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Abstract This paper deals with the dynamic behavior of reticulateahitemade of

the periodic repetition of symmetric unbraced frames. Sarchetypical cells can
present a high contrast between shear and compressiomadifitities, conversely

to “massive” media. This opens the possibility of enrichechl kinematics involv-

ing phenomena of global rotation, inner deformation or imesonance, according
to studied configuration and frequency range. Firstly, ttistence of these atypical
behaviors is established theoretically through the homiagéion method of peri-

odic discrete media. Then, the results are adapted to bg#dind confirmed with a
numerical example.

Key words. Dynamics, discrete structure, periodic homogenizatiooall reso-
nance, atypical modes, building, frame, shear wall

1 Introduction

This paper deals with the macroscopic dynamic behavior abgie reticulated
structures widely encountered in mechanical engineeftggiodic lattices have
been studied through various approaches [14] such as éramsftrix, variational
approach [11], finite difference operator. Asymptotic neekh of homogenization
[16] initially developed for periodic media, were extendedmultiple parameters
and scale changes by [8] and adapted to periodic discretstes by [4], then [12].
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Fig. 1 Examples of atypical 4
normal modes of reticulated ‘ ;
structures

uh

Unbraced frame-type structures have also been considergduictural dynamics.
The first studies focused on an individual bracing elemect sis a frame or coupled
shear walls [17, 1]. Then the models were extended to theeaalding [18, 15]
and to 3D problems with torsion [15, 13]. All those methods &b relate the fea-
tures of the basic cell and the global behavior.

The morphology of reticulated beams is such that the badlie can present a
high contrast between shear and compression deformesi(itonversely to “mas-
sive” beams). This opens the possibility of enriched loéatknatics involving phe-
nomena of global rotation, inner deformation or inner resme, according to stud-
ied configuration and frequency range [9, 6]. A numericakiitation of these atyp-
ical situations is given in Fig. 1 that shows some unusuakos@opic modes.

The present study investigates and summarizes those plkeeadny a system-
atic analysis performed on the archetypical case of syniecnatbraced frame-type
cells [2, 9, 5]. Assuming the cell size is small compared ®wlavelength, the ho-
mogenization method of periodic discrete media leads torthero-behavior at the
leading order.

The paper is organized as follows. Section 2 gives an owereiethe method
and the assumptions. In Sect. 3, the studied structuresesemied. Section 4 sum-
marizes the various generalized beam models which canidedtre transverse
vibrations according to the properties of the basic celinglets and the frequency
range. Section 5 is devoted to longitudinal vibrations drelédffect of local reso-
nance. Finally Sect. 6 explains how the results obtainedhisrparticular class of
structures can be generalized to more complex reticulatedtsres, for instance
buildings. Itis illustrated by a numerical example.

2 Overview of Discrete Homogenization

The analysis of periodic lattices of interconnected beameiformed in two steps
[19]: first, the discretization of the balance of the struetunder harmonic vibra-
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tions; second, the homogenization, leading to a continnoadel elaborated from
the discrete description. An outline of this method is gitieneafter.

Discretization of the Dynamic Balance: Studied structures (Fig. 2) are made of
plates behaving like Euler-Bernoulli beams in out-of-glanotion, and assembled
with rigid connections. The motions of each extremity carted to the same node
are identical and define the discrete nodal kinematic vessabf the system. The
discretization consists in integrating the dynamic bagafic harmonic regime) of
the beams, the unknown displacements and rotations atttte@mities being taken
as boundary conditions. Forces applied by an element orxtitsmaities are then
expressed as functions of the nodal variables. The balaneach element being
satisfied, it remains to express the balance of forces aptithe nodes. Thus, the
balance of the whole structure is rigorously reduced to Hiarize of the nodes.

Homogenization Method: The key assumption of homogenization is that the cell
size in the direction of periodicity, is small compared to the characteristic dize
of the vibrations of the structure. Thus= ¢,,/L << 1. The existence of a macro
scale is expressed by means of macroscopic space vaxiable unknowns are
continuous functions ok coinciding with the discrete variables at any node, e.g.
Ue(X = Xn) = U(node n. These quantities, assumed to converge wheéends to
zero, are expanded in powersafU (x) = U%(x) + & UL (x) + £2U2(x) +.... Sim-
ilarly, all other unknowns, including the modal frequenase expanded in powers
of €. As ¢, = ¢ L is a small increment with respect xpthe variations of the vari-
ables between neighboring nodes are expressed using $aséoies; this in turn
introduces the macroscopic derivatives.

To account properly for the local physics, the geometrical mechanical char-
acteristics of the elements are scaled according to thensafe. As for the modall
frequency, scaling is imposed by the balance of elastic aedia forces at macro
level. This scaling insures that each mechanical effeceafgpat the same order
whatever thes value is. Therefore, the same physics is kept when 0, i.e. for
the homogenized model. Finally, the expansions powers are introduced in the
nodal balances. Those relations, valid for any smakad for eacte-order to bal-
ance equations which describe the macroscopic behavior.

Local Quasi-Static State and Local Dynamics. In general the scale separation
requires wavelengths of the compression and bending idbsagenerated in each
local element to be much longer than the element length antigal frequency of
the global system. In that case the nodal forces can be gmaio Taylor's series
with respect tee. This situation corresponds to a quasi-static state abtted scale.
Nevertheless, in higher frequency range, it may occur that the compression
wavelength is much longer than the length of the elementéevib¢al resonance
in bending appears. The homogenization remains possitdagh the expansions
of the compression forces and leads to atypical descriptigth inner dynamics.
Above this frequency range, the local resonance in both cesspn and bending
makes impossible the homogenization process.
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Fig. 2 The class of studied structures (left) and the basic frame antomdright)

3 Studied Structures

We study the vibrations of structures of heidtt= N x 4,, constituted by a pile
of a large numbeN of identical unbraced frames called cells and made of a floor
supported by two walls (Fig. 2). The parameters of flooes ) and walls { = w)
are: lengthy;; thicknessg;; cross-section ared; second moment of arég= ai3h/ 12
in directiones; densityp;; elastic modulus;.
The kinematics is characterized at any lewdly the motions of the two nodes
in the plane(er, &), i.e., the displacements in the two directions and the imtat
(u1, Uz, 8). These six variables can be replaced by (cf. Fig. 3):

e Three variables associated to the rigid body motion of thel le the mean trans-
verse displacements),(n) alonge; andV(n) alongey, and the global rotation
a(n) (differential vertical nodal motion divided b4t ),

e Three variables corresponding to its deformation: the naeahdifferential rota-
tions of the nodes9(n) and®(n), and the transverse dilatatidr{n).

Because of the longitudinal symmetry, the transverse amgitiedinal kinematics,
respectively governed byJ( a, 8) and ¥/, @,A), are uncoupled.

A systematic study enables to identify the family of possidynamic behaviors
by changing gradually the properties of the frame elemamdslze frequency range.
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Fig. 3 Decoupling of transverse (left) and longitudinal (right) éamnatics

4 Transverse Vibrations

The transverse vibrations can be classified in two categ@geording to the na-
ture of the governing dynamic balance. For the first categbeyhorizontal elastic
forces balance the horizontal translation inertia. Thisezponds to the “natural”
transverse vibration modes presented in Sect. 4.1. It camden that the associ-
ated frequency range is such that the elements behave sfatisally at the local

scale (for lower frequencies, a static description of tmacstire is obtained). For
the second category, the global elastic moment is balanc#uklglobal rotation in-

ertia. This leads to unusual gyration modes investigate®eirt. 4.3. This situation
occurs at higher frequencies and local dynamics can appear.

4.1 “Natural” Transverse Vibrations: Translation Modes

The possible beam-like behaviors were established bynvautyie properties of the
basic frame elements in [9] to which one may refer for a peeaisalysis. Here below
the generic beam model derived from this approach is predearid an example
devoted to a given type of cell frame is discussed.

The synthesis of the different macroscopic behaviors shihas only three
mechanisms — shear, global bending, inner bending — goverphysics at the
macroscale (Fig 4). Each of them is associated to a stiffiesheark, in global
bendingEy I, and in inner bending,, -.#. The parameter is the effective global
bending inertia and7 is the effective inner bending inertia. Owing to the quasi-
static local state, these parameters are deduced fromdktcebroperties of ele-
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Fig. 4 The three transverse
mechanisms

(left: shear,

middle: global bending,
right: inner bending)

ments in statics. For structures as in Fig. 2, they réadtands for the linear mass):

Ew lw Ef I

-1 1, -1 ;
Ay 12
= zf I =21y (1b)
. 14
A =Ay+A; with Ay=2pyAy and A; = p; As - (1c)
w

A generic beam model is built in order to involve the three hagisms. It is gov-
erned by:

e Three beam constitutive laws relating the kinematic vaesio (i) the macro-
scopic shear forcg, (ii) the global bending momeiM and (iii) the inner bending
moment.':

T=-KU'—a) ; M=-Eyla' ; #=-EysU" (2

e The force and moment of momentum balance equations:

(T— ') =AU
{ (3)

M'+T=0

It is worth noticing that the macroscopic behavior depentdg on two kinematic
variablesU anda which describe the rigid body motion of the cross-sectidme T
third variable associated to the transverse kineméticas the status of a “hidden”
internal variable which can be derived from the two otheiividg” variables. The
distinction between “driving” and “hidden” variables etedto generalize mod-
els built for the structures as in Fig. 2 to more complicateanfe-type structures.
Indeed, the implementation of the homogenization methqaedbdic discrete me-
dia on structures with three walls shows that the additi@ir@matic variables are
“hidden” variables and that the macroscopic behavior Isdgiscribed by (2) and
(3). However expressions (1) which give the macroscopiarmeters have to be
modified. Their calculation in the general case is the sulgESect. 6.2.
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The generalized beam description presented above incthéethree mecha-
nisms but they do not have necessarily the same importatseddminating ef-
fect(s) that actually drive(s) the effective behavior ofieeg structure can be iden-
tified through a dimensional analysis. In this aim, we introg the characteristic
size of vibration for the first mode = 2 H /mt (for the nth mode of a clamped-free
beam the characteristic sizeli§ = 2H/[(2n— 1)71). Moreover, the variables are
rewritten adJ = U" U* anda = a" a* where the superscriptdenotes reference
values, and a * denotes the dimensionless tef(%) by construction. Introducing
the expressions of the beam efforts (2) and making the chaingariablex = x/L,
the set (3) becomes:

{QZU*—I—U*(Z) e yu*(4) _ (L ar/Ur) a* @

a*—C a*(Z) _ (Ur/L ar) u

where superscripts in brackets stand for the order of dérézalhe dimensionless
numbersC, y and Q2 compare respectively global bending and shear, inner and
global bendings, translation inertia and shear. They read:

Ew | S , Aw?l?
= — : = — : Q =
iz Y ; K ®)

Eliminatinga™ (orU*) in (4) gives the differential equation governibg (or a*):

2

Cyu ® _(1+y) u*<4>—92u*<2>+%u*:0(::) (6)
The termO(€) highlights the fact that (6) is a zero-order balance and éénonly
valid up to the accuracg. Consequently, according to the valuesiC y andy
compared t& powers E = //L = /(2 N)), equation (6) degenerates into sim-
plified forms. The mapping (Fig. 5) gives the validity domaiithe seven possible
behaviors according to the two parameteandy defined byC = éX andy = &Y.
Note that, as the validity of the model requires the scalarsgion i.eéw/ﬂn <1,the
maximum number of homogenizable modes of a structué célls isnmax= N/3.

4.2 An Example: Slender Timoshenko Beam

Consider structures for whio = O(1) andy < O(€). Then the terms related to
C y andy are negligible in (6) and the generic beam degenerates isteraler
Timoshenko beam driven by:

2
u*<4>+92u*<2>f%u*:o<§) @)
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To illustrate how to reach (7) by homogenization, considstracture as in Fig. 2
with floors thicker than walls:

=0(We) ;

lw

aw

lw

af KW o

~0(e) S=o) ;i =0 @

so thatA = O(A¢), K = O(Ky) and, as required:

Bl (&) 2w (&) o2
C_KWIZZ_O(a%I:Z —O(l) Y= I =0 E% —O(s) (9)

The dynamic regime is reached whe?/C = O(1) i.e., accounting fo€ = O(1),
when the leading order of the circular frequency is:

wo = O(L ™1 /Kw/At) = O(Kw/+/Eu 1 At)

In that case, the leading order equations obtained by honizajeon are:

—Kw (U = 8%) = Ar §U° (10a)
Ki(a®-6° =0 (10b)
—Ewl a¥” - Ky (UY-6% =0 (10c)

Equation (10a) expresses the balance of horizontal fotdhae éeading order, while
(10b) and (10c) come from the balance of both local and glotzathents at the first
two significant orders. Equation (10b) also describes therirquilibrium of the
cell and imposes the node rotatiéfl to be equal to the section rotatiar?. Thus
the macroscopic behavior is described by a differentiattsgt governs the mean
transverse motiobl © and the section rotation®:

{ *KW(UOH—GO/) :/\f wguo

11
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Eliminatinga® provides: Eyw U 4 % At P U%D —Ar @UC=0
W
which corresponds to (7), i.e. a degenerated form of (6) withO(£).
The similarity with Timoshenko beams is obvious when rewgt (11) with the
macro shear forc&? and the global bending momelit® defined in (2) (here with

0 superscript):
TY =Af wgU°
MY +T0=0

Two features distinguish (12) from the usual Timoshenkadpeson of “massive”
beams. First, the shear effect (that comes from the benditigeavalls in parallel,
see (1a)) remains at the leading order even if the retialilsteicture is slender.
Second, while the translation inertia is significant in thecé balance (12a), the ro-
tation inertia is negligible in the moment balance (12b)é€veithe effective bending
results from the opposite extension-compression of theatalts distant of the floor
length). In other words, the translation is in dynamic regibut the rotation stays
in quasi-static regime for the considered frequency rampes leads to investigate
higher frequencies to obtain rotational dynamics.

(12)

4.3 Atypical Transverse Vibrations: Gyration Modes

This section is devoted to gyration modes, i.e. transverseées governed by the
section rotatioro (Fig.6). Their existence is first established on a particoéese.
Then the results are slightly generalized.

| 4 %
) . % ¢)
N ~ w“ a
A\ S
a N \ g
Fig. 6 Examples of gyration N N N ¢
modes 1 )\. & @

We come back to the structure studied in the previous seatidrwhose geome-
try and parameters are scaled by (8). The frequency rangerisased of one order
in g, i.e.ap = O(Ly,1/Kw/At) which remains sufficiently low to insure that the el-
ements behave quasi-statically at the local scale. There#uing order equations
obtained by homogenization become:
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0=A; g U° (13a)
Ki(a®-8° =0 (13b)
pr Ar 63

2 0 0
4207, wj (420°-76°) (13c)
The comparison of (10) and (13) shows that the higher frequuiaves the inner
equilibrium condition of the cell (13b) unchanged (thusegh&so, the mean rotation
of the nodes matches the section rotation 8%= a®). Conversely, in (13a), the in-
creased order of magnitude of inertia terms makesAhat U ° cannot be balanced
by horizontal elastic forces, thus the section translatanishes at the leading order,
U % = 0. In parallel, the rotation inertia now appears in the monsémomentum
balance (13c). After eliminating®, the macroscopic behavior at the leading order
is described by the following differential equation of tleeend degree:

—Ewl a”+ Ky a®=Jf of a® (14)

pr Ar 63
o_ .0 . 0_ : _
6" =a ; u“=0 ; Ji = 120,

This is an atypical gyration beam model fully driven by thet&® rotationa© with-
out lateral translation (more precisely, one shows thafiteenon vanishing trans-
lation is of the second orderU? = (Ku/ (At wg))a®). The gyration dynamics is
governed by the mechanism of opposite traction-compressiwertical elements
(whose elastic parameter is the global bending stiffitgsk), the shear of the cell
(stiffnessKy,) acting as an inner elastic source of moment, and the rotatertia
of the thick floors J¢). Solutions of (14) (imx®) have a classical sinusoidal expres-
sion but, due to the presence of the source téga®, the frequency distribution is
atypical.

Note that the thick floors of the specific studied frame leadeglect the shear
stiffness of the floors and the rotation inertia of the walllse particular description
(14) can be extended to other types of frames by considehagell shear stiff-
nessK instead ofK,, and rotation inertid instead of); (for structures as in Fig. 2,
J = Js + 3y with Jy = pw Aw 2 /2). Introducing the macroscopic shear fofceand
the global bending momem© already defined in (2) and accounting fof =0
show that (14) is nothing but the moment of momentum balahtfeecusual Timo-
shenko formulation:

TO4+MY =3 f a® (15)

However, in “massive” Timoshenko beams, variallesand a reach the dynamic
regime in the same frequency range, hence both are involvedrnmon modes.
Conversely, for the reticulated beams studied here, “afitand gyration modes are
uncoupled because the dynamic regimedJfaand a occur in different frequency
ranges. This specificity implies that in the frequency raofjpon-homogenizable
“natural” modes, it exists homogenizable gyration modes.adetailed analysis of
the conditions of existence of gyration modes, one may tefgf].
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Because gyration modes appear in a higher frequency dorhaim “hatural”
modes, the elements have not necessarily a quasi-statwibelat the local scale
and phenomena of local dynamics can also occur. In this dasdyending wave-
length in the elements is of the order of their length, wherdee compression
wavelength remains much larger. This enables to expanddimpression forces
and to derive a macroscopic behavior. The governing equafithe second degree
presents the same global moment parameter than for locsi-gtadic state but dif-
fers fundamentally by the inertia term and the inner elasiierce of moment, both
depending on frequency:

Ewl a” —K(w) a +J(w) w?

a=0 (16)
The reason of these modifications lies in the non expandeditgriorces that
strongly depend on the frequency and that give rise to apparertiaJ(w) and
moment source. This effect also appears in longitudinaktibns and is discussed
in the next section.

5 Longitudinal Vibrations

The longitudinal vibrations, described by, @, A), present a lesser complexity be-
cause the main mechanism is the vertical compression. Tieeattice between the
identified models only relies in the possible presence dalldgnamics.

Local Quasi-Static State: This case leads to the classical description of beam char-
acterized by the compression modulug,2A,, and the linear masA:

2Ew AuV" +Aw?V =0 17)

The domain of validity of this model is derived by expressthgt the order of
magnitude of the fundamental frequency of the whole strectdescribed by (17))
is much smaller than the one of the elements in bending. Factsres whose walls
and floors are made of the same material, a sufficient condiito have a large
number of cellsN > (¢i/a).

Local Dynamics: Similarly to gyration modes, the local dynamics introduees
frequency depending apparent mass, that can be expresagticatly [6, 5]:

2Ew AWV +A(w) w?V(x) =0 (18a)
8

o B eon () oo (5]

The study ofA(w) (cf. Fig. 7), shows that (i (w) — A when w — 0, and

(i) [A(w)| — o whenw — wy k4-1), Wherews . 1) are the circular frequencies of
the odd normal modes of horizontal elements in bending. ifidisces abnormal re-

A(@) = Ay + A (18b)
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sponse in the vicinity of the 1) that results in discrete spectrum of frequency
band gaps. Other frequency band gaps are generated by tit@tiercof modes
of the walls or of the whole cell which blocks the global kiretins [5]. However
this effect is described by higher order equations and, iarapkd structure, it has
probably less influence than the frequency band gaps of zdes.o

6 Extension and Application to Buildings

Ordinary concrete buildings (as the one presented in Figr8)very frequently
made up of identical stories and their structure is periaditeight. Moreover, the
experimental modal shapes suggest using continuous beaeisito describe their
first modes of vibration. For instance, Fig. 9 compares arpattal data with the
normal modes of a Timoshenko beam whose features were chrogetter to fit to
the first two experimental frequencies [3, 10]. For thessara we now propose
to adapt the beam models derived in the previous sectionsiltdings. Such an
approach presents two main advantages:

e The upscaling analysis provides a clear understandingeofiyfmamics of the
structure.

e Calculations are greatly reduced since the dynamic arsdlyperformed on a 1D
analytical model instead of the complete 3D numerical moé#ie building.

Applications concern as well preliminary design of new stuves as seismic diag-
nosis and reinforcement of existing buildings.

As earthquakes principally shake the first “natural” traarse modes of build-
ings, the study focuses on the models of Sect. 4.1. The usenodenized models
requires the structure to respect some conditions. Fithyscale separation implies
that the building should have at led$t= 5 stories and that the maximum number
of studied modes in a given directionngax = N/3. Secondly, the structure should
be symmetric to avoid coupling between the two transvenetions and torsion
because the homogenized models describe motion in a plarmeoMs, the mod-
els were derived by assuming that elements behave like-Beleroulli beams. This
hypothesis is acceptable for structures with columns aathiséout not for structures
with shear walls. Therefore, we have to add the shear mesaini the elements.
This is the subject of Sect. 6.1. Next, the new model is agglethe building of
Fig. 8 and the calculation of macroscopic parameters isaexgdl (Sect. 6.2).

6.1 Generic Beam Model for Structures with Shear Walls

For the structures with thin columns studied in Sect. 4.&tUral” transverse modes
are governed by three mechanisms: shear, global bendirigrerdbending (Fig. 4).
As the global bending results from the opposite extens@mgression of the two
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walls, its physics is unchanged by the increase of the wiakitless. On the contrary,
shear and inner bending are generated by the bending oftmests at the local and
the global scales respectively. Therefore the shear mesrhan the walls has now
to be taken into account. For local bending, this effect isiradly included during
the calculation oK the shear stiffness of the cell and it does not modify the beam
models. This is not the case for the shear associated to tiarigeof the walls at the
global scale which requires to add a fourth mechanism. Guresgly, the generic
beam model of Sect. 4.1 is valid as long as walls behave likerBBernoulli beams
at the global scale

For structures with shear walls which do not respect theipusvcondition, a
new model involving the four mechanisms is derived from tbenbgenization of
the dynamic behavior of structures as in Fig. 2 by considgethiat the elements be-
have now like Timoshenko beams. To make the shear assouwidteithner bending
emerge at the leading order, the wall geometry should réspggd, > O(s™1).
The new generic beam model is governed by:

e four beam constitutive laws relating the kinematic vaigsitb (i) the shear force
associated to the local bending of the fldar(ii) the shear force associated to
the shear in the walls, (iii) the global bending momen¥ and (iv) the inner
bending moment#:

(19)
T=—Jw(U' —0) M =—Ey .76
e three balance equations closed to (3):
U =Aw?U M+T=0 ; T—-#=1 (20)

Combining (19) and (20) gives the sixth degree differer@galation describing the
macroscopic behavior of the structure:

Ew 7 Bul j6) <wa+EW|_ A 2B Eal >u<4>

K3 Hi H
—( Sl +Ewl(i ! )>/\w2u”+/\w2u:o

(21)

S Ji@ﬁ%

The main differences with the model presented in Sect. £ listed below:

e The replacement df” by 6’ in the constitutive law associated to inner bending,

e The distinction between the shear forces in the walls andérflbor,

e An additional balance equation (20c) which expresses theriaquilibrium of
the cell.

As a result, (21) contains two new terms (in frame) which neemegligible when
the shear of the walls is much more rigid than inner bendig.¢ << J#y, L?).
Moreover, the three variables related to the transversentkétics,U, a and 6,
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emerge at the macroscopic scale. Therefore the generafizdtthis model to more
complicated frame-type structures is an open question édemthe implementation
of the homogenization method on structures with three veditsvs that this model
is still valid when the three walls are identical. In the éoling we assume that this
model is a good approximation of the behavior of structurigls walls mechanical
properties of which are not too different.

6.2 Calculation of Macroscopic Parameters

This section illustrates the relevance of the previous ggized beam model to
describe the dynamic behavior of a 16-story building (F)goi8which in situ mea-
surements have been carried out. The structure is in remdfoconcrete with pre-
cast facade panels. In order to evaluate the accuracy ottima models, the results
are compared with full 3D finite element simulations (andrewvelly with the ex-
perimental data). The COMSOL Multiphysics software is usetihe linear range.
Floors and shear walls are represented by perfectly coeteattells and the influ-
ence of facade panels is neglected. We make the number asstary between 6
and 30. Reinforced concrete properties are summarize@belo

Density Young’s Modulus Poisson’s ratio

(22)
p = 2300 kg/n? E = 30000 MPa v=0.2

The use of the generic beam model of Sect. 6.1, which descshmEar wall build-
ings, requires to calculate five macroscopic parameteeslitiear mass which is
equal to the mass of a story divided by the story height anditfidities associ-
ated to the four mechanisms. The effective inertias of dlabd inner bendings are
evaluated with formulas of the beam theory:

=S Ad? I=75 I (23)
W;\SJJ W;\SJ

whereA; stands for the cross-section area anfbr the second moment of area of
wall j. The parameted; is the projection of the distance between the centroid of
wall j and the centroid of all the walls onto the ayisr z (Fig 8) according to the
studied direction.

It remains to estimate the two shear rigiditi#§ and_#,. As the shape of the
floor can be very complex, there is no analytical expressia#o Thus, we propose
to derive it from the shear rigidity of the whole céll obtained thanks to a finite
element modeling of one story. The boundary conditions laosd identified by
homogenization and are presented in Fig. 10. It consists in:

e preventing the rigid body motion of the cell by blocking battrtical and hor-
izontal translations of a wall and the vertical translatodra second wall at the
centroid of their lower cross-sections,
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e imposing periodic boundary conditions between bottom apcf each wall,

e applying a distortiodU /¢ wherel = 2.70 m is the story height,

e blocking the vertical translation of all the walls which srsistent with a global
shear distortion.

ut=u="+AU vt =v" AU

UL 4

u

-

Fig. 10 Boundary conditions for the calculation of the shear rigidit the whole celK

Note that those boundary conditions allow the rotation efitlalls. The shear rigid-
ity of the whole celK is derived from the calculated shear force in the walls. Then
contributions of the floor#; and the walls’, are separated thanks to the formula
obtained by homogenization for structures as in Fig. 2 (eotian in series):

| wans Tj | 1 1 1
AU /¢ K Ky (24)

According to the complexity of the walls, the shear rigidity, is evaluated either
with analytical expressions of the beam theory or with thiéfislement modeling
of one story. In the latter case, the walls are clamped at &x¢iemities, undergo a
distortion (Fig. 11) and the shear rigidity is deduced frtwa ¢alculated shear force.

|ZwalIsTj |

AU /¢ (25)

<%/WZZIKJAJ'G]' or Ty =
walls

(kj: Timoshenko shear coefficien;: cross-section area ai@: shear modulus)

ut =AU vt =0 AU

u- :O_v_ =0

Fig. 11 Boundary conditions for the calculation of the shear rigidit the walls#,

For the studied building, both shear rigidities were estadawith a finite ele-
ment modeling. Figure 12 presents the deformation of oney stoe to the load
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Vertical displacement

Maxi : 1.567 mm

Mini : - 1.758 mm

Y

Fig. 12 Finite element modeling of one story for the calculation of thesshigidity of the celK
in directiony. Top: undeformed story, middle and bottom: deformed story.



18 Chesnais C., Boutin C. and Hans S.

applied for the calculation of the shear rigidity of the wéakll K in directiony.
Note that the maximum vertical displacement is greater thaimposed horizontal
distortionAU =1 mm. The values of all the macroscopic parameters are given
Table 1 for directiory. The resonant frequencies calculated with a finite element
modeling of the whole structure and with the generic beameisodf Sects. 4.1
(column structure) and 6.1 (shear wall structure) are sutizetain Table 2.

Table 1 Values of macroscopic parameters for the studied building ectiony
A (t/m) I (m* 7 (m*) K (MN) Jw (MN) 2t (MN)
100 1648 56 7841 59056 9041

Table2 Resonant frequencies (in Hz) of the studied building in dicgcy

Mode Finite Elements Generic beam of Sect. 4.1  Generic beam of Sect. 6.1
(column structure) (shear wall structure)
6 stories = e~ 0.26
1 7.43 10.59 +42% 8.10 +9.0%
2 23.28 57.48 +147% 27.79 +19%

11 stories = e~014

1 3.38 4.02 +19% 3.54 +4.6%

2 11.69 18.50 +58% 12.81 +9.6%

3 21.00 47.94 +128% 25.88 +23%
16 stories = £ ~0.098

1 2.08 (2.18) 2.31 +11% 2.13 +2.2%

2 7.26 (7.28) 9.53 +31% 7.63 +5.1%

3 14.30 (14.08) 23.33 +63% 15.61 +9.2%
30 stories = £~ 0.052

1 0.91 0.96 +5.4% 0.92 +1.4%

2 3.16 3.52 +11% 3.21 +1.5%

3 6.36 7.71 +21% 6.49 +2.0%

a Experimental frequencies

The generic beam model of Sect. 4.1 gives reasonable résulte first resonant
frequencies when the number of stories is sufficiently higth @alls behave like
Euler-Bernoulli beams at the global scale. But, this modeltaen all its simplified
forms are unsuitable for the higher modes and the structuitbsfew stories. In
these cases, the results are significantly improved by teeofithe generic beam
model of Sect. 6.1 which includes the shear in the walls. Hienated frequencies
are very closed to the ones calculated by finite elementst@itte experimental
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data), which shows that the physics of the problem has bé&en tato account with
considerably reduced calculations.

7 Conclusion

At the macroscopic scale, unbraced (or weakly braced)ulatied structures present
a much more complex behavior than usual “massive” medianites from the high
contrast between shear and compression deformabilitiedwveinables enriched lo-
cal kinematics (gyration modes and inner bending mechgrésih phenomena of
local resonance in bending. Consequently, there is an gynaletween those struc-
tures and generalized media. The gyration beam model Idak€bsserat medium,
structures where inner bending is not negligible are sinbddamicromorphic media
and local resonance is a way to design metamaterials. Tharmkisensional anal-
ysis, it is possible to extend these results to other typesro€tures of decametric
size such as buildings but also of millimetric size such asfe or of nanometric
size such as graphene tubes. Future works can as well déathsibther vibration
modes which are governed by the inner deformation of the(Eggl 1).
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