Modeling and simulation of melting curves and chemical interesterification of binary blends of vegetable oils
Moises Teles dos Santos, Vincent Gerbaud, G. A. C. Le Roux

To cite this version:

HAL Id: hal-00876439
https://hal.archives-ouvertes.fr/hal-00876439
Submitted on 24 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 9952

To link to this article: DOI:10.1016/j.ces.2012.09.026
URL: http://dx.doi.org/10.1016/j.ces.2012.09.026

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Modeling and simulation of melting curves and chemical interesterification of binary blends of vegetable oils

M. Teles dos Santos a, b, *, V. Gerbaud b, G.A.C. Le Roux a

a LCP/CESIQ – Department of Chemical Engineering, University of São Paulo. Av. Prof. Luciano Guaitberto, 380 05508-900 São Paulo-SP, Brazil
b LGC-INP ENSIACET, 4 Allée Emile Mouso, 31030 Toulouse, France

HIGHLIGHTS

SFC curves of binary blends of vegetable oils can be predicted.
Chemical interesterification of binary blends of vegetable oils can be simulated.
Minimization of Gibbs energy is useful for predict thermal profile of vegetable oils.
Fat-based product design can take advantage of computational tools in SFC evaluation.

ABSTRACT

A Solid–Liquid Equilibrium model coupled with an algorithm for direct minimization of the Gibbs free energy function was used to compute the melting profiles for binary blends of vegetable oils. The effect of interesterification on the Solid Fat Content (SFC) is simulated by using a completely random distribution of fatty acids on the glycerol structures. The methodology was applied to different blends of 6 vegetable oils: canola oil, fully hydrogenated palm oil stearin, palm oil stearin, cottonseed oil, milkfat and corn oil. The predicted results were compared with experimental data from literature and the average absolute error in SFC was 3.33% (physical mixture without interesterification) and 4.13% (after interesterification). Additionally, two qualitative aspects also observed in experimental works could be computationally detected: the existence of temperatures in which the blends have the same SFC before and after reaction and the fact that randomized blends tend to melt at lower temperatures than their corresponding mixtures. The results reinforced the potential use of computer-based tools to explore new formulations aiming to match a desired melting range, reducing the experimental efforts in product design where vegetable oils are used and the thermal profile has a fundamental role.

Keywords:
Vegetable oil
Melting
Solid-liquid equilibrium
Interestatification
Simulation
Solid fat content

1. Introduction

Product design has been evaluated as one of the challenges that chemical engineering has to face to help industry meet market demands for value-added products showing a desired performance (Charpentier, 2002; Hill, 2009). Product development involving vegetable oils deals with a large combinatorial problem due the existence of a great variability of raw materials, the multiple ways of mixing them and the possibility of promoting reaction in a given mixture. There is an experimental effort to mix vegetable oils and promote chemical interesterification (CI) to achieve products with enhanced nutritional characteristics while keeping physical properties within the desired range. Among these properties, the Solid Fat Content (SFC) is of great importance, as it is physicochemical properties and sensory attributes of many products are determined by the fraction of the molecules (triacylglycerols) that are solidified at a given temperature. One such example is the food industry, in which the melting profile affect attributes such as texture, creaminess, hardness, taste and spreadability (Braipon-Danthine and Deroanne, 2004; Narine and Humphrey, 2004; Rousseau and Marangoni, 1998). When the SFC is low, the fat behaves as a viscous liquid (rather than a plastic material); on the other hand, when the SFC is greater than 15–20%, the molecular interactions between crystals lead to a plastic material, where the liquid oil is immobilized inside the crystalline network, retaining its consistency (Criado et al., 2008; da Silva et al., 2010).

The search for new mixtures of vegetable oils matching desired melting profiles and enhanced nutritional properties is usually based on design heuristics, prior experience and direct
experimental studies, widely reported on literature. Despite the high number of these valuable experimental works, thermodynamic modeling and computational approaches are still scarce. The aim of the present work is to show how product design using vegetable oils can take advantage of computational tools and thermodynamic modeling. For this, the whole melting curves (SFC Vs. Temperature) and the effect of chemical interesifierification on melting profile are predicted. The pre-experimental evaluation of a large set of vegetable oils and their blends, in different compositions and temperatures, allows the experimental efforts to be focused on the most promising formulations in terms of SFC. Margarine, modified butters, shortenings, cocoa butter replacements and structured lipids are some examples of areas that can take advantage of SFC predictions. In such products, new formulations must match a desired melting profile and minimizing experiments can reduce cost and time for product development.

2. Literature background on SLE modeling of fatty systems

The literature on the Solid Fat Content of fatty systems reports mainly experimental measurements. Concerning modeling, the main part of published works deal with fitting model parameters to Solid–Liquid Equilibrium (SLE) experimental data, mainly for binary mixtures of fatty acids ([2004a, 2004b, 2004c] or triacylglycerols ([2008]). However, natural vegetable oils are far more complex as they can be composed of up to dozens of triacylglycerols (TAGs), which are 3 fatty acids esterified to the glycerol backbone. Therefore, the physical properties and Solid–Liquid Equilibrium of vegetable oils are due mainly to the inter and intramolecular interactions of TAGs, rather than to free fatty acids. Despite the recent studies in the modeling of binary mixtures (Roche and Guirardello, 2008), there is a lack of predictive computational tools to handle the complexity of the problem in a multicomponent level using triacylglycerols as the representative molecules. Among the works dealing with SLE of triacylglycerols for multicomponent mixtures, one can highlight the works of Himawan et al. (2006), Werdorp et al. (2005) and Won (1993), the first one being a review. The scarce experimental data on pure component properties, the high number of possible TAGs in a multicomponent mixture and the existence of polymorphic states on solid phase (α, β’ and β) make the problem challenging.

There are three main Solid–Liquid Equilibrium models in current literature for fatty mixtures: Bragg–Williams approximation (Bragg and Williams, 1934), Slaughter and Doherty model (Slaughter and Doherty, 1995) and Margules-isomorphism correlations (Werdorp et al., 2005).

- Bragg–Williams approximation assumes non-ideal mixing in both liquid and solid phases and attributes the non-ideality of mixing to the enthalpy term of the Gibbs free energy of mixing. It uses the parameters pL and pS fitted to experimental binary data, which are the energy differences between molecules pairs in solid and liquid phases. The works of Abes et al. (2007) and Boodhoo et al. (2008) follow this approach.

- Slaughter and Doherty model deals with compound-forming systems, assuming the formation of a stoichiometric compound in the solid phase and considering that the solid phases are almost immiscible.

- Concerning the Margules-isomorphism model, Werdorp et al. (2005) collected a large set of experimental data and noticed that Margules interaction parameters were well-correlated to the degree of isomorphism between 2 TAGs. Applying Flory Huggins theory, they also concluded that the liquid phase could be considered ideal in most cases, except when a large difference in molecular size occurs (differences in carbon number greater than 15–20). Regarding the solid phases, only the activity coefficients of the β’ and β phases needed to be determined, whereas the solid α polymorph could be considered as ideal. That is a reasonable assumption because solid non-ideal behavior comes from a substantial distortion in the regular crystal lattice of a pure component by adding a molecule of another size. That distortion is not significant in a disordered state such as the α polymorph but must be accounted for in the denser packed β’ and β systems (Werdorp et al., 2009).

Analyzing the current literature as a whole, one can say that the current approaches have the advantage of offering detailed descriptions of a specific binary mixture, enlarging the physical knowledge of such mixtures and offering experimental background for molecular structure–crystalline behavior relationships. For example, for a given binary mixture, works in literature identify different regions on the phase diagrams and make detailed descriptions of crystal morphology. However, the results are specific to that particular binary mixture. In the literature, there is a lack of tools that allow one to predict how changes in composition (e.g., enriching the blend with a given oil) or molecular structure (e.g., removing unsaturations) impact a fundamental property of interest for the industry (the SFC). This is particularly important for natural systems (vegetable oils) showing a high number of triacylglycerols. After applying our approach to binary mixtures and to a single vegetable oil enhanced with a structured lipid (Teles dos Santos et al., 2010, 2011), we aim to evaluate the capability of this approach to cope with more complex mixtures. Different from current literature dealing with experimental data on SFC, the present work uses SLE modeling and computational tools to predict the melting curves (SFC Vs. Temperature) and predict how chemical interesifierification influences the melting profile of vegetable oils blends.

3. Problem formulation

3.1. Solid–liquid equilibrium

In order to predict the SFC at a given temperature, one must solve a SLE problem. Due to their high molecular weight, TAGs tend to crystallize in 3 main crystalline networks (polymorphic forms): α, β’ and β (Fig. 1). Further discussions about polymorphic states and solid–solid transitions can be found in Yano and Sato (1999) and Sato (2001).

The prediction of polymorphic states is not possible using equilibrium-based models, because the shape and size of crystals are related to kinetic factors of crystallization and process conditions. The objective of the present work is offer a predictive tool able to evaluate the solid/liquid ratio in an equilibrium state for each one of the three basic polymorphic forms of Fig. 1.

Computing the phase equilibrium is the solution of a nonlinear programming problem searching for the minimization of the Gibbs free energy (G), subject to linear material balance constraints. The problem can be stated as:

\[
\min G(n) = \sum_{i=1}^{nc} \sum_{j=1}^{np} n_i^j \mu_i^j / (n) = \sum_{j=1}^{np} n_i^j g_i
\]

s.t.

\[
n_i = \sum_{j=1}^{np} n_i^j \quad i = 1 \ldots nc
\]

\[
0 \leq n_i^j \leq n_i \quad i = 1 \ldots nc, j = 1 \ldots np
\]
where \(n_c \) and \(n_p \) are the number of different TAGs and the number of phases in the mixture, respectively; \(n_i \) and \(\mu_i \) represent the number of mols and the chemical potential of TAG \(i \) in phase \(j \), respectively and \(n_i \) is the total number of mols of TAG \(i \). When a particular polymorphic state is evaluated, another constraint is added: the number of mols of all TAGs in the other two polymorphic states is equal to zero. Then, the optimization algorithm finds the distribution of molecules between the solid and liquid phases that minimizes the Gibbs Free Energy value.

The intensive Gibbs energy for a phase \(j \) (\(g^j \)) is the weighted sum of the partial Gibbs energy of all components present in that phase:

\[
g^j = \sum_{i=1}^{n_c} x_i^j (\mu_i) \tag{4}
\]

where \(x_i^j \) is the molar fraction of TAG \(i \) in phase \(j \). By definition, the partial Gibbs Energy of a component in a mixture is the chemical potential of that component. Eq. (4) can be rewritten as:

\[
g^j = \sum_{i=1}^{n_c} x_i^j (\mu_i + RT \ln x_i^j) \tag{5}
\]

where \(\mu_i \) is the chemical potential of a pure TAG \(i \) in the \(j \) state in the same temperature of the mixture (\(T \)) and \(\gamma_i^j \) the activity coefficient of TAG \(i \) in phase \(j \).

3.1.1. For \(j \) = liquid

In the reference state of pure liquid, chemical potential is zero. Also, the liquid phase is treated as ideal (See Section 2). This leads to the following simplification on Eq. (5):

\[
g^{\text{liquid}} = RT \sum_{i=1}^{n_c} (x_i^j \ln x_i^j) \tag{6}
\]

3.1.2. For \(j \) = solid (\(\alpha, \beta', \) or \(\beta \))

The chemical potential of a pure component \(i \) in the solid state in the temperature of the mixture (\(T \)) is given by:

\[
\mu_{i,\text{solid}(j)} = T \Delta H_{i,\text{solid}(j)} \left(\frac{1}{T} - \frac{1}{T_{\text{m},i}} \right) \tag{7}
\]

where \(T_{\text{m},i} \) and \(\Delta H_{i,\text{solid}(j)} \) are the melting temperature and melting enthalpy of pure TAG \(i \) considering the solid state \(j \).

Using Eq. (7) on Eq. (5), one have for the solid phases:

\[
g^{\text{solid}(j)} = RT \sum_{i=1}^{n_c} x_i^{\text{solid}(j)} \left(\Delta H_{i,\text{solid}(j)} \left(\frac{1}{T} - \frac{1}{T_{\text{m},i}} \right) + \ln \left(\frac{T}{T_{\text{m},i}} \right)x_i^{\text{solid}(j)} \right) \tag{8}
\]

\(j = \alpha, \beta, \beta' \) or \(\beta \)

Therefore, \(G(n) \) on Eq. (1) can be calculated using Eq. (6) (liquid) and Eq. (8) (solid). The decision variables are the number of mols of each component \(i \) in each phase \(j \) (\(n_i \)), in order to obtain the minimum of the total Gibbs Free Energy (\(G \)) in a given temperature (\(T \)). Two sets of data are, however, necessary:

An Excess Gibbs Free Energy model to compute the activity coefficients on the non-ideal solid phases:

\[
\gamma_i^{\text{solid}(j)} = \alpha, \beta, \beta' \text{ or } \beta
\]

Melting temperature and melting enthalpy of each TAG in each crystalline state:

\[
\Delta H_{\text{m},i}^{\text{solid}(j)} \text{ and } T_{\text{m},i}^{\text{solid}(j)} = \alpha, \beta, \beta' \text{ or } \beta
\]

3.1.3. Excess Gibbs free energy model

The thermodynamic model used is this work is the 2-suffix Margules model, due to three reasons: (1) It is suitable for mixtures formed by components with similar molecular volume, shape and chemical nature (Prausnitz et al., 1999); (2) There are experimental data for triacylglycerols available in literature that were used to develop correlations between the binary interaction parameters \(A_0 (\beta') \) and \(A_0 (\beta) \) and the geometrical similarity in the pair \(i-j \). This similarity is expressed in terms of the differences in the size of fatty acids chains (Wesdorp et al., 2005) and (3) It allows the flexibility/simplicity required in the optimization step of this work. Appendix A details how the interaction parameters are predicted.

3.1.4. Melting temperature and melting enthalpy

For each TAG, 6 values are required: 3 values of melting enthalpies and 3 values of melting points (each one corresponding to a solid-liquid transition in Fig. 1). A program, developed in FORTRAN 90, includes a set of available experimental data. Due to the high number of TAGs that can be formed from just a few fatty acids, it is frequent that experimental data is not available for a given TAG or not available in all 3 polymorphic states. In such cases, the predictive methods of Zeberg – Mikkelsen and Stendby, 1998 and Wesdorp et al. (2005) are used.

3.2. Solution approach

The optimization step (problem represented by Eqs. (1)-(3)) was implemented in GAMS (v.23) (Rosenthal, 2008) using a solver based on a Generalized Reduced Gradient Method (CONOPT 3). This optimization module was then coupled with the main program written in FORTRAN 90, which handles the calculation of interaction parameters, melting temperature and melting enthalpy and the generation of triacylglycerols from fatty acids data. The SLE was then solved over a temperature range: starting from a minimal temperature at which the SFC is 1, the temperature is increased until complete melting (SFC = 0). Each new optimization problem at \(T \) is solved using the previous results (at \(T_{\text{m},i} \)) as starting point. The results from the optimization step are the number of mols of each TAG in each phase (solid and liquid). Thus, summing the total number of mols in solid phases, one can compute the SFC at the given temperature. When spanning a temperature range, the whole melting curve can be computed. Also, using the numerical differentiation of Excess
Gibbs Energy calculated at each temperature, it is possible to compute Differential Scanning Calorimetry curves based on equilibrium hypotheses (Teles dos Santos et al., 2011, 2012).

3.3. Simulation of blending and chemical interesterification (CI)

If two or more vegetable oils are simply mixed, the TAG composition of the mixture is calculated using a simple mass balance on each TAG present on the starting vegetable oils. Experimentally, by the action of heat and catalyzers (chemical interesterification), the fatty acids present in the initial mixture can be redistributed randomly on the three positions of the glycerol, originating a new TAG profile. Because the TAG profile is changed, the blend shows different physical properties after reaction (including melting profile). In order to compute this TAG profile after reaction (simulating the reaction), the computational program makes a random distribution of fatty acids present on the original oils in the glycerol backbone. This is a combinatorial problem and it is further detailed on Appendix B.

The two procedures (blending vegetable oils and promoting chemical interesterification) are widely used in experimental researches and in the industrial sector. The objective of such techniques is to change the composition in terms of triacylglycerols and, therefore, to achieve enhanced physical and nutritional properties in relation to the original raw materials. Fig. 2 summarizes how the computational approach of this work simulates the experimental steps normally used in product development.

In this work, the term “before reaction” refers to the simple mixture of the concerned vegetable oils; the term “after reaction” refers to the product of the chemical interesterification of this mixture.

4. Results

The methodology was applied to 6 different blends of vegetable oils formed by canola oil (CO) Brassica napus, fully hydrogenated palm oil stearin (FHPOS), palm oil stearin (POS) and cottonseed oil (CSO).

All computational times reported in this work refers to a PC Intel(R) Core(TM)2 Quad processor, CPU Q9550 2.83 GHz each and 2.00 GB of RAM, operational system Windows Vista 32 bits.

4.1. Preliminary selection of a threshold mass fraction

Mixing vegetable oils leads to a system with a large number of TAGs. The simplest natural vegetable oils have 6 to 8 fatty acids (e.g., Palm stearin and canola oil). If one considers a 50–50% mixture of these two vegetable oils, 92 different TAGs can be theoretically formed. However, many TAGs show an insignificant fraction of total composition. Table 1 shows the composition ranges and the corresponding number of TAGs for this palm stearin–canola oil mixture.

One can notice that, despite the large number of possible TAGs (92), only 2 TAGs have a mass fraction greater than 10%. The other TAGs, despite their small individual fraction, have together a significant influence on the blend properties: the remaining 90 TAGs account for 74.43% in mass of the mixture.

It is important that the optimization algorithm takes into account a sufficient number of the TAGs generated computationally in order to obtain an expressive mass fraction of the mixture. However, a trade-off arises: the higher the number of TAGs considered the better the mixture is represented, but the computational time increases and uncertainties on pure component properties predictions become more critical. In the above case (92 TAGs), a total of 552 pure component properties (92 x 6) must be known or calculated.

In the case of chemical interesterification (CI), this issue is even more critical. The goal of CI is a random redistribution of fatty acids, so an important consequence of CI (and this is what makes it different from enzymatic interesterification) is the formation of a higher number of TAGs from a mixture in which this number is already large.

<table>
<thead>
<tr>
<th>Composition range x (%) mass</th>
<th>Number of TAGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≤ 0.01</td>
<td>43</td>
</tr>
<tr>
<td>0.01 < x ≤ 1</td>
<td>31</td>
</tr>
<tr>
<td>1 < x ≤ 10</td>
<td>16</td>
</tr>
<tr>
<td>x > 10</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 1: Mass fraction and corresponding number of TAGs. Mixture: palm oil stearin–canola oil 50–50.

Fig. 2. Simulated (this work) Vs. common experimental procedures for mixing and reaction of vegetable oils. VO: vegetable oil; FA: fatty acid; TAG: triacylglycerol; SLE: solid–liquid equilibrium; SFC: solid fat content; CI: chemical interesterification; GRG: generalized reduced gradient.
Table 2 shows the number of TAGs computationally generated for both cases: before reaction and after reaction. These results reinforced what was discussed earlier: the thermodynamic model must be kept as simple as possible, as the computational efforts must be oriented to the optimization step. For all systems discussed in this work, the whole set of triacylglycerols predicted from fatty acid data is available as supplementary data (BinaryBlends_TAGs.xls file).

Despite the formation of a large number of TAGs, these components are very similar regarding chemical nature. The differences rely on the size of fatty acids chains and degree of unsaturation. Fig. 3(a) shows the mass fraction of each molecule present on the blend CO–FHP0S 30/70 before and after reaction. One can notice that few TAGs (about 10) have a concentration greater than 5%. Fig. 3(b) shows the cumulative concentration of those TAGs. For a given mass fraction of the mixture, the corresponding number of TAGs that must be considered is always larger after reaction (interesterified blends), due to the formation of additional TAGs by the redistribution of fatty acids. As an example, before CI reaction, the 10 first TAGs represent 80% in mass of the blend. After CI reaction, the first 10 TAGs represent less than 60% in mass (Fig. 3(b)).

The following question arises: how many of the TAGs generated by the program are needed to describe properly the mixture, and therefore must be used in the SLE model? Several tests were performed to obtain the cut-off fraction necessary to describe satisfactorily the blend properties. These tests suggest that a number of TAGs accounting for 85% in mass should be used. This mass fraction (85%) must be adjusted on experimental data for other mixtures, but when no experimental data is available, the value of 85% in mass is suggested. Fig. 4 shows the predicted melting curve of the blend CO–FHP0S 30/70 mixture before reaction and the influence of the number of TAGs used. The covered mass fraction of the blend in each case and the corresponding computational time are also indicated. One can observe that the best representation of experimental data was obtained using 13 TAGs. The use of 14 TAGs does not increase the performance and requires 10% more computational time. Indeed, the 14th TAG corresponds to only 0.078% in mass of the mixture.

4.2. Binary blends

The SFC predictions were systematically compared with experimental data taken from literature (Karabulut et al., 2004). Different blends were used to simulate the whole melting curve before and after CI reaction. Table 3 summarizes the number of TAGs, the corresponding mass fraction, the polymorphic state used in each case and the computational time used to simulate the whole melting. In all the presented curves, the temperature increment is 1°C. The details brought by smaller values are unnecessary to describe the global behavior and the computational time increases substantially.

4.2.1. CO–FHP0S (canola oil—fully hydrogenated palm oil stearin)

For the blend CO–FHP0S 30/70 (Fig. 5), the computational results performed better before the reaction than for the interesterified product (after reaction). One can also notice that the CI reaction reduces the SFC in the whole range of experimental data (10 to 45°C). However, the model predicts a higher SFC for the system after reaction at temperatures lower than 10°C. Fig. 6 shows the simulated melting curves for the blend CO–FHP0S 70/30 before and after CI reaction. It can be noted that the SFC of this blend is lower than the SFC of the previous blend, formed by the same vegetable oils but with inverse composition: 70% of CO and 30% of FHP0S. This is due to the higher amount of the low-melting point component (canola oil). Despite the larger deviation from experimental point at 10°C after reaction, the model was able to identify 2 characteristics revealed by experimental data:

For simple mixture (before reaction), the SFC varies slowly with temperature, remaining in about 30% in the range -5°C to 25°C, following a steep reduction above 35°C. After reaction, the final melting point is lower than that of the system before reaction, showing a continuous decreasing in SFC with temperature until final melt (35°C experimental, 40°C calculated).

The reduction on SFC after reaction is due to the reduction of trisaturated TAGs (higher melting point). This reduction is caused by the redistribution of fatty acids and the formation of a high
Table 3
Number of TAGs, corresponding mass fraction, polymorphic state and computational time for different blends, before and after chemical interesterification reaction.

<table>
<thead>
<tr>
<th>Blend</th>
<th>Before reaction</th>
<th>After reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of TAGs used</td>
<td>Mass fraction (%)</td>
</tr>
<tr>
<td>CO–FHP0S 30/70</td>
<td>13</td>
<td>84.28</td>
</tr>
<tr>
<td>CO–FHP0S 70/30</td>
<td>15</td>
<td>81.38</td>
</tr>
<tr>
<td>CO–POS 50/50</td>
<td>15</td>
<td>80.13</td>
</tr>
<tr>
<td>CO–POS 60/40</td>
<td>20</td>
<td>86.73</td>
</tr>
<tr>
<td>CO–POS 40/60</td>
<td>30</td>
<td>92.52</td>
</tr>
<tr>
<td>CS0–POS 70/30</td>
<td>20</td>
<td>85.78</td>
</tr>
</tbody>
</table>

CO: canola oil; FHP0S: fully hydrogenated palm oil stearin; POS: palm oil stearin; CS0: cottonseed oil.

Fig. 5. Melting curves for the blend CO–FHP0S 30/70 before (mixture) and after chemical interesterification reaction.

Fig. 6. Melting curves for the blend CO–FHP0S 70/30 before (mixture) and after chemical interesterification reaction.

Table 4
Predicted composition in triacylglycerols before and after interesterification reaction (CO/FHP0S 30–70):

<table>
<thead>
<tr>
<th>Triacylglycerol</th>
<th>Molar fraction</th>
<th>Mass fraction</th>
<th>Triacylglycerol</th>
<th>Molar fraction</th>
<th>Mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pam Pam Ste⁷</td>
<td>0.1746</td>
<td>0.1744</td>
<td>Pam Pam Ste⁷</td>
<td>0.0942</td>
<td>0.0927</td>
</tr>
<tr>
<td>Pam Ste Ste⁷</td>
<td>0.1270</td>
<td>0.1311</td>
<td>Pam Ste Ste⁷</td>
<td>0.0674</td>
<td>0.0685</td>
</tr>
<tr>
<td>Pam Pam Pam⁷</td>
<td>0.1201</td>
<td>0.1159</td>
<td>Pam Pam Pam⁷</td>
<td>0.0659</td>
<td>0.0626</td>
</tr>
<tr>
<td>Pam Ste Pam⁷</td>
<td>0.0873</td>
<td>0.0872</td>
<td>Pam Pam Ole</td>
<td>0.0636</td>
<td>0.0624</td>
</tr>
<tr>
<td>Ole Ole Ole</td>
<td>0.0824</td>
<td>0.0829</td>
<td>Pam Ste Pam⁷</td>
<td>0.0471</td>
<td>0.0462</td>
</tr>
<tr>
<td>Ste Pam Ste⁷</td>
<td>0.0635</td>
<td>0.0656</td>
<td>Ole Ole Ste</td>
<td>0.0455</td>
<td>0.0461</td>
</tr>
<tr>
<td>Ole Ole Lin</td>
<td>0.0532</td>
<td>0.0535</td>
<td>Ste Ste Ole</td>
<td>0.0455</td>
<td>0.0461</td>
</tr>
<tr>
<td>Ste Ste Ste⁷</td>
<td>0.0462</td>
<td>0.0492</td>
<td>Ste Ole Ste</td>
<td>0.0455</td>
<td>0.0461</td>
</tr>
<tr>
<td>Ole Lin Ole</td>
<td>0.0266</td>
<td>0.0267</td>
<td>Ste Ste Ste⁷</td>
<td>0.0337</td>
<td>0.0343</td>
</tr>
<tr>
<td>Ole Ole Aln</td>
<td>0.0177</td>
<td>0.0178</td>
<td>Ole Ole Aln</td>
<td>0.0325</td>
<td>0.0341</td>
</tr>
<tr>
<td>Ole Lin Lin</td>
<td>0.0172</td>
<td>0.0172</td>
<td>Total</td>
<td>0.8374</td>
<td>0.8428</td>
</tr>
<tr>
<td>Pam Ole Ole</td>
<td>0.0127</td>
<td>0.0124</td>
<td>Ste Ste Ste⁷</td>
<td>0.0241</td>
<td>0.0253</td>
</tr>
<tr>
<td>Ole Aln Ole</td>
<td>0.0089</td>
<td>0.0089</td>
<td>Pam Pam Lin</td>
<td>0.0206</td>
<td>0.0201</td>
</tr>
<tr>
<td>Total</td>
<td>0.8361</td>
<td>0.8396</td>
<td>Pam Ole Lin</td>
<td>0.0152</td>
<td>0.0170</td>
</tr>
</tbody>
</table>

* Saturated TAG present before CI. Pam: palmitic acid (C16:0); Ste: stearic acid (C18:0); Ole: oleic acid (C18:1); Lin: linoleic acid (C18:2); Aln: linolenic acid (C18:3).

number of other triacylglycerols with lower melting point, not present in the original blend. In order to illustrate this point, Table 4 shows the 13 TAGs used to represent the system before reaction and the 30 TAGs used to represent the product of CI reaction on the blend CO–FHP0S 30/70. One can notice that the mass fraction of the TAG with higher melting point (composed of 3 stearic acids, SteSteSte) is reduced from 4.92% to 2.53%. The same occurs for all other saturated TAGs: all of them have their contribution on the mixture reduced.

Another issue coming up from the simulated curves is the existence of the iso-solid point, the temperature in which the SFC after reaction is equal to the SFC before reaction (Figs. 5 and 6). The experimental literature also reports such cases (Ahmadi et al., 2008). This point indicates that it is useless to promote reaction between the vegetable oils if one wants to change the SFC at this temperature. The possibility of identifying such points computationally can avoid unpromising experiments.

4.2.2. CO–POS (canola oil–palm oil stearin)

The model was able to describe properly the melting profile before and after CI reaction, especially the blend CO–POS 50/50 (Fig. 7) and 40/60 before reaction (Fig. 9). For the blend CO–POS 40/60, the optimization step did not converge to a solution at around −19 °C, which did not compromise the melting curve profile. Meaningful information arises from these simulated curves. On the blend CO–POS 40/60, a higher SFC is expected than in the blend CO–POS 50/50. This last one is in turn expected to have a higher SFC than the blend CO–POS 60/40, as the fraction
of the higher-melt vegetable oil is reduced (POS). Figs. 7–9 confirm this fact. As an example, we have at 25 °C (before reaction): SFC = 31% (CO–POS 40/60), SFC = 28% (CO–POS 50/50), and SFC = 19% (CO–POS 60/40). However, the final melting point is not changed (55 °C, 55 °C and 53 °C, respectively). This shows that formulations with similar final melting points can have different melting profiles at the usage temperature, which influences attributes such as consistency.

Blends with FHIPOS have higher SFC at a given temperature when compared to blends with POS, as the hydrogenation process eliminates the unsaturations and, as consequence, increases the melting point of TAGs present in POS.

One important characteristic differentiates the blends composed of FHIPOS and the blends composed of POS before reaction: the former shows a small variation of SFC between 10 and 40 °C (Figs. 5 and 6), followed by a steep reduction after 40 °C; in the last ones, the variation of SFC is steep in the whole experimental temperature range (Figs. 7–9). These predicted results were also observed experimentally (Karabulut et al., 2004). It must be highlighted that besides SFC, the sharpness of the melting range, along with other factors, determines the range within which a fat can be considered plastic (Rao et al., 2001).

4.2.3. CSO–POS (cottonseed oil–palm oil stearin)

This blend is well described by the computational approach, both before and after CI reaction. No iso-solid point was detected over the melting range, as in the case of CO–POS blends. Fig. 10 shows the melting curves for the blend 70/30 of these two fats, before and after CI reaction.

Table 5 summarizes the average absolute error (AAE) between predicted and experimental SFC for the six blends showed in Figs. 5–10.

4.2.4. Milkfat–corn oil

In order to further compare predicted and experimental data, the present methodology was tested on a system with higher complexity in terms of TAGs: interesterified milkfat–corn oil 80/20 (145 different TAGs, theoretically predicted by the random distribution of fatty acids). The fatty acids composition of individual fats and experimental SFC were obtained after Rodrigues and Gioielli (2003). The results are shown on Fig. 11.

<table>
<thead>
<tr>
<th>Blend</th>
<th>AAE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before reaction</td>
</tr>
<tr>
<td>CO–FHIPOS 30/70</td>
<td>2.23</td>
</tr>
<tr>
<td>CO–FHIPOS 70/30</td>
<td>3.75</td>
</tr>
<tr>
<td>CO–POS 50/50</td>
<td>2.07</td>
</tr>
<tr>
<td>CO–POS 60/40</td>
<td>6.09</td>
</tr>
<tr>
<td>CO–POS 40/60</td>
<td>3.27</td>
</tr>
<tr>
<td>CSO–POS 70/30</td>
<td>1.96</td>
</tr>
</tbody>
</table>
The 2-suffix Margules equation for multicomponent mixtures is given by:

$$
x_i^F = \sum_{i=1}^{nc} \sum_{j=i+1}^{nc} A_{ij} x_i x_j
$$ \hspace{1cm} (A2)

$$
A_{ij} = 2q_{ij}
$$ \hspace{1cm} (A3)

The parameter q is a measure of molecular size in the considered pair $i-j$ and x_i is the molar fraction of TAG i. The parameter A_{ij} is related to the interactions between TAGs i and j (Prausnitz et al., 1999). nc is the number of TAGs in the mixture. The work of Wesdorp et al. (2005) showed that there is a strong correlation between the coefficient of geometrical similarity (isomorphism) and the parameter A_{ij}. This isomorphism (e) between two TAGs can be described by the following expression:

$$
e = 1 - \frac{v_{nn}}{v_0}
$$ \hspace{1cm} (A4)

where v_{nn} is the sum of absolute differences on carbon number (nc) of the fatty acids chains in the pair $i-j$, considering the 3 stereo-positions (sn).

$$
0_{nn} = \sum_{k=1}^{3} \left| nc^{(1)}(sn^k) - nc^{(2)}(sn^k) \right| \text{ for a given pair of TAGs } i \text{ and } j
$$ \hspace{1cm} (A5)

v_0 is the sum of the carbon numbers of the smallest chain (comparing the 2 molecules of the pair $i-j$), considering the 3 stereo-positions (sn).

$$
v_0 = \sum_{k=1}^{3} \min(nc^{(1)}(sn^k), nc^{(2)}(sn^k)) \text{ for a given pair of TAGs } i \text{ and } j
$$ \hspace{1cm} (A6)

The linear regression of experimentally determined parameters A_{ij} with the corresponding isomorphism led to the following correlations (Wesdorp et al., 2005):

$$
e > 0.93 \cdot \frac{A_{ij}^F}{RT} = 0 \text{ (high molecular similarity; complete miscibility)}
$$ \hspace{1cm} (A7)

$$
e \leq 0.93 \cdot \frac{A_{ij}^F}{RT} = -19.5e + 18.2
$$ \hspace{1cm} (A8)

$$
e > 0.98 \cdot \frac{A_{ij}^F}{RT} = 0 \text{ (high molecular similarity; complete miscibility)}
$$ \hspace{1cm} (A9)

$$
e \leq 0.98 \cdot \frac{A_{ij}^F}{RT} = -35.8e + 35.9
$$ \hspace{1cm} (A10)

Therefore, the parameters of the model (A_{ij}) can be predicted from the number of carbons on each fatty acid chain. The primary value of the Margules equations lies in their ability to serve as simple empirical equations for representing experimentally determined activity coefficients with only a few constants and when experimental data are scattered and scarce, they serve as an efficient tool for interpolation and extrapolation with respect to composition (Prausnitz et al., 1999).

Appendix B. Simulation of chemical interesterification (CI)

By means of heat and catalysts, the fatty acids present in a mixture of triacylglycerols can be reorganized in the glycerol structures. However, the reaction offers little or no control over the positional distribution of fatty acids in the final product.
contrary to the enzymatic reaction (Willis and Marangoni, 1999). This means that a random distribution of fatty acids can describe the reaction product (no preferential position). The present approach assumes the hypotheses that the CI reaction is carried out until equilibration, corresponding to a total random redistribution of fatty acids.

Therefore, the molar fraction of any TAG formed by the fatty acids \(j \) and \(m \) is calculated by the following expressions:

\[
x_{jm} = \frac{2x_jx_m}{x_j + x_m} \quad \text{for } j \neq m \quad \text{or} \quad l \neq 0 \quad \text{or} \quad l = 0
\]

\[
x_{j0} = (x_j)^2 \quad \text{for } j = 0 \quad \text{or} \quad l = 0
\]

where \(x_j \) is the overall molar fraction of fatty acid \(j \). For example, in a system composed of 30% of oleic acid (Ole), 60% of palmitic acid (Pam) and 10% of stearic acid (Ste):

\[
X_{OlePamOle} = 2 \cdot \frac{0.6 \cdot 0.3}{0.6 + 0.3} = 0.36
\]

\[
X_{OleOleOle} = 2 \cdot \frac{0.3 \cdot 0.3}{0.3 + 0.3} = 0.18
\]

\[
X_{PamOlePam} = 2 \cdot \frac{0.6 \cdot 0.1}{0.6 + 0.1} = 0.12
\]

\[
X_{PamOlePam} = 2 \cdot \frac{0.6 \cdot 0.1}{0.6 + 0.1} = 0.12
\]

The whole set of possible TAGs that can be theoretically formed in this case is shown on Table B1.

Thus, if the overall fatty acid profile of the vegetable oils is known, the product of chemical interesterification can be estimated using the random model of fatty acids position on the triacylglycerols.

References

Abes, M., Bouzidi, L., Nairne, S.S., 2007. Crystallization and phase behavior of 1,3-propanediol esters II. 1,3-Propanediol dietherate/1,3-propanediol dipalmitate (SSP) and 1,3-propanediol diradical/1,3-propanediol dimyristate (SS/MM) binary systems. Chem. Phys. Lipids 150, 89–108.

