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Abstract The global optimization of constrained Non-Linear Bi-Objective Opti-
mization problems (NLBOO) aims at covering their Pareto-optimal front which
is in general a manifold in R

2. Continuation methods can help in this context as
they can follow a continuous component of this front once an initial point on it
is provided. They constitute somehow a generalization of the classical scalarizing
framework which transforms the bi-objective problem into a parametric mono-
objective problem. Recent works have shown that they can play a key role in
global algorithms dedicated to bi-objective problems, e.g. population based al-
gorithms, where they allow discovering large portions of locally Pareto optimal
vectors, which turns out to strongly support diversification.

In this paper, we provide a survey on continuation techniques in global opti-
mization methods for NLBOO, which allow discovering large portions of locally
Pareto-optimal solutions. We also propose a rigorous active set management strat-
egy on top of a previously proposed certified continuationmethod based on interval
analysis, and illustrate it on a challenging bi-objective problem.

Keywords Non-Linear Bi-Objective Optimization · Continuation · Interval
Analysis · Constraints Activity

1 Introduction

Non-Linear (Constrained) Bi-Objective Optimization (NLBOO) is the problem of
simultaneously optimizing two criteria and can be formally defined as:




min f(x)
s.t g(x) ≤ 0 and h(x) = 0

x ∈ R
n


 (1)
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with x ∈ R
n the decision variables, f : R

n → R
2 the two objective functions,

g : Rn → R
p inequality constraints and h : Rn → R

q equality constraints. Functions
f , g and h can be non-linear.

The feasible region X is the set of decision vectors that satisfy all the con-
straints, i.e., X := {x ∈ R

n|g(x) ≤ 0 and h(x) = 0}. Its image F = f(X ) in the
objective space is called the feasible objective region. A decision vector x ∈ X dom-
inates another decision vector y if f(x) ≤ f(y) (componentwise) and f(x) 6= f(y).
Then, x is called Pareto-optimal if it feasible and not dominated by some other
feasible decision vector, the set of these vectors being denoted by X ∗. Intuitively,
they correspond to optimal trade-offs between the two objectives. They include
the minimizers x∗i of each individual objective fi, whose value f∗i = fi(x

∗
i ) can-

not be dominated. The utopia point f∗ = (f1(x
∗
1), f2(x

∗
2)) is infeasible in general,

inducing the necessity of a trade-off. As in mono-objective optimization, local
Pareto-optimal vectors can be non globally Pareto-optimal. The global optimiza-
tion of Problem (1) aims at finding globally Pareto optimal vectors X ∗. Local
and global Pareto-optimal vectors generally form manifolds of dimension 1 in the
case of (continuous) nonlinear bi-objective optimization. This is a major issue for
global algorithms, whose diversification aims at both avoiding local optimizers and
spreading along these manifolds. In this context, continuation methods can turn
out to be of critical importance in order to locally compute those manifolds.

Continuation methods [1] explore step by step a manifold, usually defined
as the solution set of an under-constrained system of equations F (x) = 0 with
F : Ra+b → R

a, and b = 1 for one-parameter continuation, which is the case in
the present paper. It has a wide range of applications, e.g. polynomial root finding
via homotopy [2], nonlinear eigenvalue problems [3], parametric optimization [33],
robot path planning [23,31], etc. And, multi-objective optimization (e.g., [15]). The
main limitation for their application to multi-objective optimization is that they
generally cannot handle constrained problems. Indeed the presence of inequality
constraints induces non-differentiable break points (singularities) in the followed
manifold. Passing those singularities requires both their detection and handling
correctly the constraints activity.

Several certified continuation methods have been proposed: Some concentrate
on deriving a guaranteed step size, like [2] based on Smale’s α-theory [42], [8]
based on interval analysis or [4] based on the reach of a manifold. Others perform
rigorous computations using interval analysis and employ solution existence pro-
cedures to certify the enclosure of connected portions of the followed manifold [16,
22]. Although more expensive than non certified methods, they can be used within
a global optimization algorithm, since the price of rigorousness can be small with
respect to the price of globality, while certification is a real advantage, e.g. for
enforcing bounds. Continuation alone, even rigorous, is however not sufficient for
the global optimization of Problem (1) since the Pareto front may consist of sev-
eral disjoint components. It must be coupled with a global optimizer whose role
is to attain each component, the continuation role being to cover the attained
components. Hence each assume a different aspect of the diversification process.

In this paper, we first provide a survey of continuation methods used for multi-
objective optimization, providing an homogeneous view over several scalarizing-
based techniques (Section 2), then explaining why continuation based on first-order
conditions is preferable and how it has been used until now. We conclude there is
a lack in handling properly inequality constraints and we propose an adaptation
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of the rigorous continuation method in [22] to this end (Section 3), illustrating a
possible usage for the global optimization of Problem (1).

2 Survey of Continuation Approaches for Bi-Objective Optimization

A Continuation Viewpoint on Scalarizing Methods. A common and traditional ap-
proach when tackling NLBOO is to transform the problem (1) into a mono-
objective problem, parameterized such that its optimizers compose a subset of
X ∗. This process is called scalarization. Scalarizing methods generally apply to
problems with more than two objectives, though for the sake of clarity we will
present them in this context, without loss of generality.

Well-known scalarizing methods are the Weighted-Sum (WS) and the ε-cons-
traint (εC), see [27,6]. They induce the following problems:

WS ≡
[

min λ1f1(x) + λ2f2(x)
s.t x ∈ X

]
and εC ≡




min f2(x)
s.t f1(x) ≤ ε

x ∈ X


 , (2)

where λ1 + λ2 = 1. These problems induce new constraints and parameters that
control the targeted trade-off in F∗. Capturing a specific trade-off using particular
parameters values is not easy, and sometimes impossible. E.g., the weighted sum
can not compute solutions whose objective vector is not on the convex hull of F .
In order to deal with such limitations, more complex methods have been defined.

The Normal Boundary Intersection (NBI) from Das [5] relies upon the Convex
Hull of Individual Minima (CHIM), i.e. the line in the objective space containing
the minima f(x∗1) and f(x∗2). The scalarized problem by NBI can then be stated
as follows:

NBI ≡




max t

s.t fλ + tu = f(x)
x ∈ X


 , (3)

with fλ = λ1f(x
∗
1)+λ2f(x

∗
2), λ1+λ2 = 1, u = (f∗− f(x∗1))+(f∗− f(x∗2)) and t an

additional variable. The point fλ belongs to the CHIM and the vector u is a quasi
normal vector of the CHIM directing towards the utopia point f∗. Therefore, the
NBI consists of finding the objective vector in F the farthest from fλ along the
direction u. The NBI is more reliable than WS or εC, but it may produce non
Pareto-Optimal solutions [5].

The (Normalized) Normal Constraint (NC) fromMessac et al. [24,26] combines
the use of the CHIM and the principle of the εC method. The NC scalarization
of (1) is defined as follows:

NC ≡




min f2(x)

s.t (f(x∗2)− f(x∗1))
T (f(x)− fλ) ≤ 0

x ∈ X


 (4)

As in εC, one objective is minimized while the other is put in a constraint defining
a cutting plane in the objective space, normal to the CHIM. Contrarily to NBI, NC
induces only one additional inequality constraint, although the two methods are
closely related. Insights on how to advantageously select one of the two methods
is given in [18]. Both NBI and NC have limitations, for instance when considering
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more than two objectives. Some improvements of these two techniques have been
proposed [38,28].

Other scalarizing techniques have been proposed, like Physical Programming
(PP) which introduces decision maker preferences in the process, see [25,43]; or the
Directed Search Domain, see [7], in which additional parameters are introduced in
order to orient search domains defined in an NC and PP fashion.

In the context of global optimization, all these methods have in common that
they require solving several instances of the scalarized problem for different pa-
rameter values. This problem is clearly related to Parametric optimization where a
parameter-dependent mono-objective optimization problem is solved for different
parameter values, the goal being to observe how the optimum vary with respect to
the parameters. It is usualy supposed that a slight change of the parameters values
leads to a slight change of the optimum. Hence, starting from one (globally) com-
puted solution, a basic, but efficient, iterative process is to shift the parameters
values and to apply a local solver on the induced new problem, starting from the
previously computed optimum [27]. This iterative process can be seen as a form
of continuation whose attempt is to locally approximate the manifold of Pareto-
optimal solutions. However, it has several drawbacks. First, being local in nature,
the process can easily diverge from the global optimizer of NLBOO. It may be
require to couple the technique with a global approach, e.g. as in [36]. Second,
its performances strongly depend on the selected scalarization and the employed
local solver. Finally, it is not obvious how to sample the parameters values so as
to achieve a well distributed sample of Pareto-optimal solutions.

Another approach in Parametric optimization is based on the use of contin-
uation on the system of equations defined by the Karush-Kuhn-Tucker or the
Fritz-John first-order conditions [35,33]. The single parameter case can indeed
be assimilated to Bi-Objective optimization, as remarked in [34]. They propose a
continuation method based on the WS scalarization of (1) and that implements a
strategy for detecting active set change, a required feature to deal with inequality
constraints since those changes are singular for the system of first-order conditions.
Other singularities can still occur, such as the loss of constraints complementarity,
see [21]. Moreover, this method uses second order otpimality conditions to track
(local) minima of the WS scalarization. Hence, it can not track optimal solutions
that are on the non-convex parts of the Pareto-optimal front.

Continuation Methods in Bi-Objective Optimization. From the work on continua-
tion methods in parametric optimization, Hillermeier [15] has proposed a general
scheme of continuation approaches for Non-Linear Multi-Objective optimization.
Although it does not consider inequality constraints, any number of objectives can
be used. The process consists of locally tracking the manifold of Pareto-optimal
solutions, once a solution is found, implicitly defined by the system of Karush-
Kuhn-Tucker or Fritz-John first order optimality conditions of (1). This system
can be defined as follows:

F (x, λ, r, s) =




∇f(x)λ+∇g(x)r+∇h(x)s

(∀i = 1, . . . , p) gi(x)ri

(∀i = 1, . . . , q) hi(x)

λTλ+ rT r + sT s− 1




= 0, (5)
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with λ ∈ R
2
+, r ∈ R

p
+

and s ∈ R
q. As previously said, the continuation process is

a local technique that requires an initial Pareto optimal solution. Hence, it has to
be coupled with multi-objective global solvers.

One of the first offspring of this scheme is the recovering algorithm of Schütze
et al. [40]. Continuation is used as a repair operator inside a global sub-division
method. This method sub-divides the search and objective spaces in boxes that
are discarded if no solution is found within them. The discarding process is not
guaranteed: a box can be removed while it contains Pareto-optimal solutions.
The recovering algorithm helps to recover those missing boxes using solutions
from neighboring boxes and a continuation process. A similar recovering algorithm
is used by Shütze et al. inside a particle swarm optimizer [39]. The aim of the
recovering algorithm is here to diversify and improve the spread of the population
of the evolutionary metaheuristic. As for Hillermeier [15], this technique has not
been applied to problems with inequality constraints.

Harada et al. in [13] have also proposed to combine a metaheuristic with a
continuation method. This continuation process, called Pareto Path Following
(PPF), is a predictor-corrector algorithm. The predictor step constructs a new
solution using the gradient of the objectives as an initial direction of continua-
tion, which is repaired by the Pareto-descent repair operator [14] and a gradient
projection method for handling constraints. The corrector step uses the Pareto-
descent local search [12]. The authors introduce two new performance measures
for bi-objective optimization (but the many-objective case can be easily derived):
inter-curve coverage which measures the ability of a method to reach each of the
disconnected curves of Pareto-optimal solutions, and intra-curve coverage which
measures the spread of solutions on these components. Eventually, a curved-based
Genetic Algorithm is proposed for bi-objective problems. This algorithm considers
(locally) Pareto optimal curves as atomic elements of the population. A curve is
represented as a cluster of solutions. Genetic crossover operators are applied on
solutions from different curves in order to find solutions on non-discovered curves.
This method supposes that once a Pareto-optimal solution is found, then all the
solutions belonging to the same curve of (locally) Pareto optimal solutions can
be obtained by continuation. Hence, the genetic operators focus on inter-curve
coverage whereas the PPF focuses on intra-curve coverage. This technique shows
better performances at the end of the run than classic Genetic Algorithm, but
it requires more evaluations of the objectives. Although the three objectives and
the constrained case are discussed in [13], only one experiment on a bi-objective
bound-constrained problem is shown.

As stated in [1], solving a system as (5) by continuation is equivalent to solving
a specific system of differential equations. Pereyra [30] has proposed to transform
bi-objective unconstrained convex problems into 2-point boundary value problems.
In that case, the first-order optimality conditions can be defined as:

(1− λ)∇f1(x) + λ∇f2(x) = 0, (6)

with λ ∈ [0,1]. The problem consists of finding the parametric curve x(λ) : [0,1] →
R
n such that (x(λ), λ) satisfies (6) for all λ. Since only convex problems are con-

sidered, this curve represents the Pareto-optimal solutions. It is computed as the
solution curve of the following two-points boundary-value problem:

ẋ(λ) = −H−1
x (x)Hλ(x), x(0) = x∗1, x(1) = x∗2, (7)
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where Hx(x) = (1−λ)∇2f1(x)+λ∇2f2(x) and Hλ(x) = −∇f1(x)+∇f2(x). As for
the NBI scalarization, solving (7) requires to find the minimum of each objective x∗1
and x∗2. The proposed continuation process is a predictor-corrector. The prediction
increments the parameter λ by δλ, and uses the previous corrected solutions as an
initial guess. The correction step is the application of the Newton method on the
system (6). This process produces a set of points that covers the Pareto-optimal
curve. As the time step parameter is λ, the technique suffers the same drawback
of the WS, hence the method is restricted to convex problems. In addition to this
continuation method, Pereyra [30] has proposed additional constraints ensuring
an homogeneous coverage, in the decision or objective space. A parallel algorithm
inspired by the continuation process is also proposed, and shows similarity with
using NBI scalarization. Finally, although the three objectives case is discussed,
all these techniques are asserted only on bi-objective problems.

Another method based on solving a system of differential equation by contin-
uation is the method of Potschka et al. [32]. This method is based on the NBI
or NC scalarization of (1) in the bi-objective case. More precisely, the considered
scalarized problem is as follows:




min f2(x)
s.t g(x) ≤ 0 and h(x) = 0

ut(f(x)− f̂(v)) = 0


 , (8)

with f̂(v) = vf(x∗1) + (1 − v)f(x∗2) and u = f(x∗1) − f(x∗2). The parameter v vary
within [0,1]. As in [34], an active set of constraintsA is used to handle the change of
activity of inequalities. Therefore, active inequalities are considered as equalities,
while inactive ones are not considered. Let he(x, v) be the additional equality
ut(f(x) − f̂(v)). Let L(x, rA, s, se, v) = f2(x) + rAgA(x) + sh(x) + sehe(x, v) the
Lagrangian of (8) considering the active set A, with gA and rA being the vector
of active constraints and multipliers. The induced first-order conditions are given
by:

F (x, rA, s, se, v) =




∇xL(x, rA, s, se, v)

gA(x)

h(x)

he(x, v)


 = 0. (9)

Denoting y = (x, rA, s, se), Potschka et al. [32] have proposed to determine the
curve of solutions of (9), parameterized by v, solving the following ordinary dif-
ferential equation system:

ẏ(v) = (∇yF (y, v))−1(∇vF (y, v)). (10)

The system is solved by continuation through an integrator applied on the variable
v. The set of active constraints is managed such that the process builds feasible
and (locally) Pareto-optimal vectors. This management of A is implemented using
the event detection of the integrator, which triggers changes of the active set on
conditions similar to [34] (i.e. studying the change of the sign of a constraint or of
its multiplier). When a change is detected at a solution x, the active set is updated
according to the constraints that are active at x. As in [30], this continuation
technique moves along a fixed parameter, here v. Hence, it can encounter turning
points, and stops tracking the curve, when the front is perpendicular to the CHIM.
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One limitation of continuationmethods is that they usually require to build the
tangent space of the tracked manifold at each iterate. From a system of n equations
F (x) = 0, the complexity of such an operation is O(n3). Although the complexity
is polynomial, it tends to be very expensive to build tangent space of problems
involving thousands of variables. Ringkamp et al. [37] have proposed a tangent
space approximation technique in the context of continuation for multi-objective
optimization. This technique reduces the complexity of the tangent computation
to O(n2). This approximation method can be applied for any problems where
continuation can be used.

Other continuation approaches to mulit-objective optimization not based on
solving (5) also exist. All the continuation methods presented before requires the
use of the gradient (or hessian) of objectives and constraints. In the case where
gradients are not available, Schütze et al. [41] have proposed to use the descent
method HCS from Lara et al. [17] in order to perform the continuation on uncon-
strained multi-objective problems. This technique is based on the observation that,
without constraints, there is less chances in finding a direction that improves all
objectives at a solution x if this solution gets closer to a (locally) Pareto-optimal
front. On the contrary, the chances of finding a direction of trade-off (i.e. that
improves one objective and deteriorates the other) increases. The idea in [41] is
to build a predictor-corrector technique which uses the HCS to build trade-off di-
rections for predicting new solutions along the Pareto-optimal curve, and to build
improving directions for correcting the predicates. The HCS used in [41] constructs
these two kind of directions by using gradient approximation techniques. These
approximations are also used to determine the length of the continuation step.
Although this can, in theory, be used to solve unconstrained problems with any
number of objectives, only the bi-objective case is asserted.

Finally, Lovison [19] has proposed a study of the global characterization of
Pareto-optimal manifolds, by using first-order conditions different from the ones
of Karush-John. This characterization consists of a piecewise linear approximation
of these manifolds using a Delaunay tessellation of the search space, i.e. a decom-
position of the search space in simplices. Piecewise linear continuation is used to
determine the simplices cut by the manifold. In addition, a process shrinking sim-
plices around the manifold is proposed. The treated problems are unconstrained,
but the methods can be adapted to deal with equalities. Any number of objectives
can be considered. The technique has some limitations. First, the complexity of
the Delaunay tessellation is exponential with the number of variables, hence the
process is limited in problem size. Second, the initial tessellation must be thin
enough in order to guarantee each disconnected components of the Pareto-optimal
manifold are cut by the at least one simplex. Some issues have been partially
answered by Lovison [20]. The author indeed propose a simpler globally conver-
gent version of the algorithm using a decomposition of the search space by regular
(equilateral) triangles, dedicated to solve unconstrained problems with 2-variables
and 2-objectives. The method shares some similarity with [40]: the former captures
the manifold of Pareto-optimal solutions by means of regular triangles, the latter
by means of hyper-rectangles.

Conclusion. All the techniques presented here show a promising direction towards
the design of efficient local methods to use inside a global bi-objective optimization
solver. On non-convex problems, methods that fix a priori a parameter to control
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the continuation, such as scalarizing approaches or the ODE-based continuation,
share a common drawback: They are faced to turning points that stops the con-
tinuation. Techniques based on continuing the first order conditions (5) without
using a fixed parameter, like Hillermeier [15], remove this drawback.

3 Certified Continuation for Constrained Bi-Objective Optimization

Using the certified continuationmethod [22] for performing the continuation on the
first order conditions allows in particular certifying the feasibility, which can turn
out to be critical e.g. when feasible vectors are to be used as bounds in a global
algorithm. However, neither [22] nor Hillermeier [15] handle active constraints,
leading to failure of the continuation process at active constraints change. The
correct handling of such active constraint change allows discovering locally larger
sets of locally optimal solutions, hence

In this section, we present an extension of the certified continuation algorithm
ParCont defined in [22], to be used on bi-objective problems with correct handling
of active constraints change, which is inspired by [34]. This method is based on
interval analysis and parallelotope domains. A brief introduction to these notions
is given. We refer to [29,9] for more details.

3.1 Preliminaries

Interval Analysis and Parallelotope Domains. An interval is a closed connected sub-
set of R. Intervals are denoted by boldface symbols, e.g. x ⊆ R. Lower and up-
per bounds of an interval x are denoted by x ∈ R and x ∈ R, with x ≤ x, i.e.
x = [x, x] = {x ∈ R|x ≤ x ≤ x}. A real number x will be identified with the
degenerated interval [x, x]. A box x ⊆ R

n denotes a vector of intervals. Interval
arithmetic extends elementary operations and functions to interval arguments fol-
lowing the containment principle: any possible real result must be enclosed in the
returned interval result. An interval extension of any function can then be defined
as its evaluation using interval arithmetic. Interval analysis can be used to solve
systems of equations F (x) = 0. For example, interval Newton methods are used
to contract an initial interval or box around a solution of the system. Numeric
proofs of existence and unicity of solutions are build through an interval Newton
operator.

A parallelotope x̂ is the image of a box w through an affine map w → Cw+ x̃.
It is defined by a triple (C,w, x̃), where C ∈ R

n×n, w ⊆ R
n and x̃ ∈ R

n, whose
corresponding parallelotope is x̂ = {Cw+ x̃ ∈ R

n : w ∈ w}. We call C, w and x̃ the
characteristic matrix, box and vector of the parallelotope. The interval hull �x̂ is
easily computed as Cw+ x̃ using interval arithmetic. Parallelotopes are used in [9]
in order to enclose and certify b-manifolds defined by a system F (x) = 0, with
F : Ra+b → R

a. To do so, interval techniques are applied to characteristic boxes
on an auxiliary system G(w) = 0, with G(w) = F (Cw + x̃), whose derivative is
G′(w) = F ′(Cw+x̃)C. The last b components of w are identified to parameters: w is
split into w = (u, v) with u ∈ R

a and v ∈ R
b. The aim is to build parallelotopes x̂ =

(C, (u,v), x̃) that contain a solution for each parameters values in their domain,
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F (x) = 0uk

vk

h

ŷk

c c

Fig. 1 Left: A parallelotope x̂k = (Ck , (uk, vk), x̃k) constructed by ParCont. Left: Successive
steps of ParCont. c is a singular point of F (x) = 0.

i.e. satisfying

∀v ∈ v, ∃u ∈ u, G(u, v) = 0. (11)

This property expresses that the manifold crosses the whole parallelotope along
the parameter subspace. Proofs of this property can be obtained through a dedi-
cated interval Newton method, see [9]. It also proves that the crossed manifold is
continuously differentiable.

The Certified Continuation Method ParCont. In [22], the authors have proposed a
certified and interval-based continuation method ParCont. The method constructs
by continuation a paving with parallelotopes of a one-manifold, implicitly defined
by a system F (x) = 0, F : Rn → R

n−1, hence avoiding the costly global search
performed in [9]. The process is certified, i.e. the paving is proved to contain a
unique continuous curve of solutions. ParCont can be seen as an intervalization of
the arc-length continuation.

ParCont takes as input a system F (x) = 0 implicitly defining a one-manifold,
an approximate initial solution x0 on the manifold and a search domain x

init.
It also considers a direction d ∈ {−1, 1} of continuation that allows performing
the continuation in each direction from x0. ParCont constructs and returns two
sequences of parallelotopes (x̂1, . . . x̂K) and (ŷ0, . . . , ŷK). Each parallelotope x̂k is
built such that it is proved being crossed by a unique solution curve from the input
edge x̂

in

k = (Ck, (uk, vk), x̃k) to the output edge x̂
out

k = (Ck, (uk, vk), x̃k). Each
parallelotope ŷk is a contraction of the output edge of x̂k, i.e. a tight enclosure of
the single solution of the curve in x̂

out

k . The exception being ŷ0 which encloses the
solution on the input edge of x̂1. Each iteration k of ParCont builds a parallelotope
x̂k (and ŷk) in the direction of continuation and of length h along the manifold,
starting from ŷk−1. An iteration k may fail, which induces a reduction of the
length of the continuation step h, and the restart of the iteration k. Figure 1
displays several steps of ParCont. Singular solutions along the manifold cannot be
certified, hence triggering a failure of the iteration. The step length is decreased
accordingly, and therefore the method will conserve toward the singularity in case
some are present on the manifold, as illustrated on Figure 1.

The algorithm stops once the tracked manifold provably 1) exits the search
domain x

init, 2) loops or 3) the step length h becomes too short. Correctness,
termination and asymptotic convergence of the method are proved in [22]. The
complexity of one iteration of ParCont is O(n3). The total number of iterations
depends on the length of the manifold within x

init and on the conditioning of F .
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a

d

c b

e

a

d

c b

e

ẑk

ẑ k
+
1

Fig. 2 Bi-objective problem of Example 1.

3.2 Adapting ParCont to Bi-Objective Optimization

Consider a NLBOO problem as (1) and its system F of first order conditions
as (5), involving variables x ∈ R

n and multipliers λ ∈ R
2
+, r ∈ R

p
+ and s ∈ R

q. We
denote by z = (x, λ, r, s) the vector of these variables and multipliers and consider
ParCont iterates on parallelotopes ẑk.

Some singularities in F are triggered at changes of the active set of constraints,
i.e. at solutions z where there is a constraint i with gi(x) = 0 and ri = 0. The
equation gi(x)ri = 0 actually consists of the product of two zero quantities. Hence,
two paths are possible, one where gi(x) 6= 0 and ri = 0 (only the part gi(x) ≤ 0 is
feasible), the other where gi(x) = 0 and ri 6= 0 (only the part ri ≥ 0 is feasible).

Example 1 Consider the bi-objective problem with f1(x) = (x1+1)2+x2
2, f2(x) =

(x1−1)2+x2
2 and inequality constraint g(x) = x1−x2 ≤ 0. Variables of F are here

z = (x1, x2, λ1, λ2, r). This problem is illustrated in the left hand side graphic of
Figure 2 in the plane (x1, x2). The solution c = (0,0,

√
2/2,

√
2/2, 0) is singular for

F . The curve of solutions bifurcates at this point in two paths: The path from a =
(−1,0, 1,0, 0) to b = (1, 0,0, 1, 0) satisfies r = 0 but is infeasible from c to b (g(x) >
0); the path from d = (0.5,0.5,0,

√
2/2,

√
2/2) to e = (−0.5,−0.5,

√
2/2, 0,−

√
2/2)

satisfies g(x) = 0 but is infeasible from c to e (r < 0).

Given a set A of active constraints, it is known (see [34]) that applying a
continuation on the full system of first order conditions (5) is equivalent to applying
it on a reduced system involving only the active constraints:

FA(x, λ, r, s) =




∇f(x)λ+∇gA(x)rA +∇h(x)s

(∀i ∈ A) gi(x)

(∀i = 1, . . . , q) hi(x)

λTλ+ rT r + sT s− 1




= 0, (12)

with x ∈ X , r ≥ 0 and λ ≥ 0. Note that ri = 0 for all i 6∈ A. As ParCont cannot
handle singularities, it is preferable to apply it on (12) than on (5), but it requires
managing correctly the active set.

Let Ak be the set of active constraints at iteration k of ParCont, and ẑk =
(Ck, (uk,vk), z̃k) a parallelotope certified to contain solutions of (12), i.e. con-
dition (11) holds in ẑk. In order to maintain a correct active set for the next
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iteration of ParCont, it is required to determine changes in Ak that occur on the
solution curve contained in ẑk. To this end, we introduce the following Constraint
Satisfaction Problems (CSP) for each constraint gi:

[
z = Ck(u, v) + z̃k, FAk

(z) = 0, γi(z) = 0
u ∈ uk, v ∈ vk

]
, (13)

whose variables u and v take their values in uk and vk respectively, i.e. the char-
acteristic box of ẑk. The virtual variables z, and the first constraint, express the
transition from the parallelotope basis. The second constraint enforces (12). The
third constraint deals with the activation/disactivation of inequality gi: The func-
tion γi(z) is defined as gi(x) if i 6∈ Ak, or as ri if i ∈ Ak. Since (11) holds for (12)
in ẑk, there is an unique solution to the equations FAk

(z) = 0 for each v ∈ vk.
Hence, solving (13) can be done by performing an unidimensional search in the
domain vk of variable v, whose complexity is generally low. In addition, since only
the first change of activity is of interest, a single solution is computed, the one
closest to vk.

Changes in the active set must be certified for ParCont to remain rigorous.
To this end, we propose to solve (13) with an interval-based branch and prune
method, adapted to the specificities of this problem (i.e. it branches only on the
domain vk of the variable v, and uses only the interval Newton). For each CSP (13),
the method returns either no solution, thus proving no change of activity occurs
in ẑk for this constraint; or one certified solution box (ui

k,v
i
k) identifying a ver-

ified change; or one non-certified solution box if the computational precision is
insufficient.

At each iteration of ParCont, once a parallelotope ẑk has been certified, a
CSP (13) is solved for each constraint gi. Only the first change among all the
returned (certified or not) boxes (ui

k,v
i
k) is considered. If at least two computed

boxes are candidates (the solutions boxes are overlapping), or if the first box is
non-certified, we fail to certify a change of the active set, a failure of the iteration
k of ParCont is triggered and the step size is reduced. Therefore, we cannot decide
a situation where two activation changes occur at the same place1. Otherwise, a
change has been certified. The corresponding box (ui

k,v
i
k) is used to build ŷk, the

output edge parallelotope of ẑk, and the active set Ak+1 for the next iteration can
be constructed accordingly. Note that if the activation status of the constraint gi
has changed on the previous step of ParCont then the first solution is the reverse
change of activity of this constraint, which must be avoided. In this case, the
second change of activity of gi has to be considered instead of the first. The two
parallelotopes built following this procedure are illustrated on the right hand side
graphic of Figure 2.

This strategy for maintaining the correct active set of constraint has been incor-
porated in ParCont. The stopping criterion of ParCont based on the search domain
only considers the domains of λ1 and λ2 (i.e. λ1, λ2 ≥ 0), the non-negativeness of
the multipliers ri being maintained by the active set strategy. Note that the pro-
posed adaptation only deals with singularities of (5) induced by a change of the
active set, but other singularities, such as the loss of constraint qualification, can-
not be handled.

1 Note that such coincident changes of activation are unstable, since an arbitrarily small
perturbation of the constraint can remove it. Therefore, they cannot be handled numerically
with certification.
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Fig. 3 Captured Pareto-optimal curve of (14) in the objective space.

3.3 Illustrative Experiment

ParCont and its adaptation to NLBOO have been implemented in C++ using
the RealPaver [11] API, implementing routines such as interval Newton methods
and many other constraint solving techniques, and using Gaol [10] for interval
arithmetic. This experiment has been run on a computer under Linux Ubuntu
version 11.10, with processor Intel i5-2400 3.10GHz and 4Gb of RAM. Parameters
of ParCont are tuned as prescribed in [22].

We consider the bi-objective problem from [44] for the design of a speech
reducer:



min f1(x) = 0.7854x1x
2
2(

10x2
3

3
+ 14.933x3 − 43.0934)

− 1.508x1(x
2
6 + x2

7) + 7.477(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7)

min f2(x) =
√

(745x4/x2x3)2 + 1.69× 107/0.1x3
6

s.t g1(x) =
1

x1x2
2
x3

− 1

27
≤ 0; g2(x) =

1

x1x2
2
x2
3

− 1

397.5
≤ 0

g3(x) =
x3
4

x2x3x4
6

− 1

1.93
≤ 0; g4(x) =

x3
5

x2x3x4
7

− 1

1.93
≤ 0

g5(x) = x2x3 − 40 ≤ 0; g6(x) =
x1

x2

− 12 ≤ 0

g7(x) = 5− x1

x2

≤ 0; g8(x) = 1.9− x4 + 1.5x6 ≤ 0

g9(x) = 1.9− x5 + 1.1x7 ≤ 0; g10(x) = f1(x)− 3300 ≤ 0

g11(x) =
√

(745x5/x2x3)2 + 1.575× 108/0.1x3
7 − 1100 ≤ 0




, (14)

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9
and 5 ≤ x7 ≤ 5.5. Note that the variables domains are considered as inequality
constraints. They will be denoted g

xi

and gxi
for respectively the lower and upper

bound constraint of xi. Last, we consider a relaxed problem: The variable x3,
originally an integer, is consider as a real variable. We apply ParCont at two
different starting points: The minimum of f1 and the minimum of f2. The obtained
Pareto-front is shown in Figure 3. ParCont has taken 0.25 seconds and produced
48 parallelotopes to obtain these results.

The points a, b, c and d correspond to solutions on which a change of A occurs.
The first application of ParCont computes an enclosure from a to c, and the second
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from d to c (these two curves are actually connected by solution with negative
λ multipliers). The obtained solutions show that the constraints g7, g9, gx2

and

g
x7

are always active. Constraints reported in Table 1 change activity during the

process, the others are inactive along the Pareto front.

Table 1 Change of A: + means activated, − means disactivated

Constraint a→ a a→ b b→ b b→ c c→ c c← c c← d d← d

g8 − − − + + + + +
g
x4

+ + + − − − − −

g
x6

+ − − − − − − −

gx6
− − − − + + + +

g
x3

+ + + + + + − −

g10 − − − − − − − +

Consider first the path from a to c. Table 1 shows that 7 constraints, for 7
variables x, are active at its start a. Hence, the active set of constraints form a
square system of equations uniquely defining the values of x. In such situation, the
Pareto manifold remains constant in x, but moves in the multipliers space (λ, rA).
The disactivation of g

x6

is finally observed, allowing the continuation to exit a.

On the path a → b, 6 constraints are active, hence the continuation tracks other
solutions in the variable space, and in the objective space. When reaching b, g8
activates. Again, 7 constraints are active such that a path b → b is followed in the
multiplier space until the detection of the disactivation of g

x4

. The path b → c has

6 active constraints, and reaches c by activating the constraint gx6
.

Consider now the path from d to c. As for the other starting solution, 7 con-
straints are active at d. A path d → d in the multipliers space is followed until
the disactivation of g10. Then, the continuation tracks solutions from d → c, and
reaches c by activating the constraint g

x3

. The point c shares the same x values

in both paths. However, those paths are connected by solutions having negative
objective multipliers (λ < 0). Authorizing negative λ would allow connecting those
curves, but it may result in producing non Pareto-optimal solutions elsewhere.

4 Conclusion

We have presented in this paper an overview of continuation techniques for NL-
BOO problems: local techniques that follow curves of (locally) Pareto-optimal
solutions. Techniques based on the framework in [15], i.e. applying a continuation
process on the system of optimality conditions, show a better behavior on non-
convex problems than other approaches, like methods based on the local solving
of scalarized problems. However the former approaches generally do not handle
inequality constraints.

To overcome this limitation, we have introduced a certified continuationmethod
for NLBOO, based on interval analysis, that handles inequality constraints through
an active set management process. It certifies changes of constraints activity pro-
vided that these changes occur one at a time. Applied to a complex constrained
problem, the approach shows its ability to track the Pareto-optimal curves with
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guarantee of feasibility and optimality with respect to the first-order conditions.
Such certificates of feasibility are helpful in global solvers, e.g. population based
algorithms or branch and bound, as they can be used to accurately and rigorously
construct bounds.
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