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On the hitting times of continuous-state

branching processes with immigration

October 28, 2013

Xan Duhalde 1, Clément Foucart 2, Chunhua Ma 3

Abstract

We study the two-dimensional joint distribution of the first hitting time of a con-
stant level by a continuous-state branching process with immigration and their primitive
stopped at this time. We show an explicit expression of its Laplace transform. Using this
formula, we study the polarity of zero and provide a necessary and sufficient criterion for
transience or recurrence. We follow the approach of Shiga, T. (1990) [A recurrence crite-
rion for Markov processes of Ornstein-Uhlenbeck type. Probability Theory and Related
Fields, 85(4), 425-447], by finding some λ-invariant functions for the generator.
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1 Introduction and main results.

The continuous-state branching processes with immigration (CBI for short) are a class of time-
homogeneous Markov process with values in R+. They have been introduced by Kawazu and
Watanabe in 1971, see [12], as limits of rescaled Galton-Watson processes with immigration.
They form an important class of Markov processes which has received significant attention in
the literature. For an introduction to these processes, we refer to Li [17], [18] and Kyprianou
[14].

Any CBI process is characterized in law by a couple (Ψ,Φ) of Lévy-Khintchine functions :

Ψ(q) = γq +
1

2
σ2q2 +

ˆ ∞

0

(e−qu − 1 + qu1{u∈(0,1)})π(du), (1)

Φ(q) = bq +

ˆ ∞

0

(1− e−qu)ν(du) (2)
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where σ, b ≥ 0, γ ∈ R and ν, π are two Lévy measures such that
´∞

0
(1 ∧ u)ν(du) < ∞

and
´∞

0
(1 ∧ u2)π(du) < ∞. The measure π is the Lévy measure of a spectrally positive

Lévy process which characterizes the reproduction. The measure ν characterizes the jumps
of the subordinator that describes the arrival of immigrants in the population. The non-
negative constants σ2 and b correspond respectively to the continuous reproduction and the
continuous immigration. To shorten our notation, we denote by CBI(Ψ,Φ) a continuous-state
branching process with reproduction mechanism Ψ and immigration mechanism Φ. Kawazu
and Watanabe [12] establish that a CBI(Ψ,Φ) is a Feller process with generator the operator
L acting on C2(R+) as follows

Lf(x) :=
σ2

2
xf ′′(x) + (b− γx)f ′(x) + x

ˆ ∞

0

(f(x+ z)− f(x)− z1[0,1](z)f
′(x))π(dz)

+

ˆ ∞

0

(f(x+ z)− f(x)) ν(dz). (3)

Apart if explicitly mentioned, to avoid the case of deterministic CBI processes, we shall always
assume that one of the three conditions holds: σ 6= 0, π 6≡ 0, or ν 6≡ 0. Moreover, we assume
that there exists q ∈ R+ such that Ψ(q) > 0 (i.e. −Ψ is not the Laplace exponent of a
subordinator). This is equivalent to assume that the effective drift d defined by

d :=







γ +
´ 1

0
zπ(dz) if the process has bounded variation

+∞ if the process has unbounded variation,

(4)

belongs to (0,∞]. If not, the corresponding CBI process would be non-decreasing, and the
problems studied in the present work are trivial. Notation Px denotes the law of the pro-
cess started at x ∈ R+, and Ex the corresponding expectation operator. Let (Xt, t ≥ 0) a
CBI(Ψ,Φ), its one-dimensional marginal law satisfies:

Ex[e
−qXt ] = exp

(

−xvt(q)−

ˆ t

0

Φ(vs(q))ds

)

, (5)

with ∂vt(q)
∂t

= −Ψ(vt(q)) and v0(q) = q.

Recall the following classification (see Chapter 12 of [14] for details) : the branching
mechanism Ψ is said

• subcritical if Ψ′(0+) > 0,

• critical if Ψ′(0+) = 0,

• supercritical if Ψ′(0+) < 0.

Throughout the article, we take the convention that for any finite real number C, C/∞ = 0.
We adopt the following definition of recurrence and transience.

Definition. We say that the process (Xt, t ≥ 0) is recurrent if there exists an x ∈ R+ such
that

Px(lim inf
t→∞

|Xt − x| = 0) = 1. (6)
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On the other hand, we say that the process is transient if

Px( lim
t→∞

Xt = ∞) = 1 for every x ∈ R+. (7)

When the reproduction mechanism reduces to Ψ(q) = σ2

2
q2 and Φ(q) = bq, the process is

the Feller diffusion, also called Cox-Ingersoll-Ross model in the financial setting. This is the
unique solution to the stochastic equation :

Xt = x+ σ

ˆ t

0

√

XsdBs + bt,

where (Bt, t ≥ 0) is a Brownian motion. A standard method to study the hitting times as
well as the transience and recurrence of a general diffusion, is to use potential theory and
scale functions (see for instance pages 128-129 of Itô and Mckean [11]). This theory yields the
following classic result concerning the Feller diffusion (Xt, t ≥ 0) : if 2b ≥ σ2, then the point 0
is polar. If 2b > σ2, the process is transient, otherwise the process is recurrent. In particular,
if 2b = σ2, then 0 is polar and the process is recurrent (we refer to Chapter XI of Revuz-Yor
[24] for a proof).

We shall study these path-properties for the general CBI processes. The polarity of zero
has been studied in Foucart and Uribe Bravo [9]. However, this latter work focuses on the
zero-set and does not provide a criterion for transience or recurrence of the process. Moreover,
as we shall see zero may be polar and recurrent (in sense of (6)).

Denote by σa the first hitting time of the point a :

σa := inf{t > 0;Xt = a}. (8)

We highlight that the process has no downward jumps, therefore σa is also the time of
entrance in R+ ∩ [0, a]. We will discuss the law of σa when the process starts from a state x
greater than a.

On the one hand, when the mechanism Ψ reduces to Ψ(q) = γq with γ > 0, the class of
CBI processes corresponds to positive Ornstein-Uhlenbeck processes. This class of processes
has been intensively studied. Hadjiev [10] get a formula for the hitting times of generalized
Ornstein-Uhlenbeck processes. Patie [20], [21], Novikov [19] apply potential theory to get
identities for the joint law of (σa,

´ σa

0
Xsds), and for the first exit times. On the other hand,

when no immigration is taken into account (namely, with Φ ≡ 0), the corresponding CBI
process is simply a continuous-state branching process (CB process) for which many results
have been obtained using the Lamperti transform (we refer for instance to Chapter 10 of [14]).
We mention that a Lamperti-type representation for the CBI processes has been obtained by
Caballero et al. in [5]. However, our methods do not rely on this representation.

Our main objective is to generalize some of these results when immigration is taken into
account for a general reproduction mechanism Ψ. In this framework, the integral from 0 to σa

of the process can be interpreted as the total population up to time σa. The results reveal the
interplay between Φ and Ψ in some path properties of CBI processes. The first main theorem
is the following. Set v = b

d
with d defined by (4).
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Theorem 1. Let x > a ≥ v. For every λ > 0 and µ ≥ 0, we have

Ex

[

exp
{

− λσa − µ

ˆ σa

0

Xtdt
}]

=

´∞

q(µ)
dz

Ψ(z)−µ
exp

(

−xz +
´ z

θ
Φ(u)+λ
Ψ(u)−µ

du
)

´∞

q(µ)
dz

Ψ(z)−µ
exp

(

−az +
´ z

θ
Φ(u)+λ
Ψ(u)−µ

du
) , (9)

where q(µ) := sup{q ≥ 0 : Ψ(q) = µ}, and θ is an arbitrary constant larger than q(µ).

When Φ is null or taken of the specific form Ψ′, some formulas are simplified and we recover
certain results on continuous-state branching processes.

The second theorem discuss the recurrence or transience property for a CBI(Ψ,Φ) process
when Φ 6≡ 0.

Theorem 2. (a) In the critical or subcritical case, the process is recurrent or transient
according as

ˆ 1

0

dz

Ψ(z)
exp

[

−

ˆ 1

z

Φ(x)

Ψ(x)
dx

]

= +∞ or < +∞. (10)

(b) In the supercritical case, the CBI(Ψ,Φ) is transient.

The paper is organized as follows. We begin by studying the state space of a CBI in Section
2. We then prove a key lemma (Section 3) providing some λ-invariant functions, and apply it
to establish Theorem 1. We derive from Theorem 1 a formula for the Laplace transform of the
hitting times and get a criterion for the polarity of zero. In Section 5, we establish firstly some
direct corollaries of Theorem 2. In particular we obtain the law of the minimum of a transient
CBI. We then proceed to the proof of Theorem 2 and show how to construct null-recurrent
CBIs. Eventually, we study the integral of the CBI process up to time σa.

2 State space of CBI processes.

We study here the state space of a general CBI process. A trivial example of CBI process
which is not irreducible in R+ is the deterministic one. Namely, if Φ(q) = bq and Ψ(q) = γq
with γ > 0, the associated CBI is Xt = X0e

−γt+ b
γ
(1− e−γt). The path of this process is above

b
γ

as soon as X0 > b
γ
. As already mentioned the case when −Ψ is the Laplace exponent of

a subordinator is excluded. Recall d > 0 and v = b
d
. We state a lower bound for any CBI

process.

Proposition 3. Let X be a CBI(Ψ,Φ) process started at x ∈ (0,∞). Then, Px almost surely,
for all t > 0,

Xt ≥ e−dtx+ v
(

1− e−dt
)

. (11)

In particular, this implies lim inf
t→∞

Xt ≥ v.

Proof. Firstly, one can notice that when X has unbounded variation, then d = ∞ and v = 0.
The lower bound in the lemma is then null and the statement is clear. We then focus on the
case of bounded variation and denote, for all t > 0, xt := e−dtx + v

(

1− e−dt
)

. Using the
càdlàg regularity, it will be sufficient to prove that for a fixed t ∈ (0,∞),

Px (Xt < xt) = 0. (12)
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Let X̃ be a CBI(Ψ, Φ̃), where Φ̃(λ) = bλ. We have then for all λ,

Ex[e
−λX̃t ] = exp

(

−xvt(λ)− b

ˆ t

0

vs(λ)ds

)

,

thus Ex[e
−λX̃t ] ≥ Ex[e

−λXt ], and therefore Px(Xt < xt) ≤ Px(X̃t < xt). We will show that the
latter probability is 0.

It is well-known that for a fixed t > 0, the map λ 7→ vt(λ) is the Laplace exponent of a
subordinator (see for instance Bertoin-Le Gall [2]). More precisely the underlying subordinator
has for drift e−dt (see Duquesne and Labbé in [8] Section 2.1 for details). Consider the Laplace
exponent of the driftless subordinator :

wt(λ) := vt(λ)− e−dtλ.

One can write

Ex[e
−λX̃t ] = exp

(

−λxt − xwt(λ)− b

ˆ t

0

ws(λ)ds)

)

, (13)

and

Ex[exp(−λ(X̃t − xt)] = exp

(

−xwt(λ)− b

ˆ t

0

ws(λ)ds)

)

. (14)

One can plainly check that the map λ 7→ xwt(λ) + b
´ t

0
ws(λ)ds is the Laplace exponent of a

non-negative random variable. We deduce X̃t ≥ xt, Px-a.s., and thus (12).

Remark 2.1. Alternatively, one can use stochastic calculus. Consider the case of bounded
variation for which σ = 0 and

´ 1

0
xπ(dx) < ∞. Let N0(ds, du) and N1(ds, dz, du) be two

independent Poisson random measures on (0,∞)2 and (0,∞)3 with intensity dsν(dz) and
dsπ(dz)du, respectively. For each x ≥ 0 there is a pathwise unique positive strong solution to
the following stochastic equation :

Xt = x+

ˆ t

0

(b− dXs)ds+

ˆ ∞

0

zN0(ds, dz) +

ˆ t

0

ˆ ∞

0

ˆ Xs−

0

zN1(ds, dz, du).

By Itô’s formula, the solution (Xt, t ≥ 0) is a CBI (Ψ,Φ) with σ = 0; See Theorem 3.1 of
Dawson and Li [7]. On the other hand,

xt = x+

ˆ t

0

(b− dxs)ds.

It follows from Theorem 2.2 of Dawson and Li [7] that Px(Xt ≥ xt for all t ≥ 0) = 1.

In the (sub)critical case, a necessary and sufficient condition for the existence of a stationary
distribution was announced by Pinsky [23] and obtained by Li :

Theorem 4 (Theorem 3.20 in Li [18]). i) If
´ 1

0
Φ(u)
Ψ(u)

du < ∞, then the CBI(Ψ,Φ) process,

(Xt, t ≥ 0), has an invariant probability distribution. In the subcritical case (Ψ′(0+) >
0), this integral condition is equivalent to

ˆ ∞

1

log(u)ν(du) < ∞.
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ii) If
´ 1

0
Φ(u)
Ψ(u)

du = ∞, then for all x, b ∈ R+,

lim
t→∞

Px(Xt ≤ b) = 0.

Remark 2.2. The second statement of Theorem 4 is not plainly stated in [18]. Nevertheless,

one can observe in the proof of Theorem 3.20 in[18] that if
´ 1

0
Φ(u)
Ψ(u)

du = ∞, then Ex

[

e−λXt
]

−→
t→∞

0. We refer also to the Appendix A of Keller-Ressel and Mijatović [13].

It follows from Theorem 4 and Proposition 4.4 of [13] that either (Xt, t ≥ 0) has the non-

degenerate limit distribution with support [v,∞) or Xt
p
→ ∞ as t → ∞. Thus, applying

Fatou’s lemma, it is not hard to see that

Px

(

lim sup
t→∞

Xt = ∞
)

= 1, for any x ∈ R+, (15)

if Φ 6≡ 0. Starting from a point in S = [v,∞), the process stays in S, so we shall work with S
as the state space. Following the usual classification of Markov processes, a CBI process with
a non-degenerate limit distribution is said to be positive recurrent. We shall see in the sequel
that any positive recurrent process is indeed recurrent in the sense of (6).

3 Proof of Theorem 1.

Recall L the infinitesimal generator of a CBI(Ψ,Φ) stated in (3). Let µ ≥ 0 and set Ψ̄(q) =
Ψ(q)− µ. Denote L̄ the generator of (X̄t, t ≥ 0), a CBI(Ψ̄,Φ). For all f ∈ C2(R+)

L̄f(x) = Lf(x)− µxf(x).

Recall q(µ) = sup{q ≥ 0 : Ψ(q) = µ}. Note that q(µ) < ∞ since by assumption there exists q
such that Ψ(q) > 0. We fix a constant θ = θ(µ) ∈ (q(µ),∞). The next Lemma provides some
invariant functions for the generator L̄.

Lemma 5. Let λ, µ ≥ 0. Define, for x ∈ (q(µ),∞),

gλ,µ(x) :=
1

Ψ(x)− µ
exp

[
ˆ x

θ

Φ(u) + λ

Ψ(u)− µ
du

]

, (16)

and

fλ,µ(x) :=

ˆ ∞

q(µ)

e−xzgλ,µ(z)dz.

If λ > 0, the function fλ,µ is a C1-function decreasing on (v,∞) such that

L̄fλ,µ = λfλ,µ.

Proof of Lemma 5. Let λ > 0, µ ≥ 0. Firstly, we check that fλ,µ(x) is well-defined for x > v.
We have

Φ(u)

Ψ(u)− µ
=

Φ(u)

u

u

Ψ(u)− µ
−→

u→+∞

b

d
=: v,

therefore
1

z

ˆ z

θ

Φ(u) + λ

Ψ(u)− µ
du −→

z→∞
v.
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Since x > v and Ψ(z) − µ ≥ Cz with large enough z, and a constant C > 0, we get for all
λ ≥ 0

ˆ ∞

θ

dz

Ψ(z)
exp

[

−xz +

ˆ z

θ

Φ(u) + λ

Ψ(u)− µ
du

]

< ∞. (17)

It remains to verify the integrability at q(µ). We have

ˆ θ

q(µ)

dz

Ψ(z)− µ
exp

[

−xz −

ˆ θ

z

Φ(u) + λ

Ψ(u)− µ
du

]

≤

ˆ θ

q(µ)

dz

Ψ(z)− µ
exp

[

−

ˆ θ

z

λ

Ψ(u)− µ
du

]

.

Consider λ > 0, an antiderivative of the integrand in the right hand side is

z 7→
1

λ
exp

[

−λ

ˆ θ

z

1

Ψ(u)− µ
du

]

. (18)

This takes a finite value at q(µ) and yields the wished integrability.

Remark that gλ,µ solves the ordinary differential equation

Ψ′(z)gλ,µ(z) + (Ψ(z)− µ) g′λ,µ(z) = (Φ(z) + λ)gλ,µ(z), ∀z ∈ (q(µ),∞). (19)

For all z, define hz(x) = e−xz, one can easily check that

L̄hz(x) = [x(Ψ(z)− µ)− Φ(z)] hz(x).

We compute

L̄fλ,µ(x)− λfλ,µ(x) =

ˆ ∞

0

(

L̄hz(x)− λhz(x)
)

gλ,µ(z)dz

=

ˆ ∞

q(µ)

e−xz (x(Ψ(z)− µ)− Φ(z)− λ) gλ,µ(z)dz

=

ˆ ∞

q(µ)

e−xz
(

Ψ′(z)gλ,µ(z) + (Ψ(z)− µ)g′λ,µ(z)− (Φ(z) + λ)gλ,µ(z)
)

dz

= 0.

The third equality follows from integration by parts. Indeed, we have

(Ψ(x)− µ)gλ,µ(x) = exp

(
ˆ x

θ

Φ(u) + λ

Ψ(u)− µ
du

)

−→
x→0

0

because
´

q(µ)+
du

Ψ(u)−µ
= ∞, since Ψ(u) − µ is always sub-linear near q(µ). The last equality

holds true because of the ODE (19).

We establish now Theorem 1.

Proof of Theorem 1. Consider a CBI(Ψ,Φ) process (Xt, t ≥ 0) and define It :=
´ t

0
Xsds. The

family (e−µIt , t ≥ 0) is a continuous multiplicative functional of (Xt, t ≥ 0). Denote the
subordinate semi-group (in the terminology of Blumenthal and Getoor [4]) by Qt, and the
subprocess by (X̄t, t ≥ 0). We have for all f ∈ C2(R+)

Qtf(x) = Ē[f(X̄t)] := Ex[f(Xt)e
−µIt ].
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We refer the reader to Theorem 3.3 and 3.12 pages 106 and 110 of Blumenthal and Getoor [4].
The bivariate process ((Xt, It); t ≥ 0) is a Markov process. Similarly as Patie [22] (see Lemma
7), one can see by Itô’s formula that for any function f ∈ C2

c (R+),

f(Xt)e
−µ
´ t
0
Xsds − f(x)−

ˆ t

0

e−µ
´ s
0
Xudu(Lf(Xs)− µXsf(Xs))ds

is a local martingale. Theorem 4.1.2 in [17] applies and ensures that (X̄t, t ≥ 0) is a CBI(Ψ̄,Φ)
process. Firstly we consider a > v, and recall σa = inf{t ≥ 0, Xt = a}. From Lemma 5, one
can apply Dynkin’s formula to the Markov process (X̄t, t ≥ 0) killed at time σa, we get

Ēx[e
−λσa∧tfλ,µ(X̄σa∧t)] = fλ,µ(x),

and thus
Ex[e

−µIσa∧te−λσa∧tfλ,µ(Xσa∧t)] = fλ,µ(x).

If we start from a point x > a, since the process has no downward jumps, Xt > a for all
time t < σa, and fλ,µ(Xt∧σa) ≤ fλ,µ(a). Therefore the left hand side of the above equality is
bounded and when t → ∞, we get

Ex

[

exp
{

− µ

ˆ σa

0

Xtdt− λσa

}]

=
fλ,µ(x)

fλ,µ(a)
,

with the convention e−∞ = 0. To prove the formula in the case a = v, we notice that σa is
increasing towards σv, when a ↓ v, by quasi-left continuity of the CBI. The result follows by
monotonicity.

4 Hitting times and polarity of the boundary point.

By a slight abuse of notation, define fλ := fλ,0 and gλ := gλ,0, that is to say

gλ(x) =
1

Ψ(x)
exp

[
ˆ x

θ

Φ(u) + λ

Ψ(u)
du

]

(20)

and fλ(x) =
´∞

q(0)
e−xzgλ(z)dz. As a direct consequence of Theorem 1, when µ goes to 0, we

get the following corollary.

Corollary 6. For all λ ∈ (0,∞), and x > a ≥ v

Ex

[

e−λσa
]

=
fλ(x)

fλ(a)
. (21)

Remark 4.1. We stress that the process (e−λtfλ(Xt), t ≥ 0) is not a martingale. For instance
applying the optional stopping theorem to the first-exit time τb := inf{t > 0, Xt > b} yields
a contradiction. In the same vein as scale functions for Lévy processes, one has to stop the
process to get a martingale. This issue comes from the fact that fλ is not in the domain of
the generator associated to the CBI(Ψ,Φ) process. Indeed, we can plainly check that for any
mechanisms Ψ,Φ: |f ′

λ(0)| = ∞.
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To the best of our knowledge these functions do not appear in the literature even when no
immigration is taken into account. Consider that particular case and assume here that Φ ≡ 0.
The CBI is then a CB(Ψ) process. In the supercritical case, an easy calculation of the limit
when λ goes to 0 yields

Px (σa < ∞) = exp (−(x− a)q(0)) , ∀a ∈]0, x].

Note that this equality holds for a = 0 under the Grey’s condition (see for instance Theorem
3.8 in [18]). Furthermore, the function fλ has a simpler expression. Indeed, since z

Ψ(z)
→

1/d ∈ [0,∞) as z → ∞, there exists k > 0 such that for x > 0,

e−xz exp
(

λ

ˆ z

θ

du

Ψ(u)

)

≤ e−xz exp
(

λk

ˆ z

θ

du

u

)

= e−xz(z/θ)λk −→
z→∞

0.

Since Ψ′(q(0)) < ∞, we also have e−xz exp
(

λ
´ z

θ
du

Ψ(u)

)

→ 0 as z → q(0). Integrating by parts,

a notable cancellation occurs, we get :

fλ(x) =
x

λ

ˆ ∞

q(0)

e−xz exp

(

λ

ˆ z

θ

du

Ψ(u)

)

dz,

and then for x > a > v,

Ex[e
−λσa ] =

x
´∞

q(0)
e−xz exp

(

λ
´ z

θ
du

Ψ(u)

)

dz

a
´∞

q(0)
e−az exp

(

λ
´ z

θ
du

Ψ(u)

)

dz
.

We return to the general case for which Φ 6≡ 0. When v = 0, Corollary 6 provides the
Laplace transform of σ0, the hitting time of 0. We study now the polarity of the boundary.
Recall that a point a ∈ S is said to be polar if for all x ∈ S such as x 6= a,

Px (σa < ∞) = 0.

We recover and complete some results of [9] through more classic techniques relying on
Corollary 6.

Corollary 7. The only point that may be polar is v. If d < ∞ then v is polar. In the
unbounded variation case, v = 0 and 0 is polar if and only if

ˆ ∞

θ

dz

Ψ(z)
exp

[
ˆ z

θ

Φ(x)

Ψ(x)
dx

]

= ∞.

Remark 4.2. The integrability condition
´∞

θ
1

Ψ(z)
dz < ∞ implies that d = ∞, which entails

that v = 0. However, it is worth mentioning that none of these implications are equivalences.

Proof of Corollary 7. Let λ > 0. From Corollary 6, the point a is polar if and only if fλ(a) =
∞. We have seen that fλ(x) ∈ (0,∞) for any x ∈ (v,∞). Thus only v may be polar. Firstly,
if d < ∞, note that

Φ(x)

Ψ(x)
− v =

1

bΨ(x)

[

d

ˆ ∞

0

(1− e−xu)ν(du) + b

ˆ ∞

0

(1− e−xu)π(du)

]

≥ 0.

9



Then
ˆ ∞

θ

dz

Ψ(z)
exp

[

−vz +

ˆ z

θ

Φ(x)

Ψ(x)
dx

]

≥ e−vθ

ˆ ∞

θ

dz

Ψ(z)
= ∞,

and therefore we have fλ(v) = ∞.

Assume now d = ∞ (thus v = 0) and
´∞

θ
dz

Ψ(z)
exp

[

´ z

θ
Φ(x)
Ψ(x)

dx
]

= ∞. We have fλ(0) = ∞

and the same arguments hold.

We show now that if
´∞

θ
dz

Ψ(z)
exp

[

´ z

θ
Φ(x)
Ψ(x)

dx
]

< ∞, then

Px[σ0 < ∞] > 0.

Writing

Ex[e
−λσa ] =

´∞

q(0)
e−xzgλ(z)dz

´∞

q(0)
e−azgλ(z)dz

=

´ θ

q(0)
e−xzgλ(z)dz

(

1 +
´∞

θ
e−xzgλ(z)dz/

´ θ

q(0)
e−xzgλ(z)dz

)

´ θ

q(0)
e−azgλ(z)dz

(

1 +
´∞

θ
e−azgλ(z)dz/

´ θ

q(0)
e−azgλ(z)dz

) (22)

for a = 0, one can see that lim
λ→0

Ex[e
−λσ0 ] > 0 since

1
´ θ

q(0)
gλ(z)dz

ˆ ∞

θ

gλ(z)dz −→
λ→0

1
´ θ

q(0)
g0(z)dz

ˆ ∞

θ

g0(z)dz ∈ [0,∞[.

5 Recurrence and transience.

5.1 Criterion of transience/recurrence and properties of transient

CBIs.

We restate Theorem 2 and provide some corollaries. We stress that in the (sub)critical case,
q(0) = 0 and we choose θ = 1.

Theorem 2.

(a) In the critical or subcritical case, the process is recurrent or transient according as

ˆ 1

0

dz

Ψ(z)
exp

[

−

ˆ 1

z

Φ(x)

Ψ(x)
dx

]

= +∞ or < +∞.

(b) In the supercritical case, the CBI(Ψ,Φ) is transient.
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Remark 5.1. • In light of Theorem 4, if the CBI(Ψ,Φ) process verifies
´ 1

0
Φ(x)
Ψ(x)

dx < ∞,
then the process is recurrent.

• In the criterion, when the mechanism Ψ is subcritical, one can replace Φ by the map
q 7→

´∞

1
(1 − e−qx)ν(dx). In other words, neither the continuous immigration nor its

small jumps play a role for the process to be transient. Moreover, we should mention that
when Ψ(q) = γq, the criterion coincides with that of Shiga [26]. Note that a subcritical
CBI with Φ(q) = bq is always recurrent.

• If the state 0 is not polar, that is
ˆ ∞

1

dz

Ψ(z)
exp

[
ˆ z

1

Φ(x)

Ψ(x)
dx

]

< ∞

then one has the same necessary and sufficient conditions for both neighborhood-recurrence
and point-recurrence (studied in [9]) of the state 0. Indeed, if (Xt, t ≥ 0) is recurrent,

then
´ 1

0
g0(x)dx = ∞ and rewriting (22), we get Px(σ0 < ∞) = 1 for every x ∈ R+.

Since Px(lim supt→∞Xt = ∞) = 1, we have that (Xt, t ≥ 0) hit 0 infinitely many times
at arbitrary large times a.s.

Example 5.1. Consider Ψ(q) = dqα, Φ(q) = d′qβ with α ∈ (1, 2] and β ∈ (0, 1).

• If β > α− 1, the process is positive recurrent and 0 is polar.

• If β < α− 1, the process is transient and 0 is not polar.

• If β = α − 1 and α ∈ (1, 2), the process is recurrent if d′/d ≤ α−1 and transient if
d′/d > α−1. The point 0 is polar if and only if d′/d ≥ α−1. We highlight that if
d′/d = α−1, 0 is polar but lim inf

t→∞
Xt = 0. We point out that in this case, the CBI

process is selfsimilar. Patie in [22] obtained the condition for 0 to be polar via other
arguments.

Assume that the process (Xt, t ≥ 0) is transient. One can plainly check that the function

f0(x) =

ˆ ∞

q(0)

dz

Ψ(z)
exp

(

−xz +

ˆ z

θ

Φ(u)

Ψ(u)
du

)

takes finite values for all x > v. Applying Corollary 6 and Theorem 2, we obtain the following
proposition.

Proposition 8. Denote the overall infimum of the transient process (Xt, t ≥ 0) by I. We have

Px (I ≤ a) = Px (σa < ∞) =
f0(x)

f0(a)
.

If f0(0) =
´∞

q(0)
dz

Ψ(z)
exp

(

´ z

θ
Φ(u)
Ψ(u)

du
)

< ∞ (i.e 0 is not polar and the process is transient) then

the law of I has an atom at 0.

Proof. Firstly, note that Px[I ≤ a] = Px[σa < ∞]. By Theorem 2, the integrability condition
needed to define f0 is satisfied. Taking λ = 0, in the formula for the Laplace transform of σa,
yields Px[σa < ∞] = f0(x)

f0(a)
.
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The CB(Ψ) process conditioned to be non extinct is an important example of CBI process.
As a direct corollary of Theorem 2, we recover and complete some results due to Lambert (see
Theorem 4.2-i in [16]).

Corollary 9. The critical CB process conditioned to be non extinct is transient. Moreover, if
the process starts at x, its minimum is uniformly distributed over [0, x]. The subcritical CB(Ψ)
process conditioned to be non extinct is recurrent or transient according to

ˆ 1

0

dz

z
exp

(

−

ˆ 1

z

(

1

Ψ′(0+)u
−

1

Ψ(u)

)

du

)

= +∞ or < +∞.

Proof. Let Ψ be a critical reproduction mechanism. Consider the case Φ = Ψ′, the CBI(Ψ,Φ)
process has the same law as the CB(Ψ) process conditioned to the non extinction. In that

case, we have clearly
´ z

1
Ψ′(u)
Ψ(u)

du = log(Ψ(z))− log(Ψ(1)), and therefore

ˆ 1

0

dz

Ψ(z)
exp

(
ˆ z

1

Ψ′(u)

Ψ(u)
du

)

=
1

Ψ(1)
< ∞.

In order to deal with the minimum, one can readily check that f0(x) = 1/x. Thus, the
random variable I is uniformly distributed over [0, x]. For the subcritical case, plugging
Φ = Ψ′ −Ψ′(0+) in the integral of Theorem 2, yields easily the statement.

Remark 5.2. The fact that the minimum of a critical CBI(Ψ,Ψ′) is uniformly distributed can
be obtained alternatively from Proposition 3 in Chaumont [6], which states the corresponding
result for Lévy processes conditioned to stay positive. Indeed, Lambert, in [15], shows that the
CB process conditioned to be non-extinct has the same law as a time-changed Lévy process
conditioned to stay positive.

5.2 Proof of Theorem 2.

Firstly, we establish statement (a). The proof relies on the study of the Laplace transform of
the hitting times provided by Corollary 6. Recall

gλ(x) =
1

Ψ(x)
exp

[
ˆ x

1

Φ(u) + λ

Ψ(u)
du

]

.

Equation (17) ensures that for x > v,

ˆ ∞

1

e−xzg0(z)dz < ∞.

Recurrence. Assume that
ˆ 1

0

1

Ψ(x)
exp

[
ˆ x

1

Φ(u)

Ψ(u)
du

]

dx = ∞.

For every x ≥ a,
Px[σa < ∞] = lim

λ→0
Ex[e

−λσa ].
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Rewriting Equation (22), we have for all a > v,

Ex[e
−λσa ] =

´ 1

0
e−xzgλ(z)dz

(

1 +
´∞

1
e−xzgλ(z)dz/

´ 1

0
e−xzgλ(z)dz

)

´ 1

0
e−azgλ(z)dz

(

1 +
´∞

1
e−azgλ(z)dz/

´ 1

0
e−azgλ(z)dz

)

−→
λ→0

1.

We deduce that Px(σa < ∞) = 1 for any x ≥ a > v, which implies Px

(

lim inf
t→∞

Xt ≤ v
)

= 1.

The lower bound of Lemma 11 then entails Px

(

lim inf
t→∞

Xt = v
)

= 1, so the process is recurrent

in sense of (6).

Transience. We now work under the assumption
ˆ 1

0

dz

Ψ(z)
exp

(

−

ˆ 1

z

Φ(u)

Ψ(u)
du

)

< ∞. (23)

Let a > v := b/d. We show that Px

(

lim inf
t→∞

Xt < a
)

= 0. One has

Px

(

lim inf
t→∞

Xt < a
)

≤ lim
t→∞

Px (σa ◦ θt < ∞) (24)

= lim
t→∞

Ex [PXt (σa < ∞)] .

Moreover one can write that,

Ex [PXt (σa < ∞)] ≤ Px (Xt ≤ a) + Ex

[

1{Xt>a}PXt (σa < ∞)
]

. (25)

Firstly, under (23), one has
´ 1

0
Φ(u)
Ψ(u)

du = ∞. According to ii) in Theorem 4, it implies that

lim
t→0

Px (Xt ≤ a) = 0.

Thus, the first term in (25) goes to 0 when t → ∞. We focus now on the second term.
Under (23), one can take λ = 0 in Corollary 6. For x > a > v,

Px (σa < ∞) =

´∞

0
dz

Ψ(z)
exp

(

−xz +
´ z

1
Φ(u)
Ψ(u)

du
)

´∞

0
dz

Ψ(z)
exp

(

−az +
´ z

1
Φ(u)
Ψ(u)

du
) = ca

ˆ ∞

0

g0(z)e
−xzdz. (26)

Hence,

Ex

[

1{Xt>a}PXt (σa < ∞)
]

= caEx

[

1{Xt>a}

ˆ ∞

0

g0(z)e
−zXtdz

]

= ca

ˆ ∞

0

g0(z)Ex

[

1{Xt>a}e
−zXt

]

dz. (27)

Moreover, Ex

[

1{Xt>a}e
−zXt

]

≤ e−za and by (23) and (17),
´∞

0
g0(z)e

−zadz < ∞. Furthermore,

since
´

0+
Φ(u)
Ψ(u)

du = ∞,

Ex

[

1{Xt>a}e
−zXt

]

≤ Ex

[

e−zXt
]

= exp

(

−xvt(z)−

ˆ z

vt(z)

Φ(u)

Ψ(u)
du

)

−→
t→∞

0. (28)
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Thus, by dominated convergence, the integral (27) tends to 0, which entails the desired result.
Therefore the process is transient in the sense of Definition (7).

In order to prove statement (b) (transience in the supercritical case), one has just to adapt

the proof above. Indeed, we have
´ θ

q(0)
dz

Ψ(z)
exp

(

−
´ θ

z
Φ(u)
Ψ(u)

du
)

< ∞, so we can write (26).

Moreover, one can use that
´ z

vt(z)
Φ(u)
Ψ(u)

du −→
t→∞

´ z

q(0)
Φ(u)
Ψ(u)

du = ∞ in (28).

5.3 Construction of subcritical null-recurrent CBI processes.

We look here for examples of null recurrent CBI processes. Assume that Ψ(q) = γq, with
γ > 0. The following computations remains valid if Ψ is subcritical with Ψ′(0+) > 0, because
only the behaviour of Ψ at 0 matters. To avoid positive recurrence, we need to choose Φ such
that

´

0
Φ(q)
q
dq = ∞, which is equivalent to

ˆ ∞

log(u)ν(du) = ∞. (29)

Moreover, to get a recurrent process, we know from Theorem 2 that Φ has to satisfy

ˆ 1

0

dz

z
exp

(

−

ˆ 1

z

Φ(u)

γu
du

)

= ∞. (30)

From condition (29), we know that the example of Φ we are looking for is not a deterministic
drift. Moreover, when ν is not null, the value of the drift coefficient b has no influence for
(30) to be fulfilled. Therefore, we will take b = 0 and we will exhibit a sufficient condition
involving the Lévy measure ν to get (30). Denote ν(u) := ν ([u,∞)) and recall from Chapter
III of Bertoin [1] that there exists a universal constant κ such that

Φ(q)/q ≤ κJΦ(1/q), ∀q > 0, where JΦ(x) :=

ˆ x

0

ν(u)du, x > 0.

Thus, we have

ˆ 1

z

Φ(u)

γu
du ≤

κ

γ

ˆ 1

z

JΦ(1/u)du =
κ

γ

ˆ 1/z

1

JΦ(u)/u
2du

=
κ

γ

(

JΦ(1)− zJΦ(1/z) +

ˆ 1/z

1

ν(u)/udu

)

,

by integration by parts. Hence, a sufficient condition to get (30) is

ˆ 1

0

dz

z
exp

(

−
κ

γ

ˆ 1/z

1

ν(u)/udu

)

= ∞. (31)

Example 1. We consider α ∈ R and define ν such that

ˆ 1/z

1

ν(u)/udu = α log log 1/z up to an add. constant., (32)
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so that the integral in (31) is of the same nature as
´

0
dz

z log(1/z)κα/γ . The integral will be infinite

if α is chosen such that κα/γ ≤ 1. We can get (32) taking ν(u) := αu d
du

log log u = α
log u

on [100,∞], that is ν(du) = α
u log2 u

1[100,∞]du. We can easily check that ν is a Lévy measure

and that the condition (29) is satisfied. This example is related to that given by Sato and
Yamazato in Section 7 of [25], in which the authors highlight as remarkable that the null
recurrence or transience of the process is function of κ/γ. The form of the criterion (30) and
the rôle played by Bertrand’s integrals provide a better understanding of the criterion. In the
next example, the value of γ has no influence.

Example 2. We choose ν such that

ˆ 1/z

1

ν(u)/udu = log log log 1/z up to an add. constant., (33)

so that the integral in (30) is
´

0
dz

z log log(1/z)κ/γ
= ∞. We can get (33) taking

ν(u) := u
d

du
log log log u =

1

log u log log u
, on [100,∞],

that is ν(du) = log log(u)+1

u log2 u log2(log u)
1[100,∞]du. The density of the last Lévy measure is equivalent at

∞ to 1
u log2 u log log u

. Hence, we can check that ν is indeed a Lévy measure and that it satisfies

(29).

6 Total population.

As already said, one can see the integral
´ σa

0
Xsds as the total population up to time σa. In the

case of the CB(Ψ) (Φ ≡ 0), and a = 0, this is known as the total progeny. The corresponding
integral

´ t

0
Xsds happens to be the time change in the Lamperti transform relating a CB(Ψ)

process with a spectrally positive Lévy process of Laplace exponent Ψ. This allows ones to
transfer the study of

´ σa

0
Xsds to that of the hitting time of a Lévy process. See Bingham

[3] and Corollary 10.9 in Kyprianou [14]. In what follows, we recover the latter corollary and
obtain its analogue with immigration.

Proposition 10. Let x > a ≥ v, and assume that Φ ≡ 0. For all µ > 0,

Ex

[

exp
{

− µ

ˆ σa

0

Xtdt
}]

= exp (−(x− a)q(µ)) . (34)

Proof. Firstly, let λ > 0. Integrating by parts, we have

ˆ ∞

q(µ)

dz

Ψ(z)− µ
exp

(

−xz +

ˆ z

θ

λ

Ψ(u)− µ
du

)

=

ˆ ∞

q(µ)

dz xe−xz exp

(

−xz +

ˆ z

θ

λ

Ψ(u)− µ
du

)

,

which tends to
´∞

q(µ)
dz xe−xz = exp (−xq(µ)), as λ goes to 0. Thus, let a > v ≥ 0. The desired

result follows from Theorem 1, with Φ ≡ 0, letting λ → 0. One can obtain now the case a = v
by monotonicity and quasi-left continuity.

More generally, we have the following corollary of Theorem 1.
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Corollary 11. Let x > a ≥ v, and assume that Φ 6≡ 0. For all µ > 0,

Ex

[

exp
{

− µ

ˆ σa

0

Xtdt
}]

=

´∞

q(µ)
dz

Ψ(z)−µ
exp

(

−xz +
´ z

θ
Φ(u)

Ψ(u)−µ
du
)

´∞

q(µ)
dz

Ψ(z)−µ
exp

(

−az +
´ z

θ
Φ(u)

Ψ(u)−µ
du
) . (35)

In the particular case of the CBI(Ψ,Ψ′) with Ψ′(0) = 0 (this is the CB(Ψ) conditioned to be
non extinct), we have

Ex

[

exp
{

− µ

ˆ σa

0

Xtdt
}]

=
a

x
exp (−(x− a)q(µ)) , ∀µ > 0, x > a ≥ v.

Proof. It follows readily from Theorem 1 by letting λ → 0. We only have to check that the
integral in the numerator of (35) is finite. At infinity, this follows from (17). At q(µ), one can
use that

Ψ′(z)−µ ∼
z→q(µ)

Ψ′(q(µ)) (z − q(µ)) , and

ˆ z

θ

Φ(u)

Ψ(u)− µ
du ∼

z→q(µ)

Φ (q(µ))

Ψ′ (q(µ))
log

(

z − q(µ)

θ − q(µ)

)

,

where Φ (q(µ)) and Ψ′ (q(µ)) ∈ (0,∞) because µ ∈ (0,∞).
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[11] K. Itō and H. P. MacKean. Diffusion Processes and Their Sample Paths, volume 1431.
Springer, 1996.

[12] K. Kawazu and S. Watanabe. Branching processes with immigration and related limit
theorems. Teor. Verojatnost. i Primenen., 16:34–51, 1971.

[13] M. Keller-Ressel and A. Mijatović. On the limit distributions of continuous-state branch-
ing processes with immigration. Stochastic Process. Appl., 122(6):2329–2345, 2012.

[14] A. E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with
applications. Universitext. Springer-Verlag, Berlin, 2006.

[15] A. Lambert. The genealogy of continuous-state branching processes with immigration.
Probab. Theory Related Fields, 122(1):42–70, 2002.

[16] A. Lambert. Quasi-stationary distributions and the continuous-state branching process
conditioned to be never extinct. Electron. J. Probab., 12:no. 14, 420–446, 2007.

[17] Z. Li. Continuous-state branching processes. ArXiv e-prints, Feb. 2012.

[18] Z. H. Li. Measure-Valued Branching Markov Processes. Springer, 2011.

[19] A. A. Novikov. Martingales and first-exit times for the Ornstein-Uhlenbeck process with
jumps. Teor. Veroyatnost. i Primenen., 48(2):340–358, 2003.

[20] P. Patie. On a martingale associated to generalized Ornstein-Uhlenbeck processes and an
application to finance. Stochastic processes and their applications, 115(4):593–607, 2005.

[21] P. Patie. q-invariant functions for some generalizations of the Ornstein-Uhlenbeck semi-
group. ALEA Lat. Am. J. Probab. Math. Stat., 4:31–43, 2008.

[22] P. Patie. Exponential functional of a new family of Lévy processes and self-similar con-
tinuous state branching processes with immigration. Bull. Sci. Math., 133(4):355–382,
2009.

[23] M. A. Pinsky. Limit theorems for continuous state branching processes with immigration.
Bull. Amer. Math. Soc., 78:242–244, 1972.

[24] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume
293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[25] K. Sato and M. Yamazato. Operator-selfdecomposable distributions as limit distributions
of processes of Ornstein-Uhlenbeck type. Stochastic processes and their applications,
17(1):73–100, 1984.

17



[26] T. Shiga. A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type.
Probab. Theory Related Fields, 85(4):425–447, 1990.

18


	Introduction and main results.
	State space of CBI processes.
	Proof of Theorem 1.
	Hitting times and polarity of the boundary point.
	Recurrence and transience.
	Criterion of transience/recurrence and properties of transient CBIs.
	Proof of Theorem 2.
	Construction of subcritical null-recurrent CBI processes.

	Total population.

