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Abstract: The stabilizing control problem of a Remotely Operated Vehicle (ROV) for a submarine observing operation is
solved explicitly using a homogeneous time-varying controller. We prove that the ROV kino-dynamic model
fails the Brockett’s necessary condition, consequently, the system’s equilibrium cannot be stabilized using
continuous pure state feedback laws. Our control strategy is based on a continuous time-varying feedback law
taking into account coupling terms due to underactuation and nonlinearities. It is shown that the feedback law
stabilizes the ROV at the origin, and this is illustrated by simulations.

1 INTRODUCTION

Today, underwater robots are an integral part of scien-
tific equipment to explore the seas and oceans. Many
examples have shown that ROVs (Remotely Oper-
ating Vehicles) or remotely operated vehicles, and
AUVs (Autonomous Underwater Vehicles) are used
in many fields and for a variety of applications such
as inspection, mapping or bathymetry. However, we
can distinguish a depth limit for different types of
existing autonomous underwater vehicles. Indeed,
from 300 meters, the structure dimensions and char-
acteristics of these vehicles change. One cites AUVs
deep as Hugin 3000 sensor of Kongsberg Maritime,
the Sea Oracle of Bluefin’s Robotics or the Alistar
3000 of ECA, which can reach depths of 3000 meters,
and have a high autonomy. An AUV has a signifi-
cant size and weight and requires significant logistics.
However, the ROVs, as of Phantom 500 (Folcher and
Rendas, 2001), the ALIVE vehicle of group Cyber-
netix, the ROV Triton-PR, the AC-ROV (ROV sales)
or the underwater vehicle H1000 of the Eca-Hytec,
with much less autonomy, they are dedicated for in-
spection/observation operations in subsea and are not
considered for manipulations. From control point
of view, which is the key problem to ensure semi-
autonomy or complete autonomy of the vehicle, the
control design becomes a challenge problem due to
underactuation (number of inputs less than the num-
ber of vehicle’s degrees of freedom) and high non-

linearities of obtained dynamic models. Robustness
of the controller with respect to non stationary subsea
environments is also a challenging problem. Under-
actuation, in the case of an AUV, has been overcome
in (Pettersen and Egeland, 1999). The control objec-
tive was solved in (Pettersen and Egeland, 1999) by
a feedback law that asymptotically stabilizes the ori-
gin of AUV using only four, possibly three, control
inputs. In (Martins-Encarnacao, 2002), the Lyapunov
approach and the backstepping technique were com-
bined and the control achieves the seabed monitoring.
The tracking control of an AUV was limited to the
horizontal plan in (Lapierre and Soetanto, 2007). A
first order sliding mode technique was proposed by
Salgado (Folcher and Rendas, 2001) for the Taipan,
and supported by experimental results.
Jose et al. (Cunha JP, 1995) presented an adaptive
control scheme of dynamic positioning of remotely
operated vehicles (ROV) based on a control algo-
rithm called variable structure model-reference adap-
tive control. In (Santos, 1995), Santos has been study-
ing a law of sensor based control to allow a ROV to
monitoring background. In (Nakamura, 2000), the
LQI control system and robust control based onH∞
are developed. The stabilizing control problem re-
mains a challenging problem in the case of subma-
rine systems, especially when the vehicle is reduced
in sizes and weight. Even if an explicitly time-varying
or a discontinuous laws solve the stabilizing control
problem for a large underactuated autonomous sys-



tems (Coron and Rosier, 1994), (Morin and Samson,
1997), (Pettersen and Nijmeijer, 2001), a depth anal-
ysis of each vehicle’s model is required to design a
stabilizing controller. In this paper, we study an ul-
traportable submarine vehicle, called ROV, and is ex-
pected for observation and exploration insubsea his-
torical sites. The ROV is equipped with two cameras
and will permits the Tele-exploration in mixed-reality
sites. It is procured by the Digital-Ocean 2 project
from SUBSEA TECH society. In order to stabilize
images, the submarine system should be stabilized
for a given desired position and attitude under hy-
drodynamic effects. Based on the ROV kino-dynamic
model, we prove that the Brockett’s necessary condi-
tion is not satisfied, hence a continuous linear or non-
linear pure state feedback law cannot solve the sta-
bilizing problem. In this paper an explicit homoge-
neous time-varying control is designed and supported
by simulations. The paper is organized as following:
In section 2 the dynamics and kinematics of of ROV
is described. In section 3 a continuous periodic time-
varying feedback law is proposed. The theoretical re-
sults are illustrated by simulations in section 4.

2 Modelling

Due to hydrodynamics forces, the ROV model is
highly nonlinear and coupled, however, most of non-
linear models are based on simplifying assumptions
(Folcher and Rendas, 2001). These assumptions con-
cern often some coupling terms or outright neglect
hydrodynamic to calculate or approximate the theory.
However, these simplifications, often encountered
in aerodynamics study are not recommended in the
marine environment (Fossen, 994).

The ROV has a close frame structure (see Fig.1).

Figure 1: The ROV at 5 m depth (Chouiten et al., 2012)

This vehicle is actuated with two reversible horizontal
thrustersF1x andF2x for surge and yaw motion, and
a reversible vertical thrusterF3z for heave motion.
A 150 meters cable provides electric power to

the thrusters and enables communication between
the vehicle sensors and the surface equipment (Fig.1).

2.1 Characteristic of the ROV
(SUBSEA TECH)

mass (kg) 10.81
maximum

speed 3knots≃ 1.6(m/s)
dimension (mm) L = 450, l = 270,H = 210

maximum depth (m) 150
coordinate

of G, w.r.t Rv(mm) xg = 0,yg = 0,zg = −16
moment of

inertia (kg/m2) Ixx = 0.065, Iyy = 0.216, Izz= 0.2
product of

inertia (kg/m2) Ixy ≃ Iyz≃ Ixz≃ 10−5

2.2 Kinematics

Two reference frames are considered in the derivation
of the ROV kinematic and dynamic equations of mo-
tion: The Earth frameR0 and the ROV’s fixed frame
Rv. The ROV position and the orientation w.r.tR0 can

Figure 2: The global and local references frames attached
to the ROV.

be respectively described by

η1 =





x
y
z





R0

, η2 =





φ
θ
ψ





R0

(1)

with φ (roll), θ (pitch) andψ (yaw) define the attitude
andη1 = (x,y,z)T is the position vector of the ROV.
ν1 is as the linear velocity of the origin andν2 is the
angular velocity, defined w.r.tRv.

ν1 =





u
v
w





Rv

, ν2 =





p
q
r





Rv

(2)



Let us introduceη = (η1,η2)
T ∈ R6 and ν =

(ν1,ν2)
T ∈ R6. The kinematic of the ROV can be ex-

pressed in the following form:

η̇1 = J1(η2)ν1, η̇2 = J2(η2)ν2 (3)

The orientation matricesJ1(η2) and J2(η2) are as:

J1(η2) =





cθcψ sθsφcψ−sψcφ sθcφcψ+sψsφ
cθsψ sθsφsψ+cψcφ sθcφsψ−cψsφ
−sθ cθsφ cθcφ





J2(η2) =





1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ





It is noticed that the parametrization by the Eu-
ler angles have a singularity inθ = π

2 + kπ. This
parametrization is acceptable because it is impossi-
ble for a ROV to reach this singular orientation of 90
degrees pitching angle.
The following shorthand notations for trigonometric
functions are used:cα := cosα, sα := sinα, tα :=
tanα andT is the transpose.

2.3 Dynamics of the ROV

According to the CAD software the vehicle has at
least two planes of symmetryxzandyz. The dynamic
model is expressed in the moving frame, centered at
the center of gravity.

m{ν̇1 +ν2∧ν1 + ν̇2∧ rg +ν2∧ (ν2∧ rg)} = Γ1 (4)

I ν̇2 +ν2∧ (Iν2)+mrg∧ (ν̇1 +ν2∧ν1) = Γ2 (5)

where∧ represents the cross vector product inR3, m
is the mass of the ROV,rg = [0,0,zg]

T is the postion
of the centre of gravity,I is the inertia matrix. [Γ1,
Γ2] is the generalized vector of external forces and
moments and the termsν2 ∧mν1 andν2 ∧ (Iν2) are
the centrifugal and Coriolis components. The kino-
dynamic model of the ROV can be written in the fol-
lowing compact form:

Mvν̇ +Cv(ν)ν +Dv(ν)ν +gν(η2) = Bττ (6)

η̇ = J(η2)ν (7)

Mv regroups masses and inertia terms (symmetric and
definite positive matrix):

Mv =















mx 0 0 0 −αuq 0
0 my 0 −αvp 0 0
0 0 mZ 0 0 0
0 −αvp 0 Jx 0 0

−αuq 0 0 0 Jy 0
0 0 0 0 0 Jz















(8)
where the terms

mx = m−Xu̇, my = m−Yv̇, mz = m−Zẇ,

Jx = Ixx−Kṗ, Jy = Iyy−Mq̇, Jz = Izz−Nṙ ,

αuq = Xq̇−mzg, αvp = mzg +Yṗ

Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ , Xq̇, Yṗ are the added masses
and inertia, Cv(ν) is the centrifugal and Coriolis
matrix.

Cv(ν)ν =

(

ν2∧ (m+ma)ν1
ν2∧ (IG + Ia)ν2 +ν1∧ (m+ma)ν1

)

.

(9)
with ma, Ia are the added masses and inertia, respec-
tively. The hydrodynamic constant matrixDν takes
the following form:

Dν = −diag{Xu,Yv,Zw,Kp,Mq,Nr}. (10)

The gravitational vector is as:

gν(η2) =















−(FW −FB)sθ
(FW −FB)cθsφ
(FW −FB)cθcφ
−zgFBcθsφ

zgFBsθ
0















. (11)

whereFB andFW are the buoyancy and gravity mag-
nitudes. The constant matrixBτ in (17 ) represents the
direction of inputs :

Bτ =

















1 0 0
0 0 0
0 0 1
0 0 0

αuq
Jy

0 0
0 1 0

















(12)

For the following analysis the control inputs are taken
as:

τ =





τ1
τ2
τ3



 ,





F1x +F2x
F2x−F1x

F3z



 (13)

In order to understand the action of different control
inputs on the ROV, we need to develop the model
given in (3)-(5). Explicitly, the dynamic of the ROV
can be written in the form presented below. The six
relations related to the dynamic part (4)-(5) are subdi-
vided onto linear and angular accelerations

u̇ =
1
δ
{JyXuu+αuqMqq

+(αuqzgFB +Jyg(FW −FB))sθ+(Jymy +αuqαvp)vr

+(αuq(Jz−Jx)+Jyαvp)pr− (Jymz−α2
uq)wq

−αuq(Zẇ−Xu̇)wu+ τ1}

v̇ =
1
δ′
{JxYvv+αvpKpp− (Jxg(FW −FB)

+αvpzgFB)cθsφ+(α2
vp−Jxmz)wp

− (Jxmx +αvpαuq)ur +(Jxαvp+αvp(Jy−Jz))qr

−αvp((Yv̇−Zẇ))vw}



ẇ =
1

mz
{Zww+(FW −FB)cθcφ+mzuq−myvp+αuqq

2

−αvpp2 + τ3}

ṗ =
1
δ′
{αvpYvv+myKpp− (αvp(FW −FB)

−myzgFB)cθsφ+(αvpmz−myαvp)wp

−(αvpmx +myαuq)ur− (αvpαuq+my(Jy−Jz))qr

−my(Yv̇−Zẇ)vw}

q̇ =
1
δ
{αuqXuu+mxMqq+(mxzgFB

+αuq(FW −FB))sθ+(αuqmy +mxαvp)vr

+(mxαuq−αuqmz)wq− (αuqαvp−mx(Jz−Jx))pr

−mx(Zẇ−Xu̇)wu]+
αuq

Jy
τ1}

ṙ =
1
Jz
{Nr r +(Jx−Jy)pq− (Xu̇−Yv̇)uv+(Xq̇ +Yṗ)up

−(Xq̇ +Yṗ)vq+ τ2} (14)

whereδ = Jymx−α2
uqandδ′ = Jymx−α2

vp
which are connected to the six kinematic equations,

ẋ = cθcψu+(sθsφcψ−sψcφ)v+(sθcφcψ+sψsφ)w
ẏ = cθsψu+(sθsφsψ+cψcφ)v+(sθcφsψ−cψsφ)w
ż= −sθu+cθsφv+cθcφw
φ̇= p+sφtθq+cφtθr
θ̇ = cφq−sφr
ψ̇ = sφ

cθq+ cφ
cθr

(15)

Remark 2.1. There is no direct thrust control to the
lateral velocity v and the roll moment p. Underactu-
ation can be explained there from.

3 Stabilizing feedback law

We will show first, that it is not possible to stabi-
lize the ROV using a feedback law that is continuous
and function of the state only. This follows from re-
sults given by Brockett (Brockett, 1983) , Coron and
Rosier (Coron and Rosier, 1994) . The problem is
then not solvable using linearization and linear con-
trol theory or classical nonlinear control theory like
feedback linearization. Thus, we propose a contin-
uous periodic time-varying feedback law that stabi-
lizes the ROV using only three available inputs. The
next proposition shows that Brockett’s condition can-
not meet.

Proposition 3.1. The system (3)-(5) cannot be stabi-
lized by a time invariant smooth pure-state feedback
law.

Proof. Let us considerε = (ε1,0)T , with ε1 6= 0.
From equation (7) we getν = 0, sinceJT

2 J2 is an in-
vertible matrix. Therefore, equation (17) leads to:

Bττ−gν(η2) = Mvε1

Then, if we takeε1 = (0,0,0,ε0,0,0)T with ε0 6= 0,
we get
(αuqzgFB +Jy(FB−FW))sθ+ τ1 = 0

(Jx(FW −FB)−αvpzgFB)cθsφ= 0

(FW −FB)cθcφ+ τ3 = 0

(αvp(FW −FB)−myzgFB)cθsφ= ε0

(mxzgFB +αuq(FB−FW))sθ+
αuq
Jy

τ1 = 0

τ2 = 0
As (Jx(FW − FB) − αvpzgFB) 6= 0, We can deduce
from the second equation thatθ = kπ+ π

2 or φ= kπ.
Further, the fourth equation implies thatε0 = 0 which
is impossible.
As a result, from (Brockett, 1983), we cannot stabi-
lize the ROV by a continuous pure-state feedback.
However Coron’s theorem (Coron, 1992) proves that
time periodic continuous feedback is sufficient to
stabilize the system to a point. The main result is
given by the following theorem.

Theorem 3.2. Consider the following functions

qd = −kxx−kuu−kθθ
+ kvv+kyy+kφφ+kpp√

|v|+|y|+|φ|+|p|
sin(t/ε)

wd = −kzz
rd = −kψψ+2sin(t/ε)

√

| v | + | y | + | φ | + | p |
(16)

and the time-varying feedback law

τ1 =
Jy

αuq
{(δkq−mxMq)q−δkqqd −mxzgFBθ

− αuq(Xuu− (FW −FB)θ)}
τ2 = (Jzkr −Nr)r −Jzkr rd)
τ3 = (mzkw−Zw)w−mzkwwd − (mzuq+αuqq2)

(17)
for a suitable choice of the positive parameters:
kx,ky,kz,kp,kq,kr ,kφ,kθ,kψ,ku,kv and kw there exists
ε0 such that for anyε∈ (0,ε0] and large enough kq,kr

and kw the feedback (16) and (17) stabilize locally ex-
ponentially the kino-dynamic model (14)-(15).

Proof. Let us introduce the following dilation
∆r

λ(ν,η, t) =

(λu,λ2v,λ2w,λ2p,λq,λr,λx,λ2y,λ2z,λ2φ,λθ,λψ)
The linearized system from (14)-(15) can be rewritten
as (cφ= cθ = cψ = 1, sφ≃ φ, sθ≃ θ, sψ ≃ ψ)

(

ν̇
η̇

)

= f (ν,η, t)+g(ν,η, t) (18)



with

f (ν,η, t) =

































































1
δ{JyXuu+αuqMqq+(αuqzgFB

−Jy(FW −FB))θ+ τ1}
1
δ′ {JxYvv+αvpKpp+(Jxg(m−ρ∇ )
−αvpzgFB)φ− (Jxmx +αvpαuq)ur

+(Jxαuq+αvp(Jy−Jz))qr}
1

mz
{Zww+(FW −FB)+mzuq+αuqq2

+τ3}
1
δ′ {αvpYvv+myKpp+(αvp(FW −FB)
−myzgFB)φ− (αvpmx +myαuq)ur

+(αvpαuq+my(Jy−Jz))qr}
1
δ{αuqXuu+mxMqq+(mxzgFB

−αuq(FW −FB))θ+
αuq

Jy
τ1}

1
Jz
{Nr r + τ2}

v
w
p
q
r

































































(19)
andg(ν,η, t) is the remaining terms. It is clear that
f (ν,η, t) defines a periodic, continuous homogeneous
of degree zero with respect to the dilation. Also, the
functiong(ν,η, t) is continuous and defines a sum of
homogeneous vector field of degree strictly positive
with respect to the dilation.
To prove the stability of system (14)-(15) it is suffi-
cient to show that

(

ν̇
η̇

)

= f (ν,η, t) (20)

is locally asymptotically stable (as shown in (Coron,
1998)). To this purpose, let us consider the following
reduced system obtained from (20), by tacking
q , qd, p , rd andw , wd as new control variables.
We have obtained the following resulting system:



























u̇
v̇
ṗ
ẋ
ẏ
ż
φ̇
θ̇
ψ̇



























=



























γqqd +γθθ
α1v+α2φ+α3qdrd +α4urd +α5p
β1v+β2φ+β3qdrd +β4urd +β5p

u
v

wd
p
qd
rd



























(21)
where

α1 =
JxYv

δ′
, β1 =

1
δ′

αvpYv,

α2 =
1
δ′

(Jx(FW −FB)−αvpzgFB),

α3 =
1
δ′

(Jxαuq+αvp(Jy−Jz)),

α4 =
−1
δ′

(Jxmx +αvpαuq),

α5 =
1
δ′

αvpKp, β5 =
1
δ′

myKp,

β2 =
1
δ′

(αvp(FW −FB)−myzgFB),

β3 =
1
δ′

(−αuqαvp−my(Jy−Jz)),

β4 = − 1
δ′

(αvpmx +αuqmy),

γq =
Mq

δ
(αuq−

Jy

αuq
mx),

γθ =
zgFB

δ
(αuq−

Jy

αuq
mx)

The controlsqd, rd, andwd are given by (16). One
verifies that the origin of the closed loop system is
asymptotically stable, details are in(Coron, 1998). In-
deed, the vector field associated with the right-hand
side of the closed loop system is continuous periodic
and homogeneous of degree zero with respect to the
dilation. Due to the periodic time-variant control, the
resulting system is a periodic time-varying system,
which can be written in the form,

(

ν̇
η̇

)

= h(ν,η, t/ε) (22)

We approximate this system by an averaged system
which is autonomous (M’Closkey and Murray, 1997).
The averaged system is defined as(ν̇, η̇)T = h0(ν,η)

whereh0(ν,η) =
∫ Tt

0 h0(ν,η, t/ε)dt (Tt is the period).
Now, the corresponding averaged system is given by:



























u̇
v̇
ṗ
ẋ
ẏ
ż
φ̇
θ̇
ψ̇



























=











































γq(−kxx−kuu−kθθ)+γθθ
(α1 +α3kv)v+(α2 +α3kφ)φ

+(α5 +α3kp)p−α4kψuψ+α3kyy
+α3kψψ(kxx+kuu+kθθ)

(β1 +β3kv)v+(β2 +β3kφ)φ
+(β5 +β3kp)p−β4kψuψ+β3kyy

+β3kψψ(kxx+kuu+kθθ)
u
v

−kzz
p

−kxx−kuu−kθθ
−kψψ











































(23)



The linear part of (23) is given by:
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























v̇
ṗ
u̇
ẋ
ẏ
ż
φ̇
θ̇
ψ̇



























=



































(α1 +α3kv)v+(α2 +α3kφ)φ
+α3kyy+(α5 +α3kp)p

(β1 +β3kv)v+(β2 +β3kφ)φ
+β3kyy+(β5 +β3kp)p

γq(−kxx−kuu−kθθ)+γθθ
u
v

−kzz
p

−kxx−kuu−kθθ
−kψψ



































(24)
Hence, the stability study of the system can be re-
duced to the following tow sub-systems:





u̇
ẋ
θ̇



 =





γq(−kxx−kuu−kθθ)+γθθ
u

−kxx−kuu−kθθ



 (25)

and







v̇
ṗ
ẏ
φ̇






=















(α1 +α3kv)v+(α2 +α3kφ)φ
+α3kyy+(α5 +α3kp)p

(β1 +β3kv)v+(β2 +β3kφ)φ
+β3kyy+(β5 +β3kp)p

v
p















(26)
Now, it is clear that for a suitable gain parameters,
the origin of the subsystems (25) and (26) is obvi-
ously asymptotically stable. Therefore, the origin of
the system (24) is asymptotically stable. As a result,
the origin of system (23) is locally asymptotically sta-
ble. The exponential stability of the origin of sys-
tem (21) follows by direct application of corollary 1
(Morin and Samson, 1997).

4 Simulation Results

In this section, we give a numerical simulation
to illustrate our theoretical results. Before starting,
we will present the system parameter values (IS
units) used for simulations. The added masses and
hydrodynamic coefficients are calculated from the
CAD-geometry.

• m= 10.84 : mass of the ROV.

• mx = 11.8910, my = 11.1948, mz = 11.1948.

• added massesXu̇ = −1.0810, Yv̇ = Zẇ =
−0.3848, Kṗ = 0, Mq̇ = Nṙ = −0.0075, Xq̇ =
−1.0885, Yṗ = −0.3848.

• hydrodynamic coefficientsXu = −2.4674, Yv =
−2.4674, Zw = −2.4674, Kp = −0.928, Mq =

−5.3014×10−6, Nr = −5.3014×10−6.

• inertial parameters around the principal axes of
inertiaJx = 0.065, Jy = 0.023, Jz = 0.1995.

• buoyancy and gravity magnitudes:
FB = 10.7, FW = mgwhereg = 9.81.

• termsδ = 1.5016, δ′ = 16.0238,
αuq = 1.2615, αvp = 0.2119.
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Figure 3: trajectory of the ROV
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Figure 4: Behaviour of statesu, v andw

Guided by linear control theory applied to the
linearization, we have chosen the following con-
trol parameters: kx = 5, ky = 10, kz = 10,
kp = 10, kq = 10, kr = 2.5, kφ = 10, kθ = 5,
kψ = 10, ku = 5, kv = 10, kw = 1, and ε =
0.0001. The initial position and orientation of the
ROV are taken as:[u,v,w, p,q, r,φ,θ,ψ,x,y,z]T(0)
= [0.3,0,0,0,0,0,0.5,−0.1,0.2,0.,0,0.1]T . Figure 3
show the time evolution of the ROV state variables.
Figures 5 and 6 depict the convergence of the roll,
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Figure 6: Behaviour of statesp, q andr

pitch, yaw and their derivatives, in a relatively short
time. It is clear that the total ROV model (14) and (15)
is exponentially stabilized at the origin using only
three control inputs (17).

5 CONCLUSIONS

ROVs offer a control challenge as they have non zero
drift. We proved that the ROV presented in the paper
is not stabilizable by continuous pure state feedback
law. The problem of asymptotic stabilization of the
origin by means of smooth time-variant feedback law
has been proposed for the kino-dynamic model. The
averaging theory and the linearization technique are
used to prove the stabilizing results. (Jiang, 2002)
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