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Abstract: The stabilizing control problem of a Remotely Operated Vehicle (ROV) for a submarine observing operation is
solved explicitly using a homogeneous time-varying controller. We prove that the ROV kino-dynamic model
fails the Brockett's necessary condition, consequently, the system’s equilibrium cannot be stabilized using
continuous pure state feedback laws. Our control strategy is based on a continuous time-varying feedback law
taking into account coupling terms due to underactuation and nonlinearities. It is shown that the feedback law
stabilizes the ROV at the origin, and this is illustrated by simulations.

1 INTRODUCTION linearities of obtained dynamic models. Robustness
of the controller with respect to non stationary subsea
Today, underwater robots are an integral part of scien- environments is also a challenging problem. Under-
tific equipment to explore the seas and oceans. Manyactuation, in the case of an AUV, has been overcome
examples have shown that ROVs (Remotely Oper- in (Pettersen and Egeland, 1999). The control objec-
ating Vehicles) or remotely operated vehicles, and tive was solved in (Pettersen and Egeland, 1999) by
AUVs (Autonomous Underwater Vehicles) are used a feedback law that asymptotically stabilizes the ori-
in many fields and for a variety of applications such gin of AUV using only four, possibly three, control
as inspection, mapping or bathymetry. However, we inputs. In (Martins-Encarnacao, 2002), the Lyapunov
can distinguish a depth limit for different types of approach and the backstepping technique were com-
existing autonomous underwater vehicles. Indeed, bined and the control achieves the seabed monitoring.
from 300 meters, the structure dimensions and char- The tracking control of an AUV was limited to the
acteristics of these vehicles change. One cites AUVs horizontal plan in (Lapierre and Soetanto, 2007). A
deep as Hugin 3000 sensor of Kongsberg Maritime, first order sliding mode technique was proposed by
the Sea Oracle of Bluefin’'s Robotics or the Alistar Salgado (Folcher and Rendas, 2001) for the Taipan,
3000 of ECA, which can reach depths of 3000 meters, and supported by experimental results.
and have a high autonomy. An AUV has a signifi- Jose et al. (Cunha JP, 1995) presented an adaptive
cant size and weight and requires significant logistics. control scheme of dynamic positioning of remotely
However, the ROVs, as of Phantom 500 (Folcher and operated vehicles (ROV) based on a control algo-
Rendas, 2001), the ALIVE vehicle of group Cyber- rithm called variable structure model-reference adap-
netix, the ROV Triton-PR, the AC-ROV (ROV sales) tive control. In (Santos, 1995), Santos has been study-
or the underwater vehicle H1000 of the Eca-Hytec, ing a law of sensor based control to allow a ROV to
with much less autonomy, they are dedicated for in- monitoring background. In (Nakamura, 2000), the
spection/observation operations in subsea and are notQI control system and robust control based g
considered for manipulations. From control point are developed. The stabilizing control problem re-
of view, which is the key problem to ensure semi- mains a challenging problem in the case of subma-
autonomy or complete autonomy of the vehicle, the rine systems, especially when the vehicle is reduced
control design becomes a challenge problem due toin sizes and weight. Even if an explicitly time-varying
underactuation (number of inputs less than the num- or a discontinuous laws solve the stabilizing control
ber of vehicle’s degrees of freedom) and high non- problem for a large underactuated autonomous sys-



tems (Coron and Rosier, 1994), (Morin and Samson, the thrusters and enables communication between
1997), (Pettersen and Nijmeijer, 2001), a depth anal- the vehicle sensors and the surface equipment (Fig.1).
ysis of each vehicle’'s model is required to design a

stabilizing controller. In this paper, we study an ul-

traportable submarine vehicle, called ROV, and is ex- 2.1 Characteristic of the ROV

pected for observation and exploration insubsea his-

torical sites. The ROV is equipped with two cameras (SUBSEA TECH)

and will permits the Tele-exploration in mixed-reality

sites. It is procured by the Digital-Ocean 2 project mass (kg) 1081 l
from SUBSEA TECH society. In order to stabilize mzxnmum

. . - peed 3knots~ 1.6(m/s)
images, the submarine system should be stabilized—gimension (mm) C=4501 —270H =210

for a given desired position and attitude under hy- maximum depth (m) 150

drodynamic effects. Based on the ROV kino-dynamic coordinate

model, we prove that the Brockett's necessary condi-| of G, w.r.t R,(mm) Xg=0,yg=0,zg=—16 |
tion is not satisfied, hence a continuous linear or non- moment of

linear pure state feedback law cannot solve the sta-| _inertia kg/n¥) lxx = 0.065 lyy = 0.216,1,,= 0.2 |
bilizing problem. In this paper an explicit homoge- ~ product of

neous time-varying control is designed and supported|__inertia kg/m?) by = lyz = be ~ 10°° |

by simulations. The paper is organized as following:
In section 2 the dynamics and kinematics of of ROV 2 2 Kinematics
is described. In section 3 a continuous periodic time-
varying feedback law is proposed. The theoretical re-

; . . . . Two reference frames are considered in the derivation
sults are illustrated by simulations in section 4.

of the ROV kinematic and dynamic equations of mo-
tion: The Earth framéRy and the ROV’s fixed frame
R,. The ROV position and the orientation wR§ can

2 Moddling

Due to hydrodynamics forces, the ROV model is
highly nonlinear and coupled, however, most of non-
linear models are based on simplifying assumptions
(Folcher and Rendas, 2001). These assumptions con
cern often some coupling terms or outright neglect
hydrodynamic to calculate or approximate the theory.
However, these simplifications, often encountered
in aerodynamics study are not recommended in the
marine environment (Fossen, 994).

The ROV has a close frame structure (see Fig.1). |*

Figure 2: The global and local references frames attached
to the ROV.

be respectively described by

X ®
n=1_vy ,N2=1| © (1)
Z ) R v /R

with @ (roll), 6 (pitch) andy (yaw) define the attitude
andn; = (x,y,2)" is the position vector of the ROV.
Figure 1: The ROV at 5 m depth (Chouiten et al., 2012) V1 is as the linear velocity of the origin and is the

) o ) ) ) angular velocity, defined w.iR,.
This vehicle is actuated with two reversible horizontal

thrusterskix and Ry for surge and yaw motion, and u p
a reversible vertical thrustdfs, for heave motion. V1= \Y ,Vvo=1| @ 2)
A 150 meters cable provides electric power to w r



Let us introducen = (n1,n2)" € R® and v =

(v1,v2)T € R®. The kinematic of the ROV can be ex-
pressed in the following form:

N1 =Jd(N2)v1, N2=J(N2)v2 3)
The orientation matricedi (n2) and Jx(n2) are as:

Ji(n2) = ( )

It is noticed that the parametrization by the Eu-
ler angles have a singularity i = 7 4 kit This
parametrization is acceptable because it is impossi-
ble for a ROV to reach this singular orientation of 90
degrees pitching angle.

The following shorthand notations for trigonometric
functions are usedca := cosq, su ;= sina, ta =
tana andT is the transpose.

cBcy  SOspey —spcp  sBegey + sPsp
cOsy  sSOsgsy + cecp  sBesy — cPse

—sH cBsp cBco
1 spb c@b
bn2)=| 0 co -sp
0o X co
ch co

2.3 Dynamics of the ROV

According to the CAD software the vehicle has at
least two planes of symmetrzandyz The dynamic
model is expressed in the moving frame, centered at
the center of gravity.

M{V1+V2AV1+VaATg+Vo A (V2aATg)}=T1 (4)
V2 +Vo A (lva) +mrgA (Vi+VvoAvy) =T2  (5)

where/ represents the cross vector producRit) m

is the mass of the ROV = [0,0,7]" is the postion

of the centre of gravity| is the inertia matrix. [y,

;] is the generalized vector of external forces and
moments and the termg A mvy andva A (Ivp) are
the centrifugal and Coriolis components. The kino-

dynamic model of the ROV can be written in the fol-
lowing compact form:

MW +Cy(V)V +Dy(V)V +gy(N2) = BT
n=J(nz2)v

(6)
()

My regroups masses and inertia terms (symmetric and!¥ =

definite positive matrix):

my 0 0 0 —Oyg O

0 m 0 —-ayp O 0

Mo — 0 0 nmy 0 0 0
v 0 —-ayp O N 0 0
—Oyg O 0 0 J 0

0 0 0 0 0

8)

where the terms

Iy = lxx— Kp, Jy = |yy— Mq, Iz =1zz— N,
Oyg = Xq— Mz, Oyp =Mz +Yp
Xa, Yo, Ziy, Kp, Mg, Ni, Xg, Yp are the added masses
and inertia, Cy(v) is the centrifugal and Coriolis

matrix.
( )
9)

with my, 15 are the added masses and inertia, respec-
tively. The hydrodynamic constant matriX, takes
the following form:

Vo A (m+ ma)vl
VoA (Ig+la)v2+ V1A (M-+my)vy

Cv(v)v

DV = _diag{XU7YV7ZWaKp7MQaNY}' (10)
The gravitational vector is as:
—(Fw —Fg)s0
EF\N - FB§CGS(P
_ | (Fw—Fg)cBece
o2 = | 7 Fachsy (11)
ZyFpsd
0

whereFg andFRy are the buoyancy and gravity mag-
nitudes. The constant mati¢ in (17 ) represents the
direction of inputs :

[oNeoNoN

(12)

Q
c
IS}

[eNeoNoNoNe)
O or oo

o

10

For the following analysis the control inputs are taken
as:

T1 Fix + Fox
1= 2 | & Fx—Fux (13)
13 Fs;

In order to understand the action of different control
inputs on the ROV, we need to develop the model
given in (3)-(5). Explicitly, the dynamic of the ROV
can be written in the form presented below. The six
relations related to the dynamic part (4)-(5) are subdi-
vided onto linear and angular accelerations

1

S{Jyxuu—f—aquqq
+(tugZgFs + Jyg(Fw — FB))SB + (Jymy + QlygOlyp)Vr
+(0tug(Jz— ) + Jyatyp) pr — (Jym; — O(ﬁq)Wq
—0ug(Ziy — Xag)wu+T1}

1

v =3 {IYov+ oy pKpp — (Kg(Fw — Fs)

0ty pZgFB) COSP+ (G, — Jmy)Wp
— (Jmy + vaduq)ur + (Jxavp + va(Jy —J))qr
—ayp((Yy — Ziy) )vw}



. 1
W :E{ZWW-F (Fw — Fg)cBc@-+ mpug— myvp+ oyq0?

*vapz +13}

.1
p :g{ava\,er mMyKpp — (avp(Fw — Fe)

—myZgFg)CBSP+ (ClypMm; — MOy p)WP
— (0typMi + My Oyg)ur — (OtypOlug + My(Jy — Jz))ar
—my (Vg — Ziy)vw}

1
=5{aquUU+ mMqa+ (MZgFs

+otug(Fw — FB))SB + (Qygmy + myayp)vr
+(MkOlug — OlugMz)Wg — (OtugOlvp — Mx(J— Jx) ) pr

—My(Zi— Xa)wd +

7'[1}

3

= TN+ (- 3)PA- = Y%)uv-+ (g + Y up

—(Xg+Yp)va+ 12} (14)

whered = Jym, — a3,andd = Jymy —a?,
which are connected to the six kinematic equations,

X = cOcWu + (sBspe — sWwe@)v -+ (sBegel + sPsp)w

y = cOsu + (SBs@sy + ce@)v + (SBegs — cwsp)w

Z= —sBu+ cBsyv -+ cOcow

Q= p+s@bq-+ ceor

0 = cpg—sgr

b =Fa+Fr

(15)

Remark 2.1. There is no direct thrust control to the
lateral velocity v and the roll moment p. Underactu-
ation can be explained there from.

3 Stabilizing feedback law

We will show first, that it is not possible to stabi-
lize the ROV using a feedback law that is continuous
and function of the state only. This follows from re-
sults given by Brockett (Brockett, 1983) , Coron and
Rosier (Coron and Rosier, 1994) . The problem is
then not solvable using linearization and linear con-
trol theory or classical nonlinear control theory like
feedback linearization. Thus, we propose a contin-
uous periodic time-varying feedback law that stabi-
lizes the ROV using only three available inputs. The
next proposition shows that Brockett's condition can-
not meet.

Proposition 3.1. The system (3)-(5) cannot be stabi-

lized by a time invariant smooth pure-state feedback

law.

Proof. Let us considee = (£1,0)", with g1 # 0.
From equation (7) we get= 0, sinceJ2TJ2 is an in-
vertible matrix. Therefore, equation (17) leads to:

BT —gv(n2) = Mer
Then, if we takee; = (0,0,0,£0,0,0)" with g9 # O,
we get
(GqugFB +Jy(FB — I:\N))SG+T1 =0

(I(Fw — Fg) — aypZgFg)cOsp= 0

(Fw — Fg)cBcp+13 =0

(avp(Fw — Fe) — myzgFs)cOsp=go
(MzgFe + ttug(Fe — Fw))$B + 511 = 0

T,=0

As (J(Fw — Fg) — aypzgFs) # 0, We can deduce
from the second equation that= krt+ § or ¢ = kit
Further, the fourth equation implies thet= 0 which

is impossible.

As a result, from (Brockett, 1983), we cannot stabi-
lize the ROV by a continuous pure-state feedback.
However Coron’s theorem (Coron, 1992) proves that
time periodic continuous feedback is sufficient to
stabilize the system to a point. The main result is
given by the following theorem.

Theorem 3.2. Consider the following functions

Q@ = —kx—Kkiu—k®
Vi Y P p .
+ K'v+KYy+kPe+kPp Sln(t/ﬁ)
V/ VIl @+l
wyg = —k¥z
I'q =

—k¥y+2sint/e)\/[v]+[y[+[@]+]p]
(16)

and the time-varying feedback law

T, = %{(6W—qu)q—6qud —myzgFe6
—  Oyg(Xuu— (Fw —Fg)8)}
T2 - (Jzkr - Nr)r - Jzkr rd)
T3 = (MK —Zy)w—mKk'wq — (Mmug+ ouga?)

17)
for a suitable choice of the positive parameters:
K<, KY, K2, kP K9, K" K® k® k¥ kU kY and R there exists
€o such that for ang € (0, €] and large enough% k'
and k' the feedback (16) and (17) stabilize locally ex-
ponentially the kino-dynamic model (14)-(15).

Proof. Let us introduce the following dilation
A;\ (V’n’t) =
(AU, A2V, A2W, A2, Ag, AT, AX, A%y, A%Z, A%, A0, \)
The linearized system from (14)-(15) can be rewritten
asCcp=cO=cP=1sp~q@ HB~0,sP~|y)

( :]) ) = f(v,n,t)+9g(v,n,t) (18)



with
{IXuu+ ougMqq+ (atugZgFe
—Jy(Fw —Fg))6+11}
é{JvaV‘i‘ avpKpp+ (Kg(m—pL)
—0lypZgFB) @ — (I« + Oty pllug)ur
+(I0ug +0vp(dy — J))ar}
- {Zww+ (Fw — FB) + maug+ aiyqq?
+T3}

%{dvaVV+ myKpp+ (C(vp(FW —Fg)
_m)/ngB)(p_ (avme‘FrnyC(uq)Uf
+(Qvplug+my(Jy — Jz))ar}

{ ougXuu+ meMqg + (MyzgFa
—dug(Fw — Fe))8+ 311}
F{Nr +12}

f(v,n,t)=

00T s <

19)
andg(v,n,t) is the remaining terms. It is clear that
f(v,n,t) defines a periodic, continuous homogeneous
of degree zero with respect to the dilation. Also, the
functiong(v,n,t) is continuous and defines a sum of
homogeneous vector field of degree strictly positive
with respect to the dilation.
To prove the stability of system (14)-(15) it is suffi-
cient to show that

( :]) ) = f(v,n,t)

is locally asymptotically stable (as shown in (Coron,
1998)). To this purpose, let us consider the following
reduced system obtained from (20), by tacking
a2 qq, p£ rqg andw £ wy as new control variables.
We have obtained the following resulting system:

(20)

u Yq¥d + Ye®
v Q1V—+ 0200+ 030drg + OgUrg +0sp
p B1v-+ B2@+ Badara + Baurg + Bsp
X u
y | = v
z W
o p
Q dd
Y rg
(21)
where 3 1
a1 = ?V; B1= gavaw
1
ap = g(JX(FW —Fg) —avpzgFs),
1
a3 = 5 (Jxauq + va(Jy -J)),
-1
a4 = —(Himy+ vaauq),

6/

1 1
Os = guvpra Bs = gmpr’

Bo= 5 (Cup(Fou — Fi) — My2F).
1
Bs = = (—Ouglvp— My (Jy — &),

6/

1
Ba= -y (vamx + C(uqmy),

M
Yg = gq(auq— ——my),
ug
Fs
Yo = ZQT(Guq— ——my)
ug

The controlsqgg, rq, andwy are given by (16). One
verifies that the origin of the closed loop system is
asymptotically stable, details are in(Coron, 1998). In-
deed, the vector field associated with the right-hand
side of the closed loop system is continuous periodic
and homogeneous of degree zero with respect to the
dilation. Due to the periodic time-variant control, the
resulting system is a periodic time-varying system,
which can be written in the form,

(3

We approximate this system by an averaged system
which is autonomous (M’Closkey and Murray, 1997).
The averaged system is defined(agn)” = ho(v,n)
wherehg(v,n) = [t ho(v,n,t/€)dt (T; is the period).
Now, the corresponding averaged system is given by:

)=Mwmva (22)

Yo (=K% —Kk'u—K®0) +yg0
(a1 + askY)v+ (0 +azk?) @

a + (a5 + 03kP) p— agk¥uy + azkYy
v +okP (KX + kUu + k98)

P (B1+Bsk')v+ (B2 + Bsk?)@

X +(Bs + BskP) p— Bak¥up + B3ky
y | = +B3kY P (KX + k“u+k99)

z u

¢ v

_9 —k?z

P

p
—k* — kUu — k@
,klquJ

(23)



The linear part of (23) is given by: e hydrodynamic coefficient, = —2.4674Y, =

(a1 + a3k )V+ (02 + 03k®) @ —2.4674 2, :6 —2.4674Kp = —O.%Z& Mg =
v sk + (05 4 AgkP)p ~5.3014x 1076, N, = —5.3014x 106,
P (B1+Bak')v+ (B2 + B3k?) @
u +B3k'y + (Bs -+ BskP) p e inertial parameters around the principal axes of
X Yq(—Kx—K'u— kee) + Vg0 inertiaJy = 0.065, J, = 0.023 J, = 0.1995.
y | = u
z \Iiz e buoyancy and gravity magnitudes:
‘g T z Fs = 10.7, Ry = mgwhereg = 9.81.
1T —k*x—KYu—Kk°@

_kby o termsd = 1.5016 & = 16.0238

Hence, the stability study of the system can be re-
duced to the following tow sub-systems:

u Yo (—Kx— k'u—k98) + yg0
X | = u (25)
¢ —k* — KYu—Kk°@

and

(o1 + ask')v+ (02 + azk?) @ "0
+azky+ (a5 +askP)p
(B + Bsk')v+ (B2 + Bsk?) o
+B3ky+ (Bs + BskP)p
v

p y -5 -0.2 °

(26)

Now, it is clear that for a suitable gain parameters, Figure 3: trajectory of the ROV
the origin of the subsystems (25) and (26) is obvi-
ously asymptotically stable. Therefore, the origin of
the system (24) is asymptotically stable. As a result,
the origin of system (23) is locally asymptotically sta- —
ble. The exponential stability of the origin of sys- L
tem (21) follows by direct application of corollary 1
(Morin and Samson, 1997).

e T <

X

0.5

linear velocities [m/s]
o
|
|
|
T
|
I
|
|
d
[

4 Simulation Results

-0.5

In this section, we give a numerical simulation

to illustrate our theoretical results. Before starting, o 5 ] is 2

we will present the system parameter values (IS

units) used for simulations. The added masses and Figure 4. Behaviour of stateg v andw

hydrodynamic coefficients are calculated from the

CAD-geometry. Guided by linear control theory applied to the
linearization, we have chosen the following con-

e M= 1084 mass of the ROV. trol parameters: kX = 5 K = 10, k¥ = 10,

kP = 10, k% = 10, k' = 25, k? = 10, k® = 5,
k¥ =10 k" =5 kY =10 k¥ =1, and € =

e m=11891Q my =111948 m; = 111948 0.0001 The initial position and orientation of the

e added massesX; = —1.081QY;, = Zy = ROV are taken as:[u,v,w,p,q,r,® 6,0, Y, (0)
—0.3848 Kp = 0,Mg = N = —0.0075 X4 = =[0.3,0,0,0,0,0,0.5,—0.1,0.2,0.,0,0.1] . Figure 3
—1.0885 Y, = —0.3848 show the time evolution of the ROV state variables.

Figures 5 and 6 depict the convergence of the roll,
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Figure 6: Behaviour of statgs g andr

pitch, yaw and their derivatives, in a relatively short
time. Itis clear that the total ROV model (14) and (15)
is exponentially stabilized at the origin using only
three control inputs (17).

5 CONCLUSIONS

ROVs offer a control challenge as they have non zero
drift. We proved that the ROV presented in the paper
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