled to a
parallelepipedic cavity. The first technique givas approximate expression of the added
mass matrix as a function of the acoustic modeeshaphe diagonal terms are similar to the
added mass given by Eq. (33). A difference occuarshe modes retained in the summation.
This can be explained by the fact that the addessrfthe present paper represents only the
effect of the non-resonant modes of frequency alibeefrequency band of excitation (i.e.

modes of Q. ) whereas the added mass defined in [20] represheteffect of “all” the

acoustic modes (of the truncated set defined ir]).[20 is more difficult to achieve a
comparison of the added stiffness as the quansfined in the present paper is directly

related to the mode s€, which depends strongly on the frequency band oftaton. Due
to a difference of definition, this dependencytd aidded stiffness does not appear in [20].

From these added mass and added stiffness termedidied modal frequency can then be

defined by
/K +K
= p p (34)
“ M, +M,

The response of the resonant cavity modes candieédd with
Y, =- jCUZ;zilV\{zT Xy (35)

Equations (31) and (35) can be interpreted as é@kelts of the coupling of modified plate
modes (taking the added mass and stiffness intouatcwith the resonant mod€y of the
cavity. In what follows, the model related to thea® equations is called the “approximate
DMF” whereas the model related to equations (14) @5) is called the “basic DMF”. With
this approximate model, the energies of the noonast modes of the cavity are not obtained
directly because their amplitudes are not expliaithiculated. Their energies are, however,



related to the kinetic energy associated with theled masses and the strain energy associated
with the added stiffness. For example, the kinetiergy of the added masses is expressed by

ceo2E [ % s, (9 @

b1 Awdq, K
On the other hand, the part of the cavity’s kinetergy represented by the cavity modgs
is obtained by summing the strain energy of thesdas (in accordance with (18))

<Ef >= > <E >- '[Ka) 5( @) da (37)

qiQy, ﬁ Qr Aw

The ASD of the amplitude of modg quzq can be related to the ASD of the modal amplitude

of the platés o by considering the approximations (30) and negtectine off diagonal terms
of W5™. ”
0)2 P
S, = (W) S 00 Q. (38)
(an)q ) p=l
Introducing (38) in (37), we show that
<Ef >=<E* >. (39)
The part of the cavity’s kinetic energy represerifgdhe cavity modeS);. is therefore equal
to the kinetic energy of the added masses. Asig383sumed, the part of strain energy of the
cavity represented by the same mo@gs is assumed negligible. Then, the part of the total
energy of the cavity represented by the mo@ésis given by the kinetic energy of the added
masses. Similar reasoning can be used for evafutitepart of the total energy of the cavity
represented by the mod&g, from the strain energy associated with the adtiffdess.

4.2.2 Numerical application

A numerical application of the previous developrsaatproposed in this section.
We consider the same case as in section 4.1. ustrdte the added mass effect, in Fig. 7a the

normalised added masl\Ep/Mp (see Eq. (33)) is plotted as a function of theeplaodal

order, p. These values can be compared to the normalisdddathass calculated for an
infinite thin plate loaded by a heavy fluid on mide, M, (see [17]):

M., (@) = Ao ' (40)
phylk (@) =k ()’
wherek, andk, are, respectively, the acoustic wavenumber ohdavy fluid and the
flexural wavenumber of the plate at the angulagdencyw.
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The added mass/lw(a)p) Is plotted with a dashed line in Fig. 7a. We obsdhat for the

modes above 400 Hz, their normalised added massebe approximated by those of the
infinite plate at frequencies corresponding to thedal frequencies. For modes below 400
Hz, the infinite plate model overestimates the addwss. This is certainly due to the fact
that, contrary to the infinite plate, the cavitysha finite dimension in the direction
perpendicular to the plate. The volume of the flondved by the wave motions of the plate
(of large wavelengths) is limited by the sizes ludé tavity. In other word, the added mass
must normally be limited to the total mass of thedf contained in the cavity, which is not
infinite.

For the normalised added stiffnel§§)/Kp plotted in Fig. 7b, the values decrease when the
modal frequencies increase and they are signifiamt greater than 0.1) for frequencies
below 1000 Hz. Only the low-frequency non-resor@ate modes are then concerned by this
effect for the present case. As already mentionsoveys we remember that this added
stiffness is directly related to the frequency bahe@xcitation. It represents the effect of the
non resonant acoustic modes below the frequenay bbexcitation. If the latter changes, the
added stiffness may change.

These two effects lead to a modification of the alddequencies (34): the added stiffness
tends to increase the frequency whereas the added tends to decrease it. We compare the
initial modal angular frequency, with the modified onet, in Fig. 7c. The added stiffness
significantly increases the frequencies of thestfirplate modes which remain outside the
frequency band of excitation. These plate modesaimemon-resonant. For these “first”
modes, the added stiffness effect is greater tharatided mass effect, which explains why
@, is greater thanc, .

The other plate modes are more influenced by thkeddanass than by the added stiffness.
Their modal frequencies decrease compared to thal iones. If we plot the plate’s MED as
a function of the modified modal angular frequeragy (not shown here), we observe that the
highest energy modes are contained in the frequleanyg of excitation (contrary to Fig. 6 for
which the MED was plotted as a function of theiatitnodal frequency). The added mass due
to the non resonant modes of cavi®y explains the frequency shift observed previously i

section 4.1 (i.e. Fig. 6a).

In order to validate the approximations used taiobthe approximate DMF model (i.e. Egs.
(31) and (35)), we compare in Fig. 8 the MEDs otsdiwith the basic and the approximate
models. Globally, the MEDs are correctly descriliigdthe approximate model. However,
some discrepancies can be observed. They vary driemmode to another and are caused by
the fact that we have ignored the direct coupliegMeen the plate modes introduced by the

non resonant modes of the cavity (i.e. the diagoteims of WI~ WY~ and

W W neglected).
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Fig. 8. Modal Energy Distribution: (a), for the f@a(b), for the cavity. Comparison of two
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White noise excitation in the 2500 Hz third octéaad (cut-off frequencies of this band
symbolised by vertical dashed line).

These discrepancies have little influence howevethe estimation of the total energy of the
plate and the cavity. Indeed, for the plate, wawban energy level of -33.7 dB (ref. 1 J) with
the basic model versus -33.5 dB with the approx@matdel. For the cavity, the comparison
can be performed for:

- (a), the resonant energy of the cavity (whichregponds to the energy of the
resonance cavity modes). The basic model gives3 -dB. against -41.1 dB for the
approximate one;

- (b), the total energy of the cavity. In this cage result of the approximate
model is obtained by adding the resonant enerdiietavity with the energies of the
added masses and added stiffness (which reprdsemnergies of the non resonant



cavity modes as developed in section 4.2.1). Thesit¥ model gives -38.7 dB against
-38.5 dB for the approximate one.

These energy results given by the “approximate” DMBdel are fully satisfactory and
validate the assumptions made for this case. M@mredre comparison of the resonant energy
with the total energy of the cavity (-41.8 dB wif38.7 dB) shows here that the non resonant
modes of the cavity significantly contribute todtisergy response.

4.3 Influence of the coupling of non resonant plate modes in spatial
coincidence with the resonant cavity modes

In Fig. 6a we saw that many non resonant plate sibdge a low energy level compared to
the highest energy modes. Thus these modes hawdeatiplly negligible effect on the

response of the plate-cavity system. In this sactiwe study the influence of these non
resonant modes of the plate on the energy resprtbe plate and the cavity. We define the

set of resonant modeR and non-resonant mode® , P' accordingly with the modified
modal frequenciesg, :

pUR- E)ll;' [ mln(_l 0’)[
pUR « & [ mln(_l a a%naxé'l 0’)]

DDR;@ C‘);D :I max(_l a—)po [

DMF calculations without the non-resonant modes show that these modes have a

negligible effect on the response of the plate thedcavity. This could be expected as these
modes are excited little by the external force #mely are not strongly coupled with the
resonant cavity modes, since they are not in aespacfrequency coincident with these
modes.

(41)

Conversely, DMF calculations without the non-resdnplate modesP, show that these

modes have a significant effect on the total enefgye cavity (while the energy of the plate
is not influenced). For the same case as Fig. Gcomgpared the MED of the resonant modes

of the cavity for two DMF calculations: one withcathe other without modeR, (results not

plotted here). We observed that the second calonlaimost systematically overestimates
the energy of the cavity modes. It gives a totargy for the resonant modes of -39.2 dB

against -41.8 dB for the first calculation. Somedem® of the se&®, therefore play the role of

pumping the energy of the cavity modes. By studyhmgsignificant intermodal work in Fig.
5, the “first” plate modes (i.e. modes of frequebeyow 500 Hz) appear to coincide in space
with the resonant cavity modes. Although thesestfiplate modes and the resonant cavity
have very different frequencies, they can exchasigaificant energy due to their spatial
coincidence. The response of these plate modestsdsom an equilibrium between the
power flows from the external excitation and theoreant cavity modes. In the present case,
this equilibrium leads to significant power exchaddgrom the resonant cavity modes to the
“first” plate modes. Part of the energy of the remut cavity modes is then pumped by the
first non resonant plate modes. This also explaihg we noticed in Fig. 6 that the “first”
plate modes have more pronounced energy level“thgher” modes which are nevertheless
closer to the band of excitation.



4.4 Synthesis of the modal interaction

On the basis of the previous discussions, Figpgesents the modal coupling scheme for an
excited plate coupled with a heavy fluid cavity. \8leow that the behaviour of the cavity’s
non-resonant modes can be represented by adde@&sress stiffness on the plate modes.
This results in a modification of the modal freqogf these plate modes. The resonant plate
modes can then defined in relation to the modifieadal frequency and the plate modes
above the frequency band of excitation can be gpgho€Conversely, the non-resonant plate
modes in space coincident with the resonant camages can participate significantly in the
power exchanged between the structure and theycawmdl they cannot be neglected in
general.

RESONANT
. MODES

STRUCTURE CAVITY
MODES (SM) MODES (CM)

—— Resonant coupling between CM and SM
------ Added mass effect of CM on SM

------------------ Added stiffness effect of CM on SM
——- Spatial coupling of resonant CM with SM

Fig. 9. lllustration of the modal coupling scheme d&n excited structure filled by a heavy
fluid.



5 FREQUENCY RESPONSE OF THE PLATE/WATER-FILLED
CAVITY SYSTEM

In this section, we analyse the energy responsendy different calculations for one third
octave band excitations from 500 Hz to 16 kHz. €MD&F calculations are considered:
- A “"basic” DMF calculation as defined in sectionIBtakes into account the non
resonant cavity modes. It constitutes the referéece;
- An “approximate” DMF calculation as defined prewstuin section 4.
- A “resonant” DMF calculation which takes only thesonant modes of the
“approximate” DMF model into account.

For each third octave band, Tab. 1 gives the totadle number taken into account by the
“basic” DMF calculation and the number of resormaoides of each subsystem.

500Hz 630Hz 800Hz 1000Hz 1250Hz 1600Hz 2000Hz 2500 Hz

N o1 118 151 193 244 311 394 500

N Resonan 16 22 29 35 44 56 68 86

N 6719 8399 10199 12919 15959 19319 23919 30159

N Resonan 2 5 7 13 26 47 91 175
3150Hz 4000Hz 5000Hz 6300Hz 8000Hz 10kHz 125kHz  16kHz

G 635 803 1015 1186 1628 2056 2599 3277

N Resonan 111 134 167 217 264 340 420 537

N 37119 46079 57599 71999 89999 114239 143639 177484

N Resonan 332 629 1235 2406 4737 9324 18409 36444

Tab. 1. Mode number for each third octave baNd®® and N;°* , mode numbers for the

basic DMF calculation for the plate and the cavitgspectively; NS and N
resonant mode numbers for the plate and the caegpectively.

A SEA calculation is also performed to comparerésults to the DMF ones. Details of the
SEA model are given in appendix C. An added mdsstedf the fluid is taken into account in
the calculation of the coupling loss factor and itete modal density through an effective
mass density ([17]). We underline that the SEA meétlgives us the total energy of each
subsystem represented by their resonant modeseridrgies related to non-resonant modes
are not evaluated by this model. The SEA resudggaren here to evaluate its accuracy. They
do not constitute a reference as we know that soimes assumptions (i.e. weak coupling,
resonant transmission) are not fully respected. g@2oieon with the “basic” DMF which can
be considered as the reference allows us to eeathaterrors induced by the non respect of
the SEA assumptions.

Tab. 1 indicates that the number of resonant moflése two subsystems is higher than 6
from the third octave band, 800 Hz. This is a cbadiof validity of the SEA method.

However, the SEA results are plotted for frequendielow this limit frequency as an
indication.



The total energy of the plate was evaluated fohehicd octave band by the four calculations
described above. They give very similar resultg (lotted here): an energy level of around -
34 dB for each third octave. The “resonant” DMF &tA calculations work. This indicates
that the resonant modes of the plate are suffid@ntescribing the energy response of the
plate. This could be expected as the plate is trexcited by the external force. On the
contrary, in Fig. 10a, the results for the resonanérgy of the cavity depend on the
calculations. The “approximate” DMF model gives s@me tendency as the “basic” DMF.
Some discrepancies can be observed when the dsastyew resonant modes. This can be
explained by the fact that cross terms were neggieict Eq. (31). On the other hand, it can be
observed that the “resonant” DMF model deviatesiSaantly from the “basic” DMF and
“approximate” DMF ones. The difference between thesonant” DMF and the
“approximate” DMF lies in the non resonant plated@® which are not taken into account in
the first model. Therefore, the discrepancies ofegkin Fig. 10a may be attributed to the
contribution of the non resonant plate modes irtigbeoincidence with the resonant modes
of the cavity. For frequencies lower than 8 kHzsth plate modes pump part of the energies
of the resonant cavity modes, whereas for higheguencies, they contribute part of their
energy to the cavity modes. This behaviour canealdscribed by classical SEA which gives
results similar to those of the “resonant” DMF miodaedeed, as SEA is based on a
fundamental relation established for two oscillatekcited by white noise forces [6], it can
only describe the energy sharing between resonadesa For the phenomenon of interest
here, the energy is shared between the resonam$teazmodes and the non resonant structure
modes. The fundamental SEA relation cannot be tesddscribe these exchanges.

The total energy of the cavity (taking the non resd contributions into account) is proposed
in Fig. 11la. The “basic’ DMF and “approximate” DMgive very close results. The
discrepancies observed in Fig. 10a in the lowet piathe frequency domain are not found
here because the non resonant contributions ardndomat these frequencies and are
correctly described by the “approximate” DMF mo(fedbm the energies of the added masses
and stiffness). By comparing the results of Figda And 11a, it can be seen that the non
resonant modes have a significant contributionougbiout 5 kHz.

To complete this discussion, we perform a secomafsealculations considering a damped
plate with an internal loss factor of 10% (i/g.=0.10). The different models give similar
results for the plate (not plotted here). The p&atergy decreases between 8.5 dB and 10 dB
compared to the previous case. At first sight, \aa expect a decrease of exactly 10 dB.
Indeed, if we consider the SEA energy balance (@laje energyE, can be approximated to

P, /@ by neglecting the power flow between the plate trel cavity compared to the

input power. Then, if the plate damping loss faaomultiplied by 10, the plate energy
should theoretically be divided by 10. The appradion made previously is however not
fully satisfied for this case with a heavy fluidvist, explaining why a value of exactly 10 dB
is not obtained.
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calculations: Solid, basic DMF (reference); dastetted (with cross), approximate DMF;
dashed, resonant DMF;

Fig. 10b shows the resonant energy of the cavibe Tapproximate” DMF always gives
satisfactory results. The discrepancies betweanntimdel and the “resonant” DMF are larger
here than for the case of Fig. 10a. The SEA cdiomalso gives the same tendency as the
“resonant” DMF. Again, these two calculations canm@scribe the energy exchanges
between the non resonant plate modes and the r@soaaty modes which are in spatial



coincidence. These exchanges of energy appearegrmehen the plate damping increases. It
can be noticed that the non resonant plate modewp mart of the resonant energy of the
cavity for frequencies lower than 1.6 kHz and tlemntribute part of their energies for
frequencies above this transitional frequency. Vhkie of the transitional frequency has
changed compared to the case of Fig. 10a (i.&kHz6against 8 kHz). The equilibrium of the
non resonant plate modes resulting from the intenaavith the resonant cavity modes and
the external force has changed. Indeed, incredasel gamping directly induces a decrease of
the energy of the resonant plate modes, and thémeafesonant cavity modes (in frequency
coincidence), whereas the energy of the non resopkte modes is not significantly
modified. The energy ratio between the non resopéate modes and the resonant cavity
modes is then modified when the damping increastag;h may explain a change of the
energy equilibrium.

Fig. 11b gives the total energy of the cavity ahdves good agreement between the “basic”
DMF and “approximate” DMF calculations. Comparisointhe results of Fig. 10b and 11b
indicate that multiplying the plate damping by 1ded not lead to the same decrease of the
cavity energy as the plate energy (i.e. betweerdB.and 10 dB). In the “high” frequencies,
the decrease of cavity energy is limited to 4 dBisToehaviour results from the significant
contribution of the non resonant plate modes wiaigh not influenced by the damping. The
SEA method cannot represent this effect becawdesitribes only the energy sharing between
the resonant modes. If we consider the SEA eneatpnbe again (i.e. Eq. (C.1)), the energy

ratio E,/ E, is given byn,,/n,+n , which is independent from the plate damping lessaf.

The SEA method therefore gives the same decreaseearfyy for the plate and the cavity
when the plate damping loss factor increases. i8his contradiction with the “basic” DMF
results which can be considered as the referertugs, The SEA method fails for the present
case.

In conclusion, the results presented in this sedt@ve shown that:

(a) the “approximate” DMF gives results in accoramwith the “basic” DMF;

(b) SEA and “resonant” DMF models do not permituaately describing the energy
response of the cavity. The energy exchanges betiixeenon resonant plate modes and the
resonant cavity modes in spatial coincidence playgaificant role that is not described by
these two models;

(c) The increase of the plate damping for vibratmal noise reduction is less efficient
for the cavity energy than for the plate energye flon resonant plate modes which are not
influenced by the damping play an important rolé¢toa phenomenon.

6 CONCLUSIONS

The modal equations resulting from the dual modahtilation were considered in this paper
in order to study the interaction of an excitedrailmg structure coupled with a heavy fluid
cavity. This formulation is used classically fotight fluid and the SEA formulation is also
valid for a heavy fluid if enough modes are taketo iaccount. A numerical study on a test
case showed that convergence of the modal decongnssis possible if the non resonant
cavity modes in spatial coincidence with the plai@des are sufficiently taken into account.
The number of cavity modes necessary in the maalelbecome significant. Analysis of the
modal equations showed that the non-resonant cenotyes induce added masses and added
stiffness on the plate modes which can be evaldabed the intermodal work.



The modal added masses were compared to the adaleslinduced by a semi-infinite fluid
domain loading an infinite plate. Due to the fing&ze of the cavity in the direction
perpendicular to the plate, we observed differerfoesthe “first” modes (having a large
modal wavelength). The semi-infinite added masseh@&not valid for angular frequency
w=0 (it tends towards infinity). Normally, the addeéss must be limited by the total mass
of the fluid contained in the cavity which is nafinite. For higher modes, the infinite plate
model gave a correct estimation of the modal addedses. Accurate estimations of the
added mass and added stiffness are proposed infi@®] the knowledge of the static
displacement potential. The interest of using thglieit expressions given in [20] could be
investigated in the future for the present approach

An “approximate” DMF model describing the non resohmodes of the cavity by their
added masses and stiffness was proposed. This madelalidated by different comparisons
with the “basic” DMF model.

In some situations, we observed that the part @ftokal energy of the cavity represented by
its resonant modes can be lower than the partalite hon-resonant modes. This second part
of the cavity energy can be estimated from thetianenergy of the added masses and the
strain energy of the added stiffness on the plaidas. The “approximate” DMF model can
then estimate this part of the energy even if ésloot explicitly estimate the response of the
non resonant cavity modes.

Moreover, the results highlighted a significanerplayed by the non resonant plate modes in
spatial coincidence with the resonant cavity modi®spending on the energy equilibrium,
these modes can give energy to, or take it frora, résonant cavity modes. Due to this
phenomenon and the weak influence of damping omameresonant modes, increasing plate
damping is less efficient on the cavity energy tbarthe plate energy. As classical SEA does
not take these non-resonant modes into accouoanitot describe this behaviour correctly.
Attention should be given to this point in the fietun order to develop a SEA model
dedicated to the heavy fluid case. The “approximBtdF model is a good starting point for
these developments. For a system with a complexngey, the evaluation of the added
masses and stiffness of the “approximate” DMF db seem to be a problem. Indeed, the
intermodal work can be estimated using finite eletmaodels for the low frequency modes
[13, 23] while the infinite fluid loaded plate mdd=an be used as an approximation of the
added mass for the higher frequency modes. The diiioculty will consist in establishing
the relation of energy exchanged between the neznent structure modes with the resonant
cavity modes. Indeed, the classical SEA relatiotal#ished for two coupled oscillators
assumes that the oscillators are excited by whdisenexcitation. Their responses are
dominated by their resonances which is not the t@sthe non resonant structure modes. A
study to elucidate this point should be performrethe future.
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APPENDIX A. COMPARISON OF DMF RESULTS ON THE
DAVID AND MENELLE TEST CASE [20]

The plate-water filled cavity system of Ref. [2@nstitutes a reference case in the literature.
The analytical and experimental results proposethisipaper are very close and are used as
the reference in this appendix to validate the DbHfculations. The test case [20] is
composed of a clamped rectangular plate coupled avpparallelipedic water-filled cavity. A
full description of the system and a modal analgses proposed in [20]. We recall here the
geometrical and mechanical parameters consideredhén DMF calculation, without
comments. The plate is 170 mm long, 150 mm wided thick, clamped at its four edges
and it is made of steel E£€1.62<10" Pa, p=7800 kg/rf, v =0.3, 7=0.008). The cavity has

five rigid walls and is filled with waterg;=1500 m/s,p,=1000 kg/ m). The viscosity of the
internal fluid 7. is calculated with Eq. (12) in [20] from the flustynamic viscosity which is
fixed at 0.001. A damping loss factor for the a¢musiodeq, 77, is then given by, .

The same coordinate system as that shown in Fg.c8nsidered. The plate is excited by a
normal mechanical force at poiM. of coordinates (0.051, 0.105, 0.31 m). Two recgvi
points are definedM; on the plate at coordinates (0.1385, 0.0625, @h3landM, at the
bottom of the cavityat coordinates (0.02, 0.02, 0.0124 m).

Expressions for the natural frequencies, mode shapd modal mass of the clamped plate
can be found in the literature [28-30]. DMF canrthee easily applied on this case. 17 plate
modes below 12.5 kHz are taken into account. DafferDMF calculations including non

resonant acoustic modes defined by (26) with difievalues ofg,**are performed. Contrary

to the case treated in Sec. 3, they show ¢J&t =39 does not fully ensure the convergence

of the modal decompositions. After analysis, tlas be explained by the fact that the plate is
thinner than that of Sec. 3 (i.e. 4 mm vs. 8 mnie a&dded fluid mass compared to the plate
mass per unit area is therefore larger for thegmesase than in Sec. 3. A value of 80 for

g, *gives a better result and no improvements are wedebor higher values. Finally, 3919

acoustic modes are considered.

The DMF results are compared in Fig. A.1 with timalgtical results proposed in [20]. We
recall that perfect agreement of the analyticatljgteon with measurements was observed in
[20]. Comparison of Fig. A.1 fully validates the Vcalculations when the non resonant
acoustic modes spatially coincident with the pl&etaken into account.
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Fig. A.1. Comparison of the DMF results (dashed)liwith the analytical results given in
[20] (full line). (a), Acceleration at the poiit;; (b) Pressure at poii,.



APPENDIX B. SUBSYSTEM MODES AND INTERMODAL
WORKS FOR THE PLATE-CAVITY SYSTEM

Let us consider the system described in sectioon®osed of a rectangular simply-supported

plate coupled with a parallelepiped cavity. The alothformation used for the DMF
calculation is given in this appendix for the prasease.

B.1 - PLATE DISPLACEMENT MODES

A rectangular plate simply supported at its eddedirmensionL,xL is considered. For mode
p of orders( P, py)D[]go k [k [, we obtain the modal angular frequency

2 2
o, = /R(ij S 2] ®.1)
ph{ L L,
the displacement mode shape,

W, (% y) = sin( pXL”Xj sir{ pyL”y] , (8.2)

X y

and the modal mas4 , (defined byM ; = ph j W.2dV),
S

- phlvl‘y (B.3)
p 4 !
whereD is the flexural rigidity of the plate.

M

B.2 - CAVITY PRESSURE MODES

We consider the rectangular cavity of dimendignlL xL,. The blocked modes considered in
the DMF consist of the normal modes of the cavitthwigid walls. For modey of orders

(qx, a,, qz) 0([% [)3 we obtain the modal angular frequency,

w=c [07) 8] [ an) (B.4)
! L, L, L, )’

the pressure mode shape,

7T
Py (x y,9=co 97X\ o 97y cos /% , (B.5)
L, L, L,
and the modal stiffness, (defined byK, =i2 [ plav),
pOCO Q
Kq :LVLZZ, (B.6)
8£,0,Co

1 =
whereg, :(Ej , and= , the number of non-zero modal orc(q, ay qz).



B.3 — MODAL INTERACTION WORK

Considering the definition of the intermodal wo&) @nd the modes shapes (B.2, B.5), we

obtain:
W = ( ) g y y{( )2 2 ( )z 2 | if p # d, Py # 0, (B.7)
- a, — Py qy - py

pq

0, otherwise.



APPENDIX C. SEA MODELLING

In this appendix we give a description of the SE&dei of the test case shown in Fig. 3.
The plate-cavity system is decomposed into two SkHBsystems: the plate is subsystem 1
and the cavity subsystem 2. For an excitation bEgstem 1 in the frequency band of central

angular frequency, , the SEA equations are given by [6]:

w{’h 1, Ta :|{E1:|=|:Fi)njj|, (C.1)
1T, 17,7+ 5 Ez 0

where: -E,, E,, are the total energy of subsystem 1 and 2, réspbg

- ., N,, are the coupling loss factors defined below;

- n,, n, are the damping loss factors of subsystem 1 anespectively;
- P, is the power injected by the external force.
The coupling loss factor from the plate to the tgvi,,, is evaluated from the radiation
efficiency,o, by

@, ph

wherep, is the effective mass density of the plate

_ P (C.3)
= 1+— ,
-

with k, andk, being the acoustic wavenumber of the heavy flurdl ahe flexural

1o} (C.2)

r

2

wavenumber of the plate at the angular frequesacyespectively.

The effective mass density (C.3) was obtained msiclering an infinite fluid loading plate
[17]. It allows taking the fluid added mass effatbiaccount.

Below the critical frequency, (i.eu = kf/k0 >1), the radiation efficiency from Leppington’s
model is given by

— Lx+Ly ,U+1 2[1 :|
- | , (C.4)
o n;koLxLy«/;f—l[n(ﬂ‘J*-/Jz‘l

with ¢ =Kk, /k; .

The coupling loss factor from the cavity to thetelay,,, is obtained from the reciprocity
relation,

Moy =110/ N, (C.5)
where n;, n, are the modal densities of the plate and the gaxaspectively. They can be
estimated from the asymptotic formula,

L L LLLw?
T L n, = e (C.6)
ar \' D T,




Considering a white noise force excitation of U&D (i.e. S.. =1 N*/Hz) in the frequency
band of widthAw, the power injected by this force in the plate barestimated by

, =AW (C.7)
aphLL,

Using Eg. (C.2-C.7) for estimating the couplingsidactors and the injected power, the total
energy of the plate and the cavity can be obtanyeidverting the equation system (C.1).



