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a  b  s  t r a  c t

The two  aqueous phases extraction  process  is widely  used in environmental clean up  of  industrial

effluents  and fine  chemical products  for their reuse. This process  can be made by cloud  point of

polyethoxylated  alcohols  and  micellar solubilization  phenomenon.  It is commonly  called  “coacervate

extraction”  and  is used, in our case, for humic  acid extraction from  aqueous  solution  at  100  mg/L.  The

surfactants  used are alcohol  polyethoxylate  and alkylphenol  polyethoxylate.  Phase diagrams of binary

water/surfactant  and  pseudo-binary  are plotted.  The  extraction  results are expressed  by  the  following

responses:  percentage of solute  extracted,  E  (%), residual concentrations  of solute  and surfactant  in dilute

phase  (Xs,w,  and Xt,w respectively) and volume fraction  of  coacervate  at equilibrium (�). For each parame-

ter,  the  experimental results are fitted  to empirical  equations  in three  dimensions. The  aim  of this study  is

to  find  out the  best compromise  between E  and  �C. The  comparison between experimental  and  calculated

values  allows models  validation.  Sodium sulfate, cetyltrimethylammonium  bromide (CTAB)  addition  and

pH  effect  are also studied.  Finally, the  possibility  of recycling the surfactant  has been proved.

1. Introduction

Humic substances are polyelectrolytic macromolecules having

high molecular weights [1–4]. They are significant in aquatic sys-

tems for several reasons. They give yellow brown color to water

[5] and can complex metals [6,7] and organic pollutants such as

pesticides [8]. They are precursors to the formation of mutagenic

halogenated compounds in water after chlorination [9]. Especially

humic acid represents the major advantage of the natural organic

matter in soil and surface water [1]. However, its presence in raw

water can significantly affect the quality during the purification

process [10]. It is widely agreed that trihalomethanes (THMs),

one of disinfection byproducts, can be generated by step chlo-

rination in water treatment when they contain humic acid [11].

Several researches have been carried out as  an alternative for the

degradation of aquatic humic substances [12–15]. Besides, differ-

ent techniques for treatment of contaminated release with humic

acid, have been proposed such as: biological treatment [16], filtra-

tion [17,18], adsorption [7,9], ozone oxidation [19], heterogeneous

photocatalysis [20,21], coagulation and ion exchange [22], electro-

chemistry [23], photocatalytic treatment [24,25].
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The present work concerns the study of cloud point extraction

(CPE) as  a method of recovery and valorization of humic acid of

aqueous solution using the powerful solubilizing characteristic of

nonionic surfactant aqueous solutions. In effect, above a line of

low critical demixing point of such systems defined as  cloud point

(tc), aqueous solutions of most nonionic polyethoxylated (or in the

presence of polyethylene glycol electrolyte) form two phases: the

coacervate, rich in surfactant, and the dilute phase. In the latter, the

surfactant concentration is close to its critical micelle concentra-

tion (cmc). Therefore, due to the micellar solubilization property of

the  surfactant, hydrophobic, amphiphilic or even ionic solutes have

been extracted in the coacervate after increasing the temperature

above its critical value Tc. The extraction process with two aqueous

phases, initially applied to the case of metal ions in the pres-

ence of chelating agent [26], was later applied to many chemical

species: various metal ions, small organic molecules and biologi-

cal molecules [27,28]. This technique allows moving toward Green

Chemistry. The small volume of the biodegradable surfactant-rich

phase obtained by using the cloud point methodology, permits to

set up  an experimental process of lower cost, better extraction effi-

ciency and lower toxicity than those using organic solvents. This

fact is  particularly attractive, because the “Green Chemistry” con-

cept can be employed here. CPE is considered to be convenient

and environmentally safe alternative to extraction with organic

solvents [28,29]. Many advantages were claimed to CPE compared

to conventional liquid–liquid extraction, including high extraction



efficiency, ease of waste disposal and the use of non-toxic and less

dangerous reagents [29].

2.  Materials and methods

2.1.  Reagents

The surfactants used in this work are biodegradable nonionic

surfactants:

1) A  polyethoxylated octylphenol known as “Dowfax 20B102”, sup-

plied by Dow Chemical company. It  has the chemical formula

C16–18H33–37-8-(OCH2 CH2)9 OH and belongs to the family of

ethoxylated alkylphenols (EPA).

2)  An alcohol polyethoxylate (AE) experienced by Lutensol ON

30  and equivalent to C10H21(OCH2 CH2)3OH. It  is  provided by

BASF.

These surfactants warranted great deal of research, both theo-

retically [30] and experimentally [25]. They are not so expensive

and have excellent extraction performances. Humic acid was sup-

plied by Sigma–Aldrich.

2.2.  Methods

2.2.1. Cloud point

Aqueous solutions of ethoxylated alcohols and ethoxy-

lated alkylphenols are sensitive to temperature, because their

hydrophilic groups to  désolvate gradually during heating [31–33].

The determination of cloud point was made by using the apparatus

Mettler FP 900 which consists of the operating FP900, a  control unit,

and several measuring cells. The cell temperature measurement

is performed with a highly accurate sensor Pt100 (probe), inte-

grated in the body of a furnace. In the lower part of the cloud point

measuring cell, PF81C is a  light source and an optical fiber which

illuminates the three specimens. The light passing through the

specimens is converted by three photoelectric cells into electrical

signals proportional to the intensity remains. The light transmis-

sion is measured continuously while the cell temperature increases

linearly with the heating rate chosen. The cloud point designates

the temperature at which the single limpid phase is troubled, as  a

result of the appearance of a  second phase.

For the extraction tests, 10 mL of solution containing the sur-

factant concentrations (1–12 wt.%) and the solute (humic acid at

100 mg/L) in deionized water, were heated in a precision oven for

2 h to reach equilibrium. The heating temperature range was cho-

sen from the cloud point temperature to about 20 ◦C. In effect, for

the surfactant Lutensol ON 30, the temperature range is (27–47 ◦C)

while that for Dowfax20B102 is (33–53 ◦C). The volumes of both

phases were registered. A small amount of the dilute phase was

taken using a  syringe and analyzed.

2.2.2. Analysis

The concentration of Dowfax 20B102 in the dilute phase was

achieved by high performance liquid chromatography reverse

phase, under the following conditions: RP18 column (ODS), 95 bar

pressure, eluent H2O/CH3CN/CH3OH, 7.5/60/32.5 (vol.%), flow rate

1 mL/min and 260 nm  wavelength detector (UV).

For Lutensol ON 30, the light scattering detector LS 31 (EUROSEP

instruments) was used. The three parameters to optimize the sen-

sitivity of the detector were the flow of air into the nebulizer, the

temperature of the evaporator and the gain of the photomultiplier.

During the analysis, the air pressure was set to  1 bar, the evapora-

tor temperature fixed at 55 ◦C and the gain of photomultiplier was

equal  to 400 mV. Humic acid concentration was determined using

the spectrophotometer (SAFAS type MC2) at 400 nm.

3. Results and discussion

3.1.  Binary and pseudo-binary phase diagrams

Organic solubilizates can interact with the surfactant polar

head group or with its hydrophobic length after solubilization

in micelles. According to  their chemical nature, organic com-

pounds can vary the surfactants cloud point [31,34].The cloud

point increasing of Lutensol ON 30 and Dowfax 20B102 surfactants

by humic acid addition, this phenomenon is especially notice-

able for low surfactant concentrations. This indicates a significant

interaction between humic acid and the surfactant. Indeed, the sur-

factants solubility in water was increased by inducing the cloud

point increase [34,35]. Furthermore, even at very low concentra-

tion (0.1 wt.%), the presence of CTAB significantly enhances the

cloud point of Lutensol ON 30. To explain this phenomenon, various

mechanisms have been suggested including formation of micelles,

solubilization and complex formation. The incorporation of ionic

surfactant into the nonionic micelles causes electrostatic repul-

sion between the micelles, thus hindering the coacervate phase

formation and raising up the cloud point [36,37].

4. Modeling of extraction

The  extraction results of humic acid from its aqueous solutions

at 100 mg/L by different surfactants, according to two variables:

wt.% surfactant (Xt), and temperature (T), were expressed by three

responses (Y): percentage of extracted solute (E), residual concen-

trations of solute (Xs,w) in the dilute phase and the coacervate

volume fraction at equilibrium (�C)  [34,38]. For each parameter

determined and by considering central composite designs [39],

the results were analyzed by an empirical fitting. In this method,

the experimental values can be used to determine the polyno-

mial model constants which were adjusted. The models were

checked by plotting computing data against experimental results.

The quadratic correlation was chosen to give the slope and the

regression coefficient (R2) closer to unity.

Y = a0 +  a1Xt +  a2T + a12XtT +  a11X2
t + a22T2 (1)

Such  correlation allows building the response surface. However,

one cannot allow physical significance to the portion of horizontal

planes corresponding to the maximum value of the response.

The quadratic equations for the properties (E, Xs,w, Xt.w and �C),

whose reliability was checked, are as follows:

E(Dowfax) = 26.993 + 11.314Xt +  1.21T − 0.103XtT

− 0.395X2
t − 8.788 10−3T2 (2)

E(Lutensol) = 14.687 + 5.592Xt + 2.607T − 0.033XtT

− 0.216X2
t − 0.027T2 (3)

Xs.w(Dowfax) = 106.276 + 0.063Xt − 2.92T − 0.125XtT

+ 0.344X2
t +  0.03T2 (4)

Xs.w(Lutensol) = 83.753 −  2.485Xt − 2.543T − 0.051XtT

+ 0.225X2
t + 0.027T2 (5)



Xt.w(Dowfax) = 106.276 + 0.063Xt − 2.92T − 0.125XtT

+ 0.344X2
t + 0.03T2 (6)

Xt.w(Lutensol) = 0.506 + 0.035Xt − 0.023T − 1.046 10−3XtT

− 1.159 10−3X2
t + 3.11 10−4T2 (7)

�C(Dowfax) = 0.403 +  0.479Xt − 0.027T − 0.009XtT

− 0.001X2
t +  4 10−4T2 (8)

�C(Lutensol) = 0.2939 +  0.0009Xt −  0.0136T

−  0.002XtT − 0.0054X2
− 0.0006T2 (9)

4.1.  Extraction efficiency

Fig.  2 represents the three-dimensional isoresponse curves of

the studied properties smoothed by the quadratic model (Eqs. (2)

and (3)). Fig. 3a shows that the extent of humic acid extraction (E)

increases with Xt.  In this work, E reaches 98% for 10% Lutensol ON

30. However, the temperature increase has slight effect of humic

acid extraction. This trend was also observed by other researchers

in other extraction systems [34,35,38]. Indeed, the temperature

raise induces simultaneous and opposite effects: it increases the

concentration of solute in the micellar aggregates as a result of the

decrease of (�C) [38]. Besides, one can notice that the extraction

extent obtained with Lutensol ON 30,  is higher than observed using

Dowfax 20B102. The presence of a benzene ring in the hydrophobic

chain of Dowfax 20B102, seems to have a negative effect on humic

acid solubilization.

4.2. Concentration of residual humic acid (Xs.w)

Fig. 3 represents the three-dimensional isoresponse curves of

the studied property (Xs.w), smoothed by the quadratic model (Eqs.

(4) and (5)). In this figure, it is shown that the concentration of

humic acid in the dilute phase Xs.w decreases as Xt ant T increase.

Hence, the first contact between the surfactant and the effluent

solutions, allows solute concentration reduction to about 10 and

60 times using Dowfax 20B102 and Lutensol ON 30, respectively

(Table 1).

4.3. Concentration of  residual surfactant (Xt.w)

The concentration of residual surfactant (Xt.w) is a  very impor-

tant parameter. The high loss of surfactant in the dilute phase can

compromise the process reliability. Indeed, the presence of another

contaminant in the dilute phase, is sufficient to make the pro-

cess useless. Although these surfactants are known by their good

biodegradability proprieties, it would be detrimental to  squander

them in the dilute phase.

The  behavior of (Xt.w) according to  Xt and T is shown in  Fig. 4

(smoothed by the quadratic model Eqs. (6) and (7)). This figure

shows that the residual concentration of surfactant is low at high

temperature and low surfactant concentration. These results are

in good agreement with previous studies using polyethoxylated

alkylphenols [37] as  well as  other polyethoxylated alcohols [38].

Indeed, the heating de solvates gradually the surfactant hydrophilic

groups and thus it reduces its hydrophilic character. In general, the

desolvation energy of the surfactant molecule can be  associated

with its energy transfer from the hydrophilic (aqueous solution)

to the hydrophobic medium (micellar system). One can notice in

Fig. 4  that the remaining concentration of Lutensol ON 30 in the

dilute phase after the extraction, is higher than that obtained using

Dowfax 20B102. Such result can be explained by the fact that the

cmc of Lutensol ON 30 (cmc = 0.2 g/L) is higher than that of Dowfax

20B102 (cmc = 0.08 g/L). Hence, Lutensol ON 30 is more soluble in

water than Dowfax 20B102.

4.4.  Volume fraction of coacervate

In  order to increase the concentration factor of solute, a mini-

mal volume fraction of coacervate (�C) should be obtained when

temperature increases. In effect, according to Fig.  5, the smoothed

value of �C using Eqs. (8) and (9) is low at high temperature and low

surfactant concentration. However, high surfactant concentrations

induce more surfactant loss in the dilute phase (Fig. 4). Although

the surfactant is biodegradable, this loss is not economical. So the

optimization of the process needs to compromise between the four

studied parameters E, Xs,w, Xt.w and �C.  It should be pointed out

that this observation had also been done either by us and others

[34,37,38,40]. Indeed, less surfactant concentration should be used

to have a  smaller volume fraction of coacervate. On the basis of this

finding, optimal values of �C (i.e. 0.1 and 0.3) were obtained using

4 wt.% Dowfax 20B10 and 4 wt.% Lutensol ON 30 at 50 ◦C and 40 ◦C,

respectively.

Table  1

Some  experimental  results of the extraction  parameters  (E,  Xs,w ,  �C , R2 and  Xs,0/Xs,w).

[XT (wt.%),  T  (◦C)]  E  (%)  Xs,w (mg/L)  Xt,w (wt.%)  �C Xs,0/Xs,w
a

Lutensol  ON 30  R2 = 0.994  R2 =  0.990 R2 = 0.968  R2 =  0.957

[2,  30]  76.681  23.319  0.102 0.060  4.288

[2,  36]  79.864  20.136  0.090  0.050  4.966

[2,  42]  81.080  18.920  0.078 0.050  5.285

[6,  36]  92.201  7.799 0.087 0.200  12.822

[6,  42]  94.027  5.973 0.072 0.070  16.742

[10,  42] 98.340 1.660 0.115  0.050  60.240

Dowfax  20B102 R2 = 0.989  R2 =  0.995  R2 = 0.959  R2 =  0.962

[1,  36]  67.026  32.974  0.024 0.075  3.032

[1,  42]  70.012  29.988  0.021 0.050  3.334

[1,  48]  71.089  28.911  0.012 0.030  3.458

[5,  42]  88.102  11.898  0.041 0.300  8.404

[5,  48]  89.017  10.983  0.023 0.100  9.104

[9,  48] 92.287 7.713 0.051 0.150  12.965

a Xs,0 =  100  mg/L  (initial concentration  of humic  acid).



Fig.  1. Effect  of  humic  acid and  CTAB  on the cloud  point  of Lutensol  ON 30  and Dowfax  20B102.

5. Parameters affecting extraction efficiency

5.1. Effect of sodium sulfate

One  can see clearly in Fig. 6  that the electrolyte increases the

extraction extent (E%) of humic acid. The presence of the elec-

trolyte induces a decrease in the solubility of humic acid in water by

salting-out phenomenon. According to Saito and Shinoda [41], the

addition of  electrolyte to non-ionic surfactant solutions increases

their hydrocarbon solubilization capacity, by lowering cmc. This

behavior may be the result of an increase in micellar number in

the  presence of electrolyte. So, the addition of electrolyte to non-

ionic surfactants solutions increases their solubilization capacity

toward organic solute and consequently improves the efficiency of

its coacervate extraction (Fig. 6).

5.2. Effect of cetyltrimethylammonium bromide (CTAB):

extraction by mixed micelles

When nonionic and ionic surfactant co-exist together, they

interact and provide additional beneficial properties to the system.

This interaction results in most cases by a specific association and

Fig.  2. Three-dimensional isoresponse  curves smoothed  by a  quadratic  model,  E  (%) =  f(Xt . T),  calculated  by  the quadratic  model  (Eqs.  (2) and (3)).



Fig.  3. Three-dimensional  isoresponse  curves smoothed  by  a quadratic model,  Xs.w = f(Xt .  T),  calculated  by the quadratic model  (Eqs. (4)  and  (5)).

Fig.  4. Three-dimensional  isoresponse curves  smoothed  by a  quadratic  model,  Xt.w =  f(Xt .  T), calculated  by  the quadratic  model  (Eqs. (6) and  (7)).

Fig.  5. Three-dimensional  isoresponse curves smoothed  by a  quadratic model,  �C = f(Xt .  T),  calculated  by the quadratic model  (Eqs.  (8)  and  (9)).



Fig.  6. Effect  of  the Na2SO4 on  the extraction  extent of  humic  acid  (E%).

the formation of  new and original structures that can lead to syn-

ergistic effects. These micelles are known as “mixed micelles”. The

cloud temperature analysis (Fig. 1) allows us to confirm the forma-

tion of mixed micelles. One can see clearly that the cloud point of

1 wt.% Lutensol ON 30 rises dramatically in the presence of CTAB.

Mixed micelles have positive effects on the extraction ratio of

humic acid (E%). One can see in Fig. 7 that E increases significantly

with increasing CTAB concentration. The positive charge of CTAB

molecules increases the affinity of the negatively charged humic

acid toward the micellar aggregates [42], such results was obtained

in other systems using mixed micelles [37].

5.3. Effect of pH on extraction rate of humic acid: recycling of

surfactant

Humic substances are mixtures of weak acid polyelectrolytes,

widely spread out in soil and natural aquatic environments [37,43].

Following the complexity of their chemical nature, a large num-

ber of models have been developed to describe their acid-base

properties [44,45]. Models known as continuous distribution of

acidity constants values (expressed in terms of pKi = −log Ki), have

been developed. In this model, the acidity distribution of humic

Fig.  7. Effect  of  CTAB  on the  extraction  extent  of humic  acid  (E%).

Fig. 8. Effect  of  pH on the extraction  extent of humic  acid (E%).

substances molecules may be expressed by several functions

[46–48]. Posner [48] showed that the dissociation constants of

humic acid can be described by a  model of pKi values distribution

of its acid sites (4.0 ≤ pK ≤ 9.0), whereas the relative concentration

of each site is normally distributed according to the pKi values.

HAi + H2O ⇆ Ai
−

+ H3O+ (10)

It is also well known that the solute–micelle interactions are

strongly influenced by solute ionization [38]. After the deproto-

nation of a weak acid or the protonation of a weak base, slight

interactions may occur with the surfactant. In these conditions,

a small amount of those species may solubilize, unlike neutral

molecules. Consequently, a  small amount of ionized solute can be

extracted.

In Fig. 8, the results show that the distribution of humic acid

between aqueous and surfactant-rich phase, depends greatly on

the solution acidity. The extraction ratio (E%) increases when the

pH decreases (Fig. 8). This behavior can be explained by the trans-

formation of humic acid to the neutral molecular form at acid pH.

The neutral form of humic acid interacts strongly with the micel-

lar aggregates of nonionic surfactant. This phenomenon was also

observed with fulvic acid (pKa = 4.15) [49]. Hence, separation of

humic acid is  favored by acid pH.

Indeed, pH is  the key-parameter for surfactant regeneration.

Several works have been done on the recycling and recovery of

surfactant solution after the extraction steps, by a simple pH con-

trol [38,50,51]. This requires two steps: the first one concerns the

back-extraction of solutes from coacervate while the second one

relates to the regeneration of the surfactant.

After a first extraction process of humic acid (as weak acid) at

4 wt.% of Lutensol ON 30 and 40 ◦C, the coacervate pH was increased

beyond its pKa equal to 9.0, using Ca(OH)2 to give a complete disso-

ciation of the solute (Table 2) [38,48]. Hence, 87.15% of humic acid

extracted at 40 ◦C can be released from the coacervate to a new

dilute phase (at 75 ◦C and pH 12.4). It  is the maximum pH which

can be reached using Ca(OH)2 with a  solubility limit of 1.53 g/L [52].

Moreover, the previous coacervate was separated into two new

phases at 75 ◦C: a small quantity of the aqueous phase containing

the concentrated solute, and a  new coacervate phase containing

most of the surfactant. In order to  use the surfactant again, it is

necessary to  decrease its pH and to precipitate the base (Ca(OH)2).

Therefore, it is  better to choose an acid forming an insoluble salt

with the base cation, such as H2C2O4).



Table  2

Conditions  for regeneration  of coacervate.

[Ca(OH)2]  (g/L)

in the

coacervate

pH of

coacervate

Concentration (mg/L)

of  humic  acid  release

from  the  coacervate

0 7.62  13.60

0.05 8.24  26.15

0.12 9.56  31.14

0.24 10.08 38.89

0.36 11.12  46.72

0.65 11.56  57.06

0.75 11.89  72.62

1.25 12.21  75.24

1.53 12.40  77.91

Table  3

Results  of three  cycle regeneration of Lutensol ON  30 coacervate.

Settings  Surfactant  from

the  first  back

extraction

Surfactant  from

the  second

back  extraction

Surfactant  from

the  third back

extraction

Es (%) 96.587  81.298  69.758

XTs (%)  11.23  10.13  8.97

Et  (%)  93.58  84.41  74.75

Table 3 summaries the results of surfactant reuse for three suc-

cessive cycles after back-extraction of humic acid, solubilized in

Lutensol ON 30 micelles. The first stage extraction was performed

at 40 ◦C using 10 wt.% of surfactant whereas the back extraction was

achieved at 75 ◦C. One can notice that the extraction extent (Es%)

recovered after humic acid release at pH 12.4 using fresh surfac-

tant, is higher than that obtained with recycled surfactant. As the

back extraction of humic acid is around 87% at pH 12.4, micelles

keep 13% of the humic acid concentration at each extraction/back-

extraction stage. Therefore, Es decreases using recycled surfactant.

Table 3 shows also that the surfactant concentration obtained after

humic acid release from coacervate (XTs%), decreases after the sur-

factant recycling. Indeed, at each extraction/back-extraction stage,

a small amount of surfactant is  lost in the dilute phase, inducing a

lower surfactant recovery percentage.

6. Conclusion

Coacervate extraction was used to separate humic acid from

water. The best compromise between the parameters governing

the extraction effectiveness (surfactant concentration and tem-

perature) was found using a suitable experimental design and

three-dimensional empirical curve fitting. The study showed that

cloud point extraction technique was able to remove soluble pollu-

tants from effluent. Extractions at  temperatures ranging between

40 ◦C and 50 ◦C, allowed to obtain the extraction extents 94% and

97% using 4 wt.% of Dowfax 20B102 and Lutensol ON 30 respec-

tively. Whereas low surfactant concentration (<5 wt.%) should be

used to have smaller volume fraction of coacervate. Na2SO4 and

CTAB increased the extraction extent of humic acid. The extraction

of the solute was high at acid pH range. Moreover, extraction extent

obtained with Lutensol ON 30 was higher than that using Dowfax

20B102. However, humic acid was less extractible at pH above its

pKa.  Indeed, the pH can be a  key-parameter for surfactant regenera-

tion in cloud point extraction process of humic acid. The surfactant

recycling in a  cloud point extraction process seems to be possible

at pH > pKa of the solute.
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