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Abstract—Reliable positioning is a key issue for intelligent ve-
hicle navigation. Interval-based positioning methods have shown
to be capable of computing relevant confidence domains used for
integrity monitoring in environments which are challenging for
Global Positioning System (GPS). The approach presented in this
paper consists in tightly coupling a GPS receiver with a 3D-map
of the drivable area. Interval analysis is employed to solve the
constraint positioning problem using contractions and bisections.
Integrity is provided through the use of a robust set-inversion
scheme applied to a redundant measurement set. If the prior
distribution of the measurement noise is known, it is possible to
compute confidence domains that correspond to a given integrity
risk, which is often set very low out of safety considerations.
In this paper we examine a way of validating the proposed
approach, using a real experimental dataset and a ground truth
equipment. Different tunings of the method, corresponding to
different risks, are assessed in terms of availability and integrity
in order to compute statistical metrics. Results indicate that this
methodology is relevant since the specified risk corresponds to
experimental observations.

I. INTRODUCTION

GPS positioning is a core technology for intelligent vehicle
navigation. It provides worldwide positioning with a cost that
can be very affordable. In complex environments, like city
centers, satellite signals can be blocked (which degrades the
geometrical configuration) and can be affected by multipath.
Since positioning quality can vary widely, it is important to
be able to quantify in real-time the quality of a computed
position. One way of addressing this problem is by computing
confidence domains that quantify position uncertainty. If the
confidence domain becomes too wide, the positioning system
can simply fire an alert to inform the navigation system that the
positioning quality is too bad for the current task. This is the
Receiver Autonomous Integrity Monitoring (RAIM) approach
[1].

Confidence domains have to take into account measurement
errors, which can be classified into two categories: noise
errors and faults i.e. errors that do not correspond to the obser-
vation model. Probabilistic frameworks combining estimation
(snapshot or sequential, using Kalman filtering for instance)
with Detection, Identification and Adaptation (DIA) (see, for
example, [2]) are often used. Approaches of this kind yield a
point position estimate and then quantify the error distribution
around this point.

Another way of addressing this problem is to use set-
membership methods which can propagate measurement in-
tervals up to the computation of the solution set. The
method that we use in this paper formulates the problem
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as a Constraint Satisfaction Problem (CSP) combined with
iterative set inversion. Using interval analysis and contractors,
the positioning confidence domain is computed as the set of
positions compatible with all the constraints. This kind of
solver adds no risk to the computation. It can provide a
disconnected solution set where there is positioning ambiguity
(as a result, for example, of non-linearities) and can work
in constrained conditions (e.g. with only two satellites in
view). Finally, the computation mechanism can be robustified
to handle outliers using q-relaxation [3]. These methods make
it possible to characterize in real-time confidence domains
corresponding to a given risk.

The main concern addressed in this paper is verifying
that the confidence domains computed using this kind of
approach are reliable and relevant (i.e. not too pessimistic
and the confidence domains computed at the final decision
stage correspond to the specified risk). This is the main
contribution of this paper. To this end we present a set-
membership evaluation methodology for comparing the result
from the computed solution set with a ground truth equipment
whose level of inaccuracy is also taken into account. Since
integrity is closely linked to availability, we report the results
of an experimental analysis focusing on these two performance
indicators for several given risks.

The paper is organized as follows. We first describe
the positioning solver that combines, in a tightly-coupled
fashion, GPS pseudorange measurements with a precise 3D
road surface model. This solver computes confidence domains
in real-time with a constant specified integrity risk on the
resulting positioning, by setting appropriate bounds on the
GPS measurements. A method for implementing this strategy
is presented. An evaluation methodology using a ground truth
system and the experimental set-up is then presented in Section
3. Finally, real experimental results for different risk tunings
are analyzed in Section 4.

II. POSITIONING ALGORITHM

The positioning solver used in this paper involves interval
analysis and multidimensional intervals or boxes [4]. This kind
of set-membership approach is known to be very efficient in
terms of complexity and adequacy for real time processing
compared to others, like ellipsoidal state estimation [5].

A. Basic concepts

A box is denoted [x] = [x, x], where vectors x and x
are respectively the lower and upper bounds of [x]. The
solver involves constraint propagation and set inversion with
subpavings.



When the components of a vector x are linked by re-
lations or constraints, a constraint satisfaction problem can
be defined. This consists in finding the set of solutions
X = {x ∈ [x]|f(x) = 0}, where [x] is the domain of the
variables and f(x) = 0 represents the constraints. Inequalities
can also be represented by introducing slack variables [4].

A contractor C for a CSP is an operator that computes a
smaller domain [xc] = C([x]) without affecting the solution
set, i.e. X ⊂ [xc] ⊂ [x]. There are many ways to implement a
contractor, one of them being the forward-backward contractor
based on constraint propagation [6].

A set inversion problem consists in determining the set
X such that f(X) ⊂ [y], where [y] is a known interval
vector of m measurements. To approximate compact sets in a
guaranteed way, subpavings can be used. A subpaving of a box
[x] is the union of non-empty and non-overlapping subboxes
of [x].

Using interval analysis, the solution X = f−1([y]) can be
approximated between two subpavings X and X such that
X ⊆ X ⊆ X . The SIVIA (Set Inversion Via Interval Analysis)
algorithm can perform this kind of set inversion, by recursively
bisecting an initial box [4].

Since we are seeking to characterize the positioning confi-
dence domain, we only need to compute the outer subpaving
X of the set that fulfills positioning constraints. Algorithm 1
implements such a SIVIA strategy: X is an outer approxi-
mation of the solution set, given an initial domain [x0]. This
algorithm uses a list of boxes L managed by the push and pull
functions. If L is a queue, the algorithm employs a breadth-
first strategy. ε controls the sharpness of the subpaving X .
Boxes larger than ε after contraction are bisected along the
component interval which has the largest dimension.

Algorithm 1 SIVIA(in: [x0], ε)

1: X := ∅ // empty subpaving
2: push([x0],L)
3: while L is not empty do
4: [x] := pull(L)
5: [x] := C([x]) // contract the box
6: if width([x]) < ε then
7: X := X ∪ [x]
8: else if [x] 6= ∅ then
9: ([x1], [x2]) := bisect([x])

10: push([x1],L); push([x2],L)
11: end if
12: end while
13: return X

B. GPS contractor

GPS positioning with pseudorange measurements is a Time
of Arrival method [7]. Pseudoranges are the distances to each
visible satellite, offset by an unknown amount due to the offset
between the receiver clock and the GPS time. GPS positioning
using pseudoranges is thus a four-dimensional problem: along

with the Cartesian coordinates (e, n, u) of the user in a local
frame tangential to the Earth, the user’s clock offset dtu has
to be estimated. Let x = (e, n, u, d) with d = c · dtu.

Measured pseudoranges need to be corrected, to take into
account relativity effects and ionospheric/tropospheric delay.
Even after the propagation delay corrections provided in the
broadcast GPS data have been applied so as to obtain corrected
pseudoranges ρi, model errors remains. Moreover, receiver
measurement errors also need to be taken into account.
Corrected pseudorange measurements are thus represented as
intervals [ρi] whose bounds are determined given an integrity
risk [8].

Satellite positions (esi , n
s
i , u

s
i) are computed with broadcast

ephemeris data. They are represented as boxes [xs] =
([esi ], [n

s
i ], [u

s
i ]) to take ephemeris inaccuracy into account.

The location zone computation involves characterizing the
set X of all locations compatible with the measurements and
the satellite position intervals. Each pseudorange introduces a
constraint on the solution. The constraint introduced by the
ith corrected pseudorange measurement is represented by the
following function:

[ρi] =
√

([e]− [esi ])
2 + ([n]− [nsi ])

2 + ([u]− [usi ])
2+[d]

(1)

The contractor for a single pseudorange constraint will
hereafter be referred to as Pseudorange_contract([x], [ρ], [xs]).
It is a forward-backward contractor, which performs constraint
propagation in an optimal order, following the elementary
constraint decomposition of the pseudorange measurement
function [6].

The constraint for GPS positioning using pseudoranges
corresponds to fulfilling the pseudorange constraints for all
visible satellites. With m satellites in use, a GPS contractor
is given in Alg. 2.

Algorithm 2
GPS_contract(in: [x], [ρ]1, . . . , [ρ]m, [x

s]1, . . . , [x
s]m)

1: for i := 1 to m do
2: [x] := [x] ∩ Pseudorange_contract([x], [ρi], [x

s]i)
3: end for
4: return [x]

C. Map constraints

3D roads can be used for contracting not only the East
and North estimates by making use of the road boundaries,
but also altitude. The drivable space denotes the area within
which the vehicle can travel. For a car, the drivable space can
be defined as the surface of the roadway. Obstacles like posts
or lane separators are excluded from the drivable space.

The drivable space is represented in 3D by a surface
made up of connected triangular facets (Fig. 1). Vertices are
represented by their 3D coordinates, while facets are defined
by a list of three vertices. We assume that the vehicle moves



Figure 1: 3D view of the drivable space extracted from a
database. A particular triangular facet is highlighted.

only within the represented drivable space, which provides a
very strong constraint on the position.

Being located on a 3D triangular face can be expressed by
four simple constraints: one constraint representing the facet
plane, and three constraints for the edges. The first constraint
is simply given by the plane equation obtained from the three
vertices. Edge constraints can be expressed by enforcing the
positivity of the dot products of vertex-to-point vectors with
the corresponding edge normal vectors.

Algorithm 3 presents this contractor (interval vectors
[a], [b], [c] are the coordinates of the facet vertices and the
points are in counter clockwise order). The intersection ∩
of two boxes is a box. Since the union of two boxes is not
necessarily a box (e.g. [1, 2] ∪ [3, 4]), let us define the box
union t which returns the hull of the union of two boxes (e.g.
[1, 2] t [3, 4] = [1, 4]).

Algorithm 3 Facet_contract(in: [x], [a], [b], [c])

1: [bbox] := [a] t [b] t [c]
2: [x] := [x] ∩ [bbox]
3: if [x] = ∅ then
4: return([x])
5: end if
6: if ([x1:2]-[a1:2])·

(
0 −1
1 0

)
([b1:2]-[a1:2])∩[0,+∞]=∅

or ([x1:2]-[b1:2])·
(
0 −1
1 0

)
([c1:2]-[b1:2])∩[0,+∞]=∅

or ([x1:2]-[c1:2])·
(
0 −1
1 0

)
([a1:2]-[c1:2])∩[0,+∞]=∅ then

7: return(∅)
8: end if
9: return([x])

The whole map constraint is simply the union of the
constraints from each facet of the map M. Algorithm 4
contracts a box with the entire map. Map-Matching (MM)
is often done with polylines at macro-scale level [9] or meso-
scale [10]. It consists in selecting the segment of the polylines
which is the most likely. Here, the process is rather different

since no explicit selection is needed. Nevertheless and in order
to speed up the process, a selection of all the facets (and not
only the most likely one) that intersect the prior box is done.
This is achieved by the Extract_facets function which returns
the set of facets whose bounding box intersects the prior box.
In other words, it enables us to focus only on the interesting
part of the map.

Algorithm 4 Map_contract(in: [x],M)

1: [xc] := ∅
2: F := Extract_facets(M, [x])
3: for each f in F do
4: [xc] := [xc] t Facet_contract([x], f.[a], f.[b], f.[c])
5: end for
6: return [xc]

When a previous position is known, road topology is also
used to reduce the initial facet candidates as presented in [11].

D. Positioning solver

Positioning is performed by using the map contractor de-
scribed in Section II-C together with the GPS contractor de-
scribed in Section II-B. We use the SIVIA algorithm (Alg. 1),
with the contractor Croad_gps implemented in Alg. 5, which
successively applies, at each step of its set inversion scheme,
the road and GPS contractors until no more contraction occurs.

Algorithm 5 Croad_gps(in: [x],M, [ρ]1...m, [x
s]1...m)

1: repeat
2: [x] := Map_contract([x],M)
3: [x] := GPS_contract([x], [ρ]1...m, [x

s]1...m)
4: until no more significant contraction can be done on [x]
5: return [x]

E. A priori integrity risk computation

The knowledge of the risk associated with the computed
confidence domain is of prime importance for reliable posi-
tioning. Assuming that the bounds of map error are known
and guaranteed, the risk that the computed solution does not
contain the true position depends only on pseudorange error.
To compute a confidence domain with a given integrity risk r,
the choice of error bounds on pseudoranges is accomplished
as follows [12].

Let p be the confidence in each pseudorange measurement
error interval (see Fig. 2):

p = Pr (ρi ∈ [ρ]i) , i ∈ {1 . . .m} (2)

Let mok be the number of pseudorange intervals that are
consistent with ground truth. Assuming pseudorange errors
are independent, the probability that all pseudorange intervals
are consistent with the truth is:

Pr(mok = m) = pm (3)
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corresponding to the confidence value p .

The positioning solver computes an outer approximation X(t)
of the position confidence domain as a subpaving, which is
guaranteed to be consistent with the true position x(t) if all
the measurement intervals are consistent with the true error.
This way,

mok = m⇒ x(t) ∈ X(t) (4)

which leads to

Pr(x(t) ∈ X(t)) ≥ Pr(mok = m) (5)
Pr(x(t) /∈ X(t)) ≤ 1− Pr(mok = m) (6)

r ≤ 1− pm (7)

For a specified risk r, (7) can be inverted to find the indi-
vidual minimum confidence p on each pseudorange interval.
Assuming normally distributed pseudorange errors of variance
σ2 (see. Fig 3), one way of setting the error bounds on each
pseudorange measurement is then given by

[ρ] = [ρ− ασ, ρ+ ασ] with α = −Φ−1

(
1− p

2

)
where Φ represents the cumulative distribution function of the
standard normal distribution.

σ

½ P(y∉[ymeas])
α.σ

f(ey)

ey
ey ey

FIGURE 3: ±ασ bounds for a Gaussian error.

Some values of p and α as a function of the number of
pseudoranges m are given in Table I.

III. EVALUATION METHODOLOGY

The interval-based positioning solver is evaluated based
on two criteria: positioning availability and integrity. Other
criteria can also be considered depending on the application,
as explained in [13].

Table I: Pseudorange intervals risk p and error bounds for r =
10−5 as a function of the number m of GPS measurements.

m 1 2 3
p 10−5 5 · 10−6 3.3 · 10−6

α 4.42 4.56 4.65

A. Positioning information availability

Navigation requires positioning uncertainty to be small
enough to allow position information to be used by the current
navigation task. In the same way as a protection level (PL)
is compared to an alert limit [14], positioning information is
declared available if the radius of the computed confidence
domain (in the tangent plane) is less than the maximum
tolerated position error for the current navigation task. In this
study, we have used a 10-meter limit, as suggested in [15].

In this paper, positioning availability will be checked with
a box whose width is twice the specified maximum error.
Positioning will be declared available when the computed
confidence domain fits inside the box.

B. Integrity

The positioning solver computes a position confidence do-
main with an associated integrity risk. This risk corresponds
to the case where the true position is not included in the
computed confidence domain.

To check positioning integrity, we check that the true
position is inside the computed solution subpaving every time
position information is declared available.

C. Ground-truth uncertainty

Since the radius of the computed location domains can
be as small as a few meters, the uncertainty of the ground
truth position employed in the integrity evaluation cannot be
neglected. Uncertainty about the true position is handled by
representing the ground-truth as a box [xref ] (Fig. 4). The
binary integrity test is thus replaced by a 3-state inclusion
test:

• “True” means that, despite the ground-truth error, the
confidence domain is proven to contain the true position.

• “False” means that the confidence domain is proven not
to contain the true position.

• “Indeterminate” means that the ground-truth uncertainty
makes it impossible to decide whether the confidence
domain contains the true position.

Integrity checking of the solution subpaving is performed
using Algorithm 6. If the ground truth box is a subset of a box
in the solution subpaving, then integrity is proven to be true.
If the subpaving does not contain any box that intersects the
ground-truth box, then integrity is false. Otherwise, the result
is indeterminate, unless we prove that [xref ] is a subset of the
solution subpaving. To save computation time, we perform a
simplified test with the bounding box of the set of boxes that
intersect [xref ]. (This test is not guaranteed, in that it does not
prove that the ground-truth box is included in the subpaving.)
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Figure 4: Integrity validation of the computed subpaving with
the ground-truth uncertainty displayed in black

Algorithme 6 Integrity_check([xref ], X)

1: [bbox] := ∅
2: for [x] in X do
3: if [xref ] ⊂ [x] then
4: return true
5: else if [xref ] ∩ [x] 6= ∅ then
6: [bbox] := [bbox] t [x]
7: end if
8: end for
9: if [bbox] = ∅ then

10: return false
11: else if [xref ] ⊂ [bbox] then
12: return true
13: else
14: return indeterminate
15: end if

IV. EXPERIMENTAL RESULTS

A. Experiment

Data were acquired using an experimental vehicle belonging
to the Institut Geographique National (IGN), as part of a
research project known as CityVIP. We focus below on a 1 km
loop in the 12th arrondissement of Paris, a 5 minute drive
around the local town hall (Fig. 5).
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Figure 5: Trajectory around the 12th arrondissement town hall
in Paris, skyplot of used GPS satellites, and number of visible
satellites with SNR≥35dB during the trial.

The 3D map of the drivable space was charted by the
IGN [16]. It was constructed manually from precise aerial
photographs (5 cm horizontal precision, 25 cm in altitude),
and converted from its original Lambert93 projection to a local
tangent frame, in which GPS positioning is also performed.
We use GPS pseudorange measurements acquired at 2 Hz
with a Septentrio PolaRx2 receiver. Satellite positions and
pseudorange corrections are computed with the GPSTk [17].

To prevent the use of erroneous measurements, all pseudor-
anges with L1 carrier to noise ratio below 35 dBHz have been
filtered out. This efficiently rejects reflected signals since they
are attenuated by the use of a polarized antenna. The acquired
data are very challenging for GPS positioning. Indeed, after
carrier to noise ratio thresholding, there are fewer than 4
satellites in view during 88% of the trial, and fewer even than
3 satellites in view in 56% of the measurement epochs (Fig. 5).

In the positioning risk computation, pseudorange measure-
ment noise is assumed to be Gaussian distributed. One
possibility would be to use the User Range Accuracy (URA)
broadcast in the GPS data. URAs are figures for each satellite
corresponding to upper bounds of the pseudorange noise stan-
dard deviation. However, these values are coarsely discretized
and all the satellites in the experiment were assigned the lowest
representable value, which is σURA = 2 m. Therefore, using
the URA value would be a too pessimistic estimation of the
pseudorange error noise. Many experiments carried out with
the same GPS receiver showed that the standard deviation
of the pseudorange measurement error (after applying GPSTk
corrections) is in the order of one meter. This is the value that
has been used in the experiments reported in this paper.

Ground truth is provided by a post-processed Applanix in-
ertial navigation system. After comparison with two LandINS
inertial navigation systems also embedded in the vehicle dur-
ing the data acquisition, the maximum ground truth uncertainty
on the horizontal plane was estimated to be less that 1 m [18].

B. Results

The interval positioning solver was tested over the whole
1 km test loop, for 3 different integrity risk settings (r = 10−4,
r = 0.1 and r = 0.5). We only consider the horizontal
component of the estimated location for evaluation, since
altitude is constrained by the map. Positioning is declared to
be available when the computed confidence domain fits within
a 20 m square.

We report results obtained with the same dataset as that
used in [19]. The test starts with good satellite visibility,
before entering urban canyons with 2 or 3 satellites in view.
Accurate positioning can be achieved with only two satellites
in view thanks to the road constraint. Sometimes ambiguous
positioning occurs at crossroads (i.e. the solver provides
several disconnected sets) since two satellites are not enough to
select the correct road segment. Note, finally, that the system
is able to contract position with only one satellite in view
thanks to the receiver clock offset prediction.
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Figure 6: Bounds of the computed position subpaving, avail-
ability and integrity. Zero ordinate is ground truth. Grayed-
out zones indicate positioning unavailability. Integrity-test
results are reported in green=true, orange=indeterminate and
red=false.

Fig. 6 shows the bounds of the confidence domains with
respect to ground truth for each integrity risk setting. When
the confidence domain is too large, positioning is declared
unavailable and shown in light gray in the figure. When
positioning is available, an integrity indicator is computed,
taking ground-truth uncertainty into account. Epochs where
the confidence domain is guaranteed to contain the true
position are indicated in green. Epochs where the confidence
domain is proven not to contain the true position are shown in
red. Orange indicates indeterminate cases due to ground-truth
uncertainty.

With a very low integrity risk (r = 10−4), the confidence
domain is consistent with ground truth during the whole trial.
The number of epochs in which it cannot be proven that the
confidence domain contains the true position increases when
computation is done with higher a priori risk settings (r = 0.1
and r = 0.5). It is interesting to note that the sum of unknown
(orange) and loss of integrity (red) is in close agreement with
the a priori risk setting r. Table II shows that while the
percentage of epochs where integrity is not certainly proven is
null with r = 10−4, this percentage grows to 9% with r = 0.1
and to 52% with r = 0.5.

Table II: Availability and integrity statistics

integrity risk r = 10−4 r = 0.1 r = 0.5

availability (20 m square) 37% 54% 56%
integrity ok 100% 91% 48%

unknown 0% 9% 44%
integrity lost 0% 0% 8%

Another interesting fact to note is that setting a very low
a priori risk is done at the expense of a lower availability.
In Table II, positioning availability with r = 10−4 is only
37%, but availability is around 55% with higher a priori risks
(r = 0.1 and r = 0.5).
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Figure 7: Empirical cumulative distribution functions of the
horizontal position error (HPE), for epochs with positioning
declared available.



Figure 7 shows the empirical cumulative distribution func-
tions of the horizontal position error (HPE), that have been
computed from epochs with positioning declared available.
This figure shows better positioning accuracy with r = 10−4

than with r = 0.1 and r = 0.5. This is mainly due to the
difference in positioning availability. With a low integrity
risk, position confidence domains are larger. Epochs with bad
positioning configurations are thus more likely to be filtered
out by the availability threshold with r = 10−4 that with
the two higher risk settings. The cumulative distributions
of HPE with r = 0.1 and with r = 0.5 are close to each
other. This is because nearly the same epochs are declared
available with these two risk settings (see Fig. 6). More
detailed HPE statistics can be found in Table III, that clearly
shows the degradation of positioning accuracy as the integrity
risk increases. While the mean error with r = 10−4 is 1.84 m,
it goes up to 2.49 m and 2.61 m respectively with r = 0.1
and r = 0.5.

Table III: Horizontal position error (HPE) statistics, for epochs
with positioning declared available

integrity risk r = 10−4 r = 0.1 r = 0.5

mean HPE 1.84 m 2.49 m 2.61 m
std. dev. HPE 0.96 m 1.44 m 1.47 m

min HPE 0.11 m 0.25 m 0.25 m
max HPE 4.34 m 7.70 m 7.74 m

median HPE 1.94 m 2.52 m 2.40 m
95th percentile HPE 3.14 m 4.52 m 4.92 m

Figure 8 shows the distribution of the true position inside the
computed confidence domains. Since the size of the domains
changes over time, the results are normalized such that -1
represents the domain’s lower bound and +1 the domain’s
upper bound on the considered axis. Only epochs where
positioning was declared available were considered in this
figure. With a low risk setting r = 10−4, ground truth is
almost always centered in the confidence domain. Indeed,
with such a low risk, the confidence domain is quite large with
respect to positioning accuracy. With a higher risk setting like
r = 0.1, the true position is more evenly distributed among
the confidence domain. This distribution is not centered
in the domain, which is mainly due to the non-isotropy of
the map constraint. A longer test with more different road
configurations (orientation, crossings, etc) would probably
lead to a more centered distribution. Finally, with a very high
risk setting r = 0.5, it can clearly be seen that the true position
is frequently outside of the confidence domain.

V. CONCLUSION
An interval-based positioning algorithm merging GPS pseu-

doranges with a 3D road surface map in a tightly coupled
fashion has been presented in this paper. It computes a position
confidence domain with a specified a priori integrity risk.
Experimental validation was performed with real GPS data
and a ground-truth positioning solution to assess the actual
integrity risk and positioning availability for three a priori
risk settings. Integrity checking also takes the ground-truth
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Figure 8: Distribution of the normalized relative position of
the true position inside the computed confidence domain, when
positioning is declared available. -1 (resp. +1) represents the
confidence domain’s lower-bound (resp. upper-bound).



uncertainty into account. With a very low risk setting, no
integrity losses were observed. With higher risk settings,
the proportion of epochs in which integrity has not been
validated corresponds closely to the chosen a priori integrity
risk: 9% with r=0.1 and 52% with r=0.5. However, positioning
availability, which is conditioned by the size of the confidence
domain, decreases as the chosen integrity risk gets smaller. A
tradeoff between integrity risk and positioning availability has
thus to be found for a given application.
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