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Hydrodynamics of gas-liquid Taylor flow in rectangular

microchannels

Thomas Abadie * Joélle Aubin - Dominique Legendre -
Catherine Xuereb

Abstract The effect of fluid properties and operating
conditions on the generation of gas-liquid Taylor flow in
microchannels has been investigated experimentally and
numerically. Visualisation experiments and 2D numerical
simulations have been performed to study bubble and slug
lengths, liquid film hold-up and bubble velocities. The
results show that the bubble and slug lengths increase as a
function of the gas and liquid flow rate ratios. The bubble
and slug lengths follow the model developed by Garstecki
et al. (Lab chip 6:437-446, 2006) and van Steijn et al.
(Chem Eng Sci 62:7505-7514, 2007), however, the model
coefficients appear to be dependent on the liquid properties
and flow conditions in some cases. The ratio of the bubble
velocity to superficial two-phase velocity is close to unity,
which confirms a thin liquid film under the assumption of a
stagnant liquid film. Numerical simulations confirm the
hypothesis of a stagnant liquid film and provide informa-
tion on the thickness of the liquid film.

Keywords Microchannel - Gas-liquid Taylor flow -
Microreactor - Visualisation experiments -
Numerical simulation
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Cross-section area (m?)
Color function (VOF) (—)
Diameter (m)

Break-up frequency (s~ ')
Capillary force (Pa/m)
Constant (—)

norms in the spurious currents evaluation (m/s)
Length (m)

Constant (—)

Normal to the interface (—)
Pressure (Pa)

Flow rate (m’/s)

Radius (m)

Velocity (m/s)
Dimensionless velocity (—)
Width (m)
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Greek letters

o Volume fraction (—)

f1. Constant (—)

0 Liquid film thickness (m)

o; Dirac distribution (interface) (=)
& Fraction of area (—)

A1 Constant (—)

u Dynamic viscosity (Pa . s)
0 Density (kg/m®)

o Surface tension (N/m)

X Viscous stress tensor (Pa)
Subscripts

B  Bubble

ch  Channel

G  Gas phase (air)



h Hydraulic

in  Gas inlet
L  Liquid phase
S Slug

SC Spurious currents
TP Two-phase

Dimensionless numbers

Bote  Bond number Bo = £L6)%s
g
Ca i — MUr
TP Capillary number Ca -
Retp  Reynolds number Re = @
L
U2pd
Werp  Weber number We = A

1 Introduction

The interest of the process industries in microreaction
technology for process intensification has become
increasingly important over the recent years. Amongst the
different applications, microreactors are particularly inter-
esting for fast highly exothermic and/or mass transfer
limited gas—liquid reactions since heat and mass transfer
are remarkably intensified. Although miniaturized devices
are already implemented in industry, the engineering
methodologies for the design and integration of microre-
actors in existing processes are still not clearly defined. The
development of such methodologies requires fundamental
understanding of the physical phenomena that control the
process operation and the specificities of equipment design.
To date, research on gas—liquid flow in microchannels
has mainly been dedicated to the study of flow patterns in a
range of microchannel geometries and the development of
flow pattern maps based on superficial gas and liquid
velocities (e.g. Triplett et al. 1999; Waelchli et al. 2006;
Yue et al. 2007, 2008) or superficial Weber numbers
(Akbar et al. 2003). Slug or Taylor flow is the flow con-
figuration that occurs for a large range of flow conditions,
from low to average superficial gas and liquid velocities.
Taylor flow is characterized by regular sized bubbles that
are longer than the microchannel width or diameter and
separated by slugs of liquid. The bubbles fill almost all the
entire cross-section of the channel and are separated from
the wall by a thin liquid layer. Taylor flow in microreactors
is an interesting flow regime because it intensifies both
mass and heat transfer due to the fluid recirculation gen-
erated in the liquid slug (Gupta et al. 2010; Leung et al.
2010; Sobieszuk et al. 2008; Yue et al. 2007, 2008).
However, controlling the flow regime and the characteristic
size of the gas-liquid dispersion remains a difficult task.
These characteristics depend not only on the physical
properties of the fluids but also on the operating conditions,
the microchannel geometry and material of fabrication.

T-junction geometries are relatively popular for the pro-
duction of bubbles in microchannels (Garstecki et al. 2006;
van Steijn et al. 2007; Yue et al. 2008; Yun et al. 2010) and
the correlation of bubble sizes as a function of the superficial
gas and liquid flow rates generated in these geometries has
been the subject of several works (Garstecki et al. 2006; van
Steijn et al. 2007; Yue et al. 2008; Yun et al. 2010). Few
studies, however, have dealt with the effects of fluid prop-
erties, such as viscosity and surface tension, on bubble
generation (Garstecki et al. 2006; Qian and Lawal 2006;
Pohorecki and Kula 2008). Under the flow conditions in
these studies, bubble size has been shown to be slightly
dependent or not at all on viscosity and surface tension.

The liquid film hold-up around Taylor bubbles is also of
main importance for heat and mass transfer in microchan-
nels. The knowledge of the amount of liquid surrounding
bubbles in small tubes has been studied for a long time
(Aussillous and Quéré 2000; Bretherton 1961; Giavedoni
and Saita 1997; Han and Shikazono 2009a), since the first
experiments in 1961 by Taylor in circular capillaries, and
more recently in microchannels of different cross sections
(Han and Shikazono 2009b; Kreutzer et al. 2005a, b; Wong
et al. 1995; Yunet al. 2010) where correlations of liquid film
thickness as a function of various dimensionless numbers
have been developed. Nevertheless, the exact relationships
between the microsystem parameters (e.g. geometry and
fluid properties) and the characteristics of the gas—liquid flow
(e.g. bubble velocity, bubble and slug lengths, and liquid film
thickness) are still not clear.

The present work aims at improving the fundamental
understanding of gas—liquid Taylor flow in microchannels,
which will contribute to the design and development of
microreactors for the chemical process industries. In par-
ticular, the objective of this study is to investigate the
effects of the physical properties of the fluids and the flow
rates on the characteristics of the Taylor dispersion gen-
erated in a T-junction microchannel. Visualisation experi-
ments and direct numerical simulations have been
performed to obtain information on the bubble generation
mechanism, bubble velocity, bubble and slug lengths, as
well as the liquid film surrounding the bubble body.

2 Experimental setup
2.1 Microchannel characteristics

Rectangular cross-section microchannels have been etched
through a silicon wafer plate using the deep reactive ionic
etching (DRIE) technique, sandwiched between glass
wafers and bonded using anodic bonding. The gas and
liquid are contacted using a side-entering T-junction as
shown in Fig. 1 and the main channel has a meandering
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Fig. 1 Side entering T-junction, Meandering microchannel with
curved bends, w i, = I mm = w, wgj, =525 um, h =400 um, dj, - 571 um,
1-30 cm

topology with curved bends for reasons of compactness.
The liquid is flowing in the main channel while the gas is
supplied perpendicularly via a narrower channel. The width
of the main channel and the gas inlet are w = 1 mm and
Wgin = 525 pm, respectively. The ratio of the widths of the
gas and liquid inlets corresponds to the lower limit rec-
ommended by Garstecki et al. (2006) for generating Taylor
flow via the squeezing mechanism. The depth of the mi-
crochannel is fixed by the thickness of the silicon wafer,
h =400 pm and the total length is approximately 1-3 cm.
These dimensions lead to a hydraulic diameter d, =
571 pm and an aspect ratio w/h = 2.5.

2.2 Flow control equipment

Several liquids have been tested to cover a wide range of
dimensionless numbers with the feeding equipment avail-
able and air has been used as the gas phase for all of the
experiments. Air is supplied from a pressurized vessel and
controlled by a mass-flow controller (HORIBA SEC 7320),
which allows a volumetric flow rate ranging from 0.00 to
1.00 mL/min with a precision of 0.02 mL/min. Liquid flow
is controlled using a syringe pump, which allows flow rates
in the range of 0.000-1.000 mL/min with a precision of
0.002 mL/min. All experiments were conducted under
room temperature and pressure. The temperature of the gas
and liquid phases was monitored by thermocouples that are
inserted in to the feeding tubes just before the micro-
channel inlets. The fluid properties are evaluated according
to the temperatures measured in each experiment.

2.3 Measurement method

High speed imaging has been used to obtain characteristic
information on the gas-liquid Taylor flow. Images have
been recorded with a high-speed camera (CCD HCC-1000,
VDS Vossmuller GmbH) with frame rates up to 462 fps at
full resolution (1024 pix x 1024 pix) and a shutter time
short enough to obtain a distinct gas—liquid interface (about
1 ms in our experiments). A backlight was employed to
provide enough light throughout the exposure period. A
significant number of image sequences were recorded to
get a representative sample of bubbles passing through the
observation window and to identify unsteady flow situa-
tions, which were characterized by irregular bubble
lengths.

For the measurement of bubble and slug lengths and
bubble velocities, images have been taken in a straight
section between two bends and approximately halfway
along the length of the channel defined by the rectangular
zone shown in Fig. 1. As shown in Fig. 2, the bubble
length is evaluated between the extremities of a bubble
while the slug length is calculated as the average of the
slugs immediately before and after the bubble. From the
simulations, the liquid film thickness between the bubble
and the walls is characterized by the averaged value along
the bulk of the bubble 4, i.e. not including the bubble nose
and rear end.

Mean bubble and slug lengths were determined using
between 20 and 100 bubbles depending on the flow.
Average bubble velocities were evaluated by following the
gas-liquid interface at the bubble tip between the entrance
and the exit of the observation window, averaging the data
of 20-100 bubbles.

2.4 Fluid properties and operating conditions

Reference experiments were carried out using an ethanol-
air system, which allows a regular and relatively easy
bubble formation in the silicon-glass microchannel (Volkel
2009). The effects of surface tension on bubble generation
and hydrodynamics have been studied using water and an
ethanol/water solution. Sugarcane syrup solutions (SCS)

Fig. 2 Contacting section: bubble formation. The notations used are:
Qg,. for gas and liquid flow rates, Ly s for bubble and slug lengths, 6
the liquid film thickness, Ug the bubble velocity and Utp the
superficial two-phase velocity (Urp = UL + Ug)



Table 1 Fluid properties (at room temperature 7' = 22-23° C)

Fluid pL (kg/m)  p (Pa-s) o (N/m)
Air 1.204 1815 x 107> -
Water 998 134 x 1073 0.068
Ethanol 795 1.15 x 1073 0.022
Diluted ethanol (33%) 930 24 % 107° 0.037
Sugarcane syrup 1,318 1.4 x 1071 0.085
Diluted sugarcane 1,163 4.6 x 107° 0.076

syrup (50%)

have been tested to change the viscosity of the carrier fluid.
The properties of the fluids used have been measured and
are reported in Table 1. The percentages indicated for
ethanol/water and sugarcane syrup/water solutions are
volume ratios.

Table 2 summarises the ranges of velocities and
dimensionless numbers explored in the experiments. The
two-phase dimensionless numbers are based on the physi-
cal properties of the liquid and the two-phase velocity,
which is the sum of gas and liquid superficial velocities.
The superficial velocity is defined as the ratio of the phase
flow rate to the channel cross-sectional area, i.e. ULg =
Or.c/Ach-

In terms of dimensionless numbers, the values of the
capillary number (ratio of the viscous effects to capillary
effects) and the Weber number (ratio of the inertial effects
to capillary effects) used in this study indicate that the
dominant force in these flows is the capillary force. The
Reynolds numbers show that for ethanol, water, ethanol/
water and diluted sugarcane syrup, the inertial term dom-
inates the viscous term, howerver this trend is inverted
when sugarcane syrup is used. Finally, the Bond number
(ratio of the gravitational effects to capillary effects) is less
than unity (Bom,x = 0.11) for all cases and, therefore, the
surface tension dominates the gravitational effects. Under
these dimensionless flow conditions, and despite the low
velocities used, Taylor flow is, therefore, expected since
Akbar et al.’s (2003) universal criterion Wers < 3 and
Wegs < 0.11Wel3'5 is respected.

3 Numerical simulations
3.1 Governing equations and numerical schemes

The numerical code used for this study is the JADIM code
(Dupont and Legendre 2010), which has been developed to
simulate dispersed two-phase flows. The interface captur-
ing technique implemented in this code is the volume of
fluid method (VOF), which consists of a FEulerian
description of each phase on a fixed grid. Under the
assumptions that (1) the fluids are Newtonian and incom-
pressible, (2) there is no mass transfer at the interface, (3)
the flow is isothermal and (4) the surface tension is con-
stant, the fluid flow can be described by the classical one
fluid formulation of the Navier—Stokes equations:

V.U =0
U
p(§+(U~V)U> =

where I is the viscous stress tensor (X = u(VU + VUT)),
g is the acceleration due to gravity, Fos = —a(V - n)nd; is
the capillary contribution whose calculation is described
below, o is the surface tension, n the normal to the interface,
Oy is the Dirac distribution localizing the interface, and
p and p are the local density and dynamic viscosity,
respectively. The density and viscosity are deduced from
the volume fraction of one phase (or colour function) C by a
linear interpolation:

Cp;+(1=C)p,
Cuy+ (1 - Oy

(1)

~VP+V-X+pg+F,, (2

(3)
(4)
where the volume fraction is C = 1 in cells filled with
fluid 1, C = 0 in cells filled with fluid2 and 0 < C < 1
in cells that are cut by the interface. Additionally, the

transport equation of the colour function is solved to
capture the interface between the phases:

oC
5 tU-VC =0 (5)

p:
‘u:

In many VOF methods employed to capture the interface, a
reconstruction technique step is used to control the thickness

Table 2 Velocities and dimensionless numbers of the fluids used in the experiments

Fluids O (mL/min) Qg (mL/min) Uy (1072 m/s) Ug (107> m/s) Rerp Carp 1072 Werp 1072 Bo

Air—ethanol 0.2-1 0.04-1 0.83-4.2 0.17-4.2 4-32.9 0.52-4.35 0.21-14 0.115
Air—ethanol (33%) 0.3-1 0.06-1 0.83-4.2 0.17-4.2 33-185  097-54  0.32-10 0.080
Air-water 0.2-1 0.04-1 0.83-4.2 0.17-4.2 10.6-35.5 049-1.64 052-58  0.047
Air-sugarcane syrup 0.002- 0.2  0.05-1 0.0083-0.83  0.213-4.2 0.03-0.07 10-21 0.035-0.14  0.050
Air-sugarcane syrup (50%) 1 0.2-1 42 0.83-4.2 7.2-12 3.03-5.04 226 0.049




of the interface. In JADIM, the interface location and
thickness are both controlled by an accurate algorithm
based on Flux-Corrected Transport schemes (Bonometti and
Magnaudet 2007).

The equations are discretized on a staggered grid using
a finite volume method and all spatial derivatives are
approximated using second-order centered schemes. The
time scheme used to compute the advective terms in the
Navier—Stokes equations is a third-order Runge—Kutta type
scheme, while the viscous stresses are solved using a semi-
implicit Crank—Nicolson method. The incompressibility is
ensured using a projection method, which consists in
splitting the velocity field into two contributions: a rota-
tional one, which gives a predicted velocity field calculated
semi-implicitely, and a potential one, which is obtained
from a pressure correction solution of a pseudo-Poisson
equation whose divergence is null.

3.2 Capillarity contribution
3.2.1 Continuum surface force method

The capillary contribution F,¢ is of main importance in
flows controlled by capillarity as is the case in micro-
channels. The numerical method used to solve the inter-
facial force is the continuum surface force (CSF) proposed
by Brackbill et al. (1992). The localization of the interface
is available through a non-zero gradient of volume fraction
and the curvature is calculated from the volume fraction
gradient. Thus, the surface force F, 5 is transformed into a
volume force F, y by distributing its effects over grid points
in the vicinity of the interface in a region of thickness of
few cells where VC # 0:

vC
-
' vy

curvature

Y (6)

localization/orientation

The discretization of the capillary force (Eq. 6) is well
known to produce artificial vorticity in the vicinity of the
interface and unphysical streams called ‘spurious currents’.
Following the method of Brackbill etal. (1992), a
smoothing step on C is introduced to decrease the varia-
tions in the curvature and reduce spurious currents.

3.2.2 Characterization of spurious currents

The objective of this section is to characterize the spurious
currents for microchannel geometries. The spurious veloci-
ties generated by the calculation of the capillary term are
measured using two norms as introduced by Renardy and
Renardy (2002) and Francois et al. (2006) corresponding to
the maximum spurious velocity (/) and the averaged spu-
rious velocities in the domain (/,), respectively:

I = I}?}a]}(HUi,j,kH) o
1

I = o |

1 NXN}YNZU;H 1,‘|7k|| ( )

To characterize the intensity of these spurious currents,
a simple configuration has first been analysed (Francois
et al. 2006; Dupont and Legendre 2010). A circular drop of
radius Ry = 1 mm is placed at equilibrium at the center of
a gas domain [, x [, =4 x 4 mm?. The computational
domain is divided regularly in the x- and y-directions into
96 meshes which corresponds to a uniform spacing in both
directions of Ax = Ay = 1,/96 ~0.042 mm. The condition
imposed at the boundaries is zero velocity and the initial
condition on the velocity field is zero. The fluid properties
for this test are p; = 10° kg/m’, pg = 1 kg/m® for the
liquid and gas densities, i, = 1072 Pa-s,ug = 107> Pa-s
for the liquid and gas viscosities and ¢ = 0.072 N/m for
the surface tension.

Secondary tests have been performed for the geometry,
fluid properties and boundary conditions corresponding to
the microchannel flows considered in this study. Half of a
2D Taylor bubble /g, = 0.72 mm and /g, = 0.16 mm is
placed at equilibrium at the center of the domain
[ x I, =2 x 0.2 mm. A regular mesh is used in both
directions n, x n, = 250 x 50 that leads to a grid spacing
Ax = 8 um and Ay = 4 pm. The conditions imposed at the
boundaries are zero velocity on the north face, symmetry
on the south face and periodicity on east and west faces.
The fluid properties for this test are p; = 10° kg/m?,
pc = 1.204 kg/m? for the liquid and gas densities, W, =
107"Pa - s, u; = 1.815 x 1075Pa - s for the liquid and gas
viscosities and ¢ = 0.07 N/m for the surface tension.

Table 3 reports the stable spurious velocities obtained
after a significant number of iterations for the different test
cases. The spurious velocities, based on the norm /., have
been found to be proportional to:

usc ~ 0.01-2 i.e. Casc~0.01. (9)
Ky

This magnitude is comparable to the simulations reported
by Lafaurie et al. (1994) (~ 0.01 o/y;) and Dupont and
Legendre (2010) (~0.005 o/uy). The spurious velocities
thus appear at capillary numbers Casc ~0.01 indicating
that error-free numerical simulations can only be per-
formed for Ca > Casgc.

3.3 Mesh and boundary conditions

Two-dimensional numerical simulations that simulate flow
in an infinitely wide channel were performed in a plane
200 um high to simulate half the height of the micro-
channel. Every 2D simulation is performed using the same



Table 3 Spurious velocities evaluated from a confined bubble at rest

Test case I (m/s)

0.0409

0.00542
0.00702
0.00353
0.00459

2D circular bubble (Ry = L /4)
2D long bubble 1 (I ,/Ig, = 4.5)
2D long bubble 1

2D long bubble 1

2D long bubble 2 (Ig /g, = 12)

Iy (mfs)

0.000239 72 1
0.000123 0.7
0.000162 1.4
0.0000983
0.000969 0.7

o/, (m/s) At (x107%s) Iterations

20,000
200,000
250,000
200,000
200,000

0.25
0.20
0.25
0.25

0.35

boundary conditions and the same fluid properties that
were used to characterize the spurious currents. A pressure
gradient is imposed between the two periodic boundaries to
generate fluid flow. Two domains of simulation have been
used: a short one (Domain 1: [, =2 mm) that allows
bubble lengths about 1 mm to be simulated and a longer
one (Domain 2: [, = 5 mm) for the simulation of bubbles
that are a few millimeters long. For each domain, simula-
tions have been performed by varying the volume fraction
of air at the initialization stage and by varying the pressure
gradient across the domain.

Domain 1 is the computational domain described in the
spurious currents characterization section and comprises
12,500 nodes. Since there were only about five grid cells in
the liquid film, which is the lower limit for the correct sim-
ulation of the film (Gupta et al. 2009), the convergence has
been tested with a second, finer mesh. This second grid is
coarser in the bubble region and finer in the liquid film area
compared with the first mesh, however, the total number of
nodes (12,500) remained unchanged. This refined mesh
consists in a uniform grid spacing along the channel
(ny =250,Ax =8 um) and a non-uniform grid spacing
across the width of the channel: n, = 50 with a regular
spacing for y <115 pm (16 nodes) and irregular mesh with a
factor 0.92 for 115 pm <y (34 nodes). Thus, the grid spacing
across the channel width varies between Ay, =
7.20 um and Ay, = 0.46 pm. The simulations with both
grids converged to the same velocity field, however, the
number of iterations needed to converge is almost 20 times
greater for the non-uniform mesh than for the regular mesh.
The regular mesh is, therefore, considered adequate for the
simulation of these flows and allows a much larger time step
than the non-uniform mesh does. Domain 2 is meshed in the
same way as domain 1, such that there are at least 5 grid cells
in the liquid film and a regular mesh is used in both directions
n, x ny, = 500 x 40 (i.e. 20,000 nodes), which leads to a
grid spacing Ax = 10 um and Ay =5 pm.

4 Results and discussion

Figure 3a summarises the numerical and physical experi-
ments performed in this study to characterize the bubble
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Fig. 3 Reynolds and capillary numbers of the experiments and
numerical simulations performed. Dash dot dash line minimum
capillary number available numerically to neglect spurious currents

lengths, shapes and velocities of gas—liquid Taylor flow in
rectangular microchannels as a function of the Reynolds
and capillary numbers. The numerical simulations were
carried out with fluid properties such that the spurious
velocities were lower than the physical velocities of the
flow.

4.1 Bubble generation

Figure 4 shows the bubble generation mechanism for the
ethanol-air system. This mechanism can be divided into
several steps: (a to b) the bubble starts growing in the side
channel, perpendicularly to the direction of the liquid flow
in the main channel; (b to d) as the bubble grows, the gas—
liquid interface is distorted by the liquid in main channel
and the radius of curvature upstream of the leading bubble
cap increases; (d) during this time, the interface detaches
from the upstream wall of the gas inlet and the contact line
starts moving into the gas inlet; (d to e) the air fills the main
channel and the bubble occupies the width of the main
channel; (e to f) the gas-liquid interface coming from the
gas inlet is pushed downstream until pinching off occurs
and the bubble is formed.

In the majority of ethanol-air experiments, bubbles are
pinched off at the T-junction and regular bubble trains are
observed, as shown in Fig. 4. For these experiments, the
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Fig. 4 Bubble generation in air—ethanol flows. Up = 0.021 m/s
and Ug = 0.0105 m/s, evolution of Taylor flow during a period where
bubbles are generated every fperioa = 0.125 s, i.e. with a frequency of
formation about 8 Hz

standard deviation of the average bubble size is less than 5
%. In general, the fluctuations in the bubble velocities are
only about 1-2% of the average value. Fig. 5 shows the
generation of air bubbles in water and sugarcane syrup. For
both the air—water and air-sugarcane syrup systems, an
iterative break-up mechanism is observed. For the most
part, the bubble generation occurs in the main channel, well
after the T-junction. However, after the generation of
several bubbles in the main channel far from the T-junc-
tion, a bubble is then pinched off at the T-junction before
bubble break-up occurs in the main channel again. It is
interesting to point out that for air-sugarcane syrup, this

interface rupture

(b)
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Fig. 5 Bubble generation and interface rupture in the main channel
with a air-water system U = 0.021 m/s and Ug = 0.0105 m/s,
bubble pinch-off occurs at the gas inlet every fuerioa = 1.16 s, ie.
with a frequency about 0.86 Hz; b air-sugarcane syrup system, Uy, =
0.042 m/s and Ug = 0.021 m/s bubble pinch-off occurs at the gas
inlet every fyerioq = 0.97 s, i.e. with a frequency about 1 Hz

break-up mechanism results in a rather periodic structure,
which is not so obvious with the air—water system. Nev-
ertheless, for both the water and sugarcane syrup systems,
these flows result in irregular bubble lengths with a stan-
dard deviation greater than 10% of the average length.
Once the bubble train is established, the bubble velocities
are constant. Similar irregular flows were also found to
occur with ethanol/water solutions at low liquid flow rates.

We distinguish these two processes of bubble generation
by naming the regular bubble flow as the squeezing regime
(Garstecki et al. 2006) and the irregular bubble flow (with
bubble generation in the main channel) as the leakage
regime. The leakage regime described here looks similar to
the parallel liquid—liquid flow that breaks in the micro-
channel to form droplets as observed by Guillot and Colin
(2005). However, the flow conditions required for the
transition between the squeezing regime and unstable
parallel flow pinching in the channel remain unclear.



According to Akbar et al.’s (2003) criteria, bubble or slug
flow is expected for all of the flow conditions studied here.
However, the unstable leakage regime is observed for both
viscous liquids (i.e. sugarcane syrup solutions), as well as
low viscosity liquids (i.e. water). It is, therefore, thought
that the wettability of the microchannel material by the
liquids also plays an important role in the bubble genera-
tion process.

In addition, for equal gas and liquid flow rates, a
decrease in the frequency of bubble formation was
observed with air-diluted ethanol system when compared
with the pure ethanol system. However, in both cases the
bubble nose and rear are the same shape, which is in
agreement with the corresponding values of the capillary
and Weber numbers; under these conditions, the stabilizing
effect of the capillary force is dominant and minimizes the
bubble surface.

4.2 Bubble and slug lengths

Figure 6 shows the evolution of the dimensionless bubble
lengths as a function of the Weber number for the air—ethanol

(a) ©

o Ug/Up =2.00
. o Ug/U_=1.00
® Ug/U =050
al » Ug/U =020
z L )
— L
3
04 o
(o] o] O
2 5 g
L "
1t ,
, . JETHANOL
0 0.05 0.1 0.15 0.2
Werp
(b) 6 r—
o Ug/U =200
5y o Ug/U =1.00|
r > Ug /U, =050
g » Ug/U =020|
=
—
93
m
[ ] [ ] = -
2
e . o o o
1 ¢ ¢ o J
, , ETHANOL
0 0.05 0.1 0.15 0.2
Werp

Fig. 6 Bubble and slug lengths versus the Weber number Werp in
air—ethanol system for volumetric flow rate ratios Ug /Uy, = [2; 1; 0.5;
0.2]

systems. For a fixed flow rate ratio Ug/U., the bubble and
slug lengths decrease slightly when the superficial two-
phase velocity increases. This decrease in bubble and slug
size can be explained by the increase in energy input to the
system; similar observations have been made for drop
formation in micromixers (Haverkamp et al. 1999). Thus,
for a given gas hold-up, the frequency of bubble formation
f~Ug/(Lg + Ls) increases with inertia. Similar phenom-
ena are observed for other fluid pairs, however, for fixed
flow conditions, the bubble/slug period is shorter with
ethanol than it is with the ethanol solution (33%), which is
shorter than the bubble/slug periods for water alone. This is
primarily due to the higher surface tension of water com-
pared with ethanol.

Figure 7 shows the evolution of dimensionless bubble
and slug lengths as a function of the flow rate ratios for
different fluid pairs. The experiments were conducted by
varying the gas flow rate at a fixed liquid flow rate
(U, = 0.021 m/s). For each fluid system, the bubble and
slug lengths increase linearly with the gas-to-liquid and
liquid-to-gas velocity ratios, respectively. It can be seen
that the bubble and slug lengths are greater with water than
they are with ethanol for the same flow rate conditions.
Again, this shows that for a fixed flow rate ratio, the bubble
and slug lengths decrease and the frequency of bubble
break-up increases when the Weber number increases. It
should be pointed out that for the results presented in
Fig. 7a,b, the flow for the ethanol and diluted ethanol
(33%) systems was regular and bubbles were formed via
the squeezing mechanism, whilst the air—water flow was
irregular (as suggested by the error bars) with bubble for-
mation in the main channel (leakage regime).

The linear evolution of the bubble and slug lengths with
the flow rate ratios is in agreement with the model pro-
posed by Garstecki et al. (2006) for the estimation of drop
and bubble lengths. According to the Garstecki model, the
lengths of bubbles (and drops) generated in side-entering
T-junction microchannels with rectangular cross-section
can be determined from the continuous and dispersed phase
flow rates. The model was developed using data obtained in
microchannels with characteristic dimensions on the order
of 100 um at low capillary (Carp < 1072 and Reynolds
numbers (Retp < 1). Under these conditions, the effects of
shear stress dominate the inertial effects and both are
negligible compared with the interfacial stresses and
pressure gradients. Garstecki et al. (2006) postulate that the
dynamics of drop and bubble break-up is dominated by the
pressure balance between the dispersed and continuous
phases due to the interfacial stresses and the pressure drop
generated by the resistance of the flow induced by the
bubble or drop. The authors identified four stages of the
break-up process for their model: (1) the tip of the bubble
enters the main channel, (2) the filling stage where the
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bubble occupies almost all the cross-section, (3) the
squeezing stage where the radius of curvature of the
interface increases and the interface at the gas inlet is
squeezed, (4) the break-up stage where the Laplace pres-
sure reaches a maximum as the radius of curvature tends to
infinity and the discontinuous phase pinches off. Following
this, they suggest that the bubble or drop generation pro-
cess can be divided into two main steps and that
the time for bubble or drop formation fgowm is the sum of
the filling and squeezing times. The scaling relation they
proposed s Torowth = Hfilling 1 fsqueezing where Tgrowth =
LB/ Ugrowth, Hilling = W/ Uilling and Isqueezing = dneck/ Usqueezing s
where d,..k is the characteristic dimension of the neck of
the bubble at the beginning of the squeezing stage. If the
filling and squeezing stages are independent, it can be
assumed that d,..x ~ wj,. The characteristic velocities of
the different stages can be expressed as a function of the

dispersed and continuous phase flow rates: ugown = Oc /Ach,
Utilling = QG/ACh and Usqueezing = QL/Ach- ACCOFdngly, the
bubble length is given by:

Ls | WinQc
w 0L

However, in microchannels of rectangular cross-section,
liquid flows around the dispersed phase during the
squeezing stage thereby increasing the squeezing time.
Van Steijn et al. (2007) improved the Garstecki model by
taking this leakage flow into account and estimated the
bubble length as:

Ly Us

-5 _ - 11
" A+ AzUL (11)

where /., =15 and /J, =15 wy/w. Volkel (2009)
suggested that the length of the liquid slug should follow
a scaling law similar to the gas phase:

Lg

(10)

=l + /11— (12)
Us

Pohorecki and Kula (2008) also proposed a ‘switching’
mechanism to predict bubble lengths in Y-junction
microchannels and presented a simple model: Lg/w~
¢ ! ie. Lg/w~ 1+ Ug/Uy. This model is almost identical
to that proposed by Garstecki et al. (2006) with the
difference that the gas-to-liquid inlet width ratio is not
explicitly taken into account since the gas and liquid inlets
used by Pohorecki and Kula (2008) were the same size. It is
interesting to note that their experimental results, which
were obtained in microchannels of square and circular
cross sections as well as different materials, agree
relatively well with this model. It is interesting to note
that according to both Garstecki et al.’s (2006) and
Pohorecki and Kula’s (2008) models, the bubble lengths
only depend on the continuous and dispersed phase flow
rates and the microchannel dimensions; there appears to be
no dependency on the physical properties of the fluids.
Recently, Leclerc et al. (2010) also proposed a unique
scaling law for bubble generation in various T-junction
geometries. Again, it enables bubble lengths to be
predicted from flow rates and microchannel dimensions
only. It should be pointed out, however, that the effects of
fluid and material properties on bubble generation were not
investigated.

The results in Fig. 7 show that when Ug < Uy, the
minimum bubble length is greater than the width of the
microchannel w and appears to depend on the liquid phase
properties. In fact, as shown in Fig. 4, the squeezing stage
can start even if the bubble is not completely filling the
cross-section area, which results in bubble lengths Lg > w.
In this case, it appears that the same scaling relation can
still be applied, however, the coefficients 1, and 1, may be



slightly different to the values found by van Steijn et al.
(2007). It can also be pointed out that although Garstecki
et al. (2006) presented their model for the estimation of
both drop and bubble lengths, it only correctly estimates
bubble lengths under certain operating conditions. In fact,
although the bubble/drop generation process is apparently
independent of fluid properties (i.e. viscosity, density and
surface tension) under the conditions studied by Garstecki
et al. (2006), a close inspection of their results suggests
that other properties of the carrier liquid (e.g. wettability)
play a non-negligible role in the generation process. As a
result, it is not clear that all fluid pairs follow a single
scaling law.

It also can be seen in Fig. 7 that the length of the liquid
slug increases with Up/Ug, as suggested by Volkel (2009).
However, the coefficients A, and 4, appear to depend on
both the fluid properties and the liquid velocity, and do not
appear to have the same value as the coefficients of
Eq. (11). Indeed, the coefficients for ethanol are close to
1.5 in the squeezing regime but they appear to increase
when the break-up mechanism changes and tends towards
the leakage regime (Figs. 7, 8).

Qian and Lawal (2006) carried out 2D simulations of
the break-up of Taylor bubbles in T-junctions and side-
entering T-junctions. They proposed a correlation for
the prediction of bubble lengths (Lg/w = 1.637¢1"7

(1 —&6) " P Rez2975Caz09%7), which underlines the pre-
dominant contribution of the flow rate ratio and only a
slight effect of surface tension and viscosity. Although a
few points remain unclear in Qian and Lawal’s (2006)
study - they used a coarse grid that was inadequate to
correctly detect the liquid film and no details on the surface
tension conditions that determine bubble break-up - it is
interesting to point out that the bubble lengths obtained in
this study for the air—ethanol systems at various Weber
numbers (Fig. 6) agree with the Qian and Lawal (2006)
correlation. However, when water or sugarcane syrup are
used as the carrier fluid, the squeezing mechanism does not
occur. Instead, parallel flow develops before bubble gen-
eration occurs in the main channel and in this case the data
do not agree with the Qian and Lawal (2006) correlation.
Indeed, the dependency of the bubble lengths on the fluid
properties has shown to be much more significant here than
ever shown in previous studies. The transition from the
squeezing regime to the leakage regime is difficult to detect
based solely on the competition of capillary, viscous and
inertial effects; it is thought that the wettability of micro-
channel by the liquid really plays a non-negligible role.
Figure 8 shows the evolution of the bubble and slug
lengths as a function of the the flow rate ratios for the air-
diluted ethanol (33%) system at fixed superficial liquid
velocities. This figure highlights the linear evolution of the
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bubble and slug lengths with the gas-to-liquid and liquid-to-
gas velocity ratios respectively, which is in agreement with
Egs. (11) and (12). The coefficients A; and 4, of the linear
scaling law for this fluid pair decrease when the liquid
velocity increases. It was observed that regular bubble sizes
were generated at a high frequency with high liquid flow
rates, whereas a decrease in the liquid flow rate leads to
irregular flows of longer bubbles and slugs at a lower fre-
quency. This transition from squeezing to leakage regime is
also visible with water for which a similar linear evolution is
also found. However, for the pure air—ethanol experiments,
where the bubble generation was generally very regular, the
bubble and slug lengths are not so dependent on the liquid
velocities. Figure 8 also shows that for a fixed gas fraction,
the bubble lengths decrease as the liquid velocity increases
and the energy input into the system increases. Thus, the
bubble and slug lengths, as well as the frequency of bubble
generation, appear to be governed mainly by the competition
between gas and liquid velocities, as well as the competition
between inertial and capillary effects.
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Interestingly, when the bubble length relative to the total
length of a bubble/slug unit is plotted as a function of the
flow rate ratio, as shown in Fig. 9, the squeezing and
leakage regimes observed seem to collapse; slight differ-
ences can be accounted for by the varying effects of cap-
illarity, inertia and viscosity. This suggests that the relative
quantity of liquid surrounding the bubble (in the liquid film
and around the caps) is almost the same for the different
fluid pairs at a given gas hold-up, whatever the bubble
break-up frequency.

The difference between the experimental points and the
curve for the relative bubble length in the case of zero
liquid film shows that the quantity of liquid surrounding the
bubble increases with Ug/U;, reaches a maximum around
Us/Up, =1 and then decreases slightly. Results from
numerical simulations are also reported in this figure and
their agreement with the experimental data is good despite
their 2D nature.

4.3 Liquid film

The liquid film between the bubble and the microchannel
wall has been evaluated with 2D simulations. This 2D
representation is a simplified approach to the problem and
does not take into account the liquid film in the corners of
the channel. However, de Lozar et al. (2008) have shown
that the liquid flow from the film to the corners is weak and
does not significantly deform the gas-liquid interface.
Although the 2D simulations do not provide detailed
information on the varying liquid film thickness around the
bubble and the 3D bubble shape, they nevertheless provide
a useful information. The qualitative trends observed in 2D
representation are expected to be similar to 3D cases.

Indeed, Sarrazin et al. (2006) studied velocity field and
mixing in liquid-liquid microsystems and they observed
similar hydrodynamic flow structures in 2D and 3D rect-
angular cases (with an aspect ratio close to unity). Fur-
thermore, the information obtained through these 2D
simulations is also expected to be valid for high aspect ratio
rectangular microchannels. In the following, the liquid film
hold-up around a Taylor bubble is considered and defined
as g = Ap/Aq where Ay is the area occupied by the liquid.
In the literature, the bubble velocity is often related to this
liquid film hold-up (see Volkel 2009 for an overview).
Under several conditions, such as constant surface tension
and a flat annular liquid film, there is no pressure gradient
along the bubble and the velocity in the liquid film is
assumed to be zero. Thus, using the mass conservation
relationship, the bubble velocity can be related to the liquid
film hold-up and the two-phase velocity: Ug/Urp =
1/(1 —ep).

Since the liquid film hold-up is typically very low in
Taylor flow, the bubble velocities can be expected to be
close to the sum of the gas and liquid superficial velocities.
Although the linear plots of the bubble lengths given in
Figs. 7 and 8 suggest information on the leakage flow
around the bubble at the T-junction contacting section, the
measurement of the liquid film thickness around Taylor
bubbles is not straightforward experimentally. However, it
can be quite easily obtained with correctly performed
numerical simulations. Figure 10a shows the dimensionless
liquid film thickness around the Taylor bubble obtained
numerically as a function of the capillary number based on
the bubble velocity, as suggested in the first studies of
Taylor (1961) and Bretherton (1961). In this latter work, a
correlation assuming the ‘lubrication approximation’ is
proposed for the determination of the liquid film thickness
from the capillary number in tubes or 2D planar geome-
tries. This correlation is valid for flows where Cag < 1
and the inertial effects are negligible compared with the
surface tension and viscous effects: 6/r, = 1.34 Cad>,
where ¢ is the liquid film thickness, r, is the hydraulic
radius and Cag is the Taylor bubble capillary number based
on the bubble velocity.

Aussillous and Quéré (2000) extended Bretherton’s
(1961) correlation to high capillary numbers in capillary
tubes:

5 1.34Cal’

2 - , 13
T 14k x 1.34Ca’ 12

The coefficient 1.34 was derived by Bretherton (1961)
and the coefficient k= 2.5 was found empirically
(Aussillous and Quéré 2000). Thus, the liquid film
thickness tends toward a maximum value of 1/2.5 ~ 0.4
as the capillary number increases.
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In Fig. 10a, it can be seen that the liquid film thickness
obtained by the 2D axisymmetrical simulations is correctly
described by Eq. (13). In the 2D geometry, the liquid film
thickness increases with increasing capillary number,
however the asymptotic value at large capillary numbers is
higher than that obtained in tubes (1./2.2 ~ 0.455).
Therefore, an equation similar to Eq. (13) can be proposed
for 2D geometries, whereby the coefficient k = 2.2. This
equation, with corresponding coefficient k, shows that
Bretherton’s (1961) correlation is found as the asymptotic
behaviour for low capillary numbers, while at higher cap-
illary numbers the liquid film thickness tends towards a
maximum value depending on the geometry. In square and
rectangular microchannels, the film thickness around the
bubble body varies due to the presence of the channel
corners (Han and Shikazono 2009b; Hazel and Heil 2002;
Liu and Wang 2008; Taha and Cui 2006; Wong et al.
1995). However, although the 3D aspects of the bubble
shapes are not considered in these 2D simulations, the
asymptotic behaviour of the liquid film is expected to be
the same and particularly in channels with a high aspect
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pressure jump, P decreases linearly to Py. Domain: [, x [, =5 x 0.2
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ratio (i.e. wide shallow microchannels) where the shear rate
along the channel width is negligible compared with the
shear rate along the depth of the channel. These results are
in very good agreement with the theory and allow bubble
shapes to be roughly estimated so that the mesh for 3D
simulations, which are much more computationally
expensive, can be adapted to correctly capture the liquid
film in Taylor flow.

In addition to the increase in the liquid film thickness, a
flattening of the rear of the bubble and an elongation of the
nose of the bubble can be seen with increasing capillary
number in the simulated results as shown in Fig. 1la—c.
Such a loss of symmetry was also observed in the experi-
ments with sugarcane syrup solutions where the capillary
number is of the order of 10~ and the liquid film is visibly
thick. Figure 11d shows the pressure field in the liquid film
and there is indeed no pressure gradient along the bulk of
the bubble, which statisfies the hypothesis of the stagnant
film.

The changes in the shape of the bubbles rear and nose
have also been observed in several other studies, including
planar cases (Giavedoni and Saita 1997), circular



capillaries (Fouilland et al. 2010; Gupta et al. 2009; Triplett
et al. 1999) and square channels (Liu and Wang 2008; Taha
and Cui 2006). This phenomenon can be understood from
the pressure drop across the bubble caps. In Bretherton’s
work (1961), the asymptotic behaviour of the pressure drop
at vanishing Ca was studied. It was found that the pressure
drop at the front cap of an axisymmetrical bubble is

Apfron: = %—;’ (1 + 3.72Ca]23/ 3) and the pressure drop at the

rear cap iS Appea = 20 (1 — O.97Ca2B/ 3). From these rela-

"h

tionships, it can be seen that the pressure drop at the front
cap increases with the capillary number while it decreases at
the rear cap. Even if this asymptotic behaviour can not be
used at higher capillary numbers (Cag > 10~?), Giavedoni
and Saita (1997) and Hazel and Heil (2002) found similar
trends in 2D and rectangular channels, respectively, where
the pressure drop across the front tip of the bubble increases
with Cag.

4.4 Bubble velocities

Since the liquid film thickness obtained by the numerical
simulations in the visco-capillary regime is correctly
described by Eq. (13), the dimensionless bubble velocity W
can be deduced as the following, respecting the stagnant
film hypothesis:

W:M:1_<1_é>7 (14)
Us Th

where m = 1 for 2D cases and m = 2 for tubes. Figure 10b
shows that both the 2D and axisymmetrical simulations are
in good agreement with the scaling laws obtained from the
liquid film thickness. The relationship for the evaluation of
bubble velocity, as first proposed by Bretherton (1961), is
also found at low capillary numbers (Cag < 0.01) where
the liquid film is very thin: W = m x 1.34 Cag’

In this work, the experiments were performed for a range
of low capillary numbers (Cag < 0.01) and moderate Rey-
nolds numbers (1 < Reg < 100). Under these conditions,
the effects of inertia are not negligible compared with
our numerical simulations and the conditions studied by
Aussillous and Quéré (2000), which were both carried out in
the visco-capillary regimes (Cag > 0.01 and Rep < 1).
Since the Weber numbers of the experiments in this study are
much larger than those of the simulations and a simple model
like relation (13) is not applicable to such conditions, the
bubble velocity has been plotted versus the two-phase
superficial velocities. Figure 12a shows a linear increase in
the experimental bubble velocities with increasing two-
phase superficial velocity for the air—ethanol system. This
means that the liquid film is of more or less constant thick-
ness along the bubble body in our experiments, which is in
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agreement with the results of Taha and Cui (2006) in square
capillaries at low capillary numbers (Cag < 1). The ratio of
the bubble velocity to the two-phase velocity is slightly
greater than unity, which is coherent with the stagnant film
hypothesis and suggests a thin liquid film. Similar results
about bubble velocities were reported in Yun et al.’s (2010)
study. Indeed, the liquid film between the bubble and the
microchannel walls in these experiments was indistin-
guishable. Figure 12b shows a similar graph, which com-
bines all of the bubble velocities measured experimentally
with those obtained by the 2D simulations. The results of the
2D numerical simulations appear to agree relatively well
with the experiments, although the bubble velocities increase
slightly faster than experimental bubble velocities. In addi-
tion to the fact that different effects dominate in the experi-
ments and the numerical simulations, this discrepancy is
certainly due to the fact that the lateral walls of the micro-
channel were not taken into account in the simulations.
Indeed, the lateral walls contribute to an increase in flow
resistance and dissipation, which results in a reduction of the
bubble velocity. 3D simulations are, therefore, necessary for
a more accurate comparison with the experiments.



It can also be pointed out that although the cross-sectional
area occupied by the liquid film should increase with
increasing capillary number (Bretherton 1961; Aussillous
and Quéré 2000), the capillary numbers in the experiments
were typically very low (Cag < 0.01) and, therefore, the
bubble velocity should be approximately equal to the two-
phase superficial velocity. However, inertia is assumed to be
negligible in Bretherton’s (1961) and Aussillous and Quéré’s
(2000) works, which is not the case in our experiments at
moderate Reynolds numbers. It is, therefore, possible that the
Weber number has some effect on the liquid film thickness
and thus, the dimensionless bubble velocity. This was also
mentioned by Aussillous and Quéré (2000) for conditions in
the visco-inertial regimes. Even if the effective dependency
of the liquid film thickness or bubble velocity upon the
Weber number is not clear at present, these results highlight
its possible effects on the hydrodynamics of Taylor bubbles
in capillary-inertial regimes.

5 Conclusions

This study has focused on the generation and characteris-
tics of gas—liquid Taylor flow formed in T-junction mi-
crochannels. Visualisation experiments using a high speed
camera and 2D Volume of Fluid simulations have been
performed to study the effects of fluid properties and flow
conditions on bubble and slug lengths, liquid film hold-up
and bubble velocities. As earlier described by Garstecki
et al. (2006) and then by van Steijn et al. (2007), the
bubble generation process can be partitioned into several
steps and the bubble and slug lengths are a function of the
gas and liquid flow rates and independent of fluid proper-
ties such as the viscosity and surface tension. This study
shows however that a single scaling law for all gas—liquid
flows generated in the T-junction is not always possible.
The bubble and slug lengths are shown not to depend solely
on the gas and liquid flow rates and suggest that the liquid
properties (such as wettability) and velocities are also
important under certain conditions. This work highlights
the effects of the competition between inertial forces and
capillarity on the leakage flow and thus on the bubble
break-up frequency, which have been negligible in previ-
ous studies in the literature due to the low Reynolds
numbers employed. Indeed, increasing the inertia of the
fluid system results in increased leakage flow and conse-
quently to a decreased frequency of bubble formation.
Bubble and slug lengths are, therefore, increased. The
results of numerical simulations were found to be in rela-
tively good agreement with the experiments despite their
2D nature. They allow the dimensionless bubble lengths to
be predicted relatively well and provide a good estimation
of the liquid film thickness in the case of high aspect ratio

microchannels, which is difficult to measure experimen-
tally. Furthermore, the 2D simulations allow the stagnant
film hypothesis used in modelling to be confirmed. 3D
simulations are underway, however, these are very com-
putationally expensive. They will allow a more accurate
comparison with the experimental results since the effect of
the lateral wall of the microchannel is suspected to con-
tribute to the bubble dynamics. They will also provide
more detailed information on the liquid film thickness
around the bubbles.
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