N
N

N

HAL

open science

Multigrain Affinity for Heterogeneous Work Stealing
Jean-Yves Vet, Patrick Carribault, Albert Cohen

» To cite this version:

Jean-Yves Vet, Patrick Carribault, Albert Cohen. Multigrain Affinity for Heterogeneous Work Steal-
ing. Programmability Issues for Heterogeneous Multicores, Jan 2012, France. hal-00875338

HAL Id: hal-00875338
https://hal.science/hal-00875338
Submitted on 21 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00875338
https://hal.archives-ouvertes.fr

Multigrain Affinity for Heterogeneous
Work Stealing

Jean-Yves Vét Patrick Carribauk, Albert CoheR

1 CEA, DAM, DIF, F-91297 Arpajon, France
2 INRIA and Ecole Normale Sugrieure, Paris, France

Abstract. In a parallel computing context, peak performance is hard to reach
with irregular applications such as sparse linear algebra operatiorexjuires
dynamic adjustments to automatically balance the workload between sgrral
cessors. The problem becomes even more complicated when ancttebkiton-
tains processing units with radically different computing capabilities. Weeprte

a hierarchical scheduling scheme designed to harness severaldDB@sGPU.

It is built on a two-level work stealing mechanism tightly coupled to a software
managed cache. We show that our approach is well suited to dynamicathpkc
heterogeneous architectures, while taking advantage of a reductiatedfans-
fers.

Keywords: Heterogeneous Computing, Work Stealing, Software Cache, Sparse
LU Factorization, GPGPU.

1 Introduction

With the advent of the multicore era, processor architest@volve to include more
processing units either by increasing the width of eachtfannal unit (e.g., the new
AVX instruction set) or by replicating simpler cores andt@aog some of their re-
sources (e.g., NVidia’s GPUs). These two directions areeodly exploited in High-
Performance Computing. As of June 2011, several of thearsistithin the 10 most
powerful supercomputers listed in the Top500 are hetergen Therefore, harnessing
both processor architectures (CPUs and GPUSs) is mandatoegch high performance.
When scaling computations to such heterogeneous archiésciata management is
a highly sensible parameter and a key to the efficient exiloit of the computing
resources. This paper introduces a new scheduling teohmioupled with a software
cache for locality optimization to exploit both CPUs and GHb/the context of irreg-
ular numerical computations.

It is organized as follows. Section 2 introduces our moingaexample. Section 3
shows the necessity of a multigrain mechanism when taskexaeuted by hetero-
geneous processing units. Then, Section 4 describes dweasefcache. Performance
results are presented in Section 5. Finally, Section 6 eegpodated work before con-
cluding in Section 7.

Fifth Workshop on Programmability Issues for Multi-Core Computers (MULTIPROG ' 12), in conjunction with the 7th Int.
Conference on High-Performance and Embedded Architectures and Compilers (HiPEAC ' 12), January 2012, Paris, France

2 Motivating Example: Sparse LU Factorization

The performance of Block LU factorization depends on cdréfita management and
work scheduling. The algorithm iterates over a ma#ito decompose it into a product
of a lower triangular matrix. and an upper ond such asA = LU. Each iteration con-
sists of three interdependent stepgg(re 1a). Within each step, multiple operations
can be launched in parallel and grouped into tasks. For laxa@teices, the collection
of block operations at step 3 dominates computation timés Phrticular step runs
block multiplications that can be implemented as highlyirajged Basic Linear Al-
gebra Subprograms (BLAS) such as CUBLAS for a NVIDIA GPU ar thtel Math
Kernel Libray (MKL) for CPUs. We adopt here a right-lookingJLimplementation
since it offers a high amount of data-parallelism in step 3.

(@) (b)

2nd iteration
ﬁ/

Block Matrix Allocation

1st iteration

¥ sparse block = step 1
[[] not accessed #% step 2
M ready [step 3

-—
block super-block

Fig. 1. (a) Data modified by each step during the first and second iteration of aedpdrdecom-
position.(b) Allocation of a sparse block matrix using super-blocks. Each supekigontains
5 x 5 blocks that are empty or full.

Studies reveals that computing dense LU factorization ob$fay lead to signif-
icant speedups thanks to level-3 CUBLAS kernels [23, 8]nfato et al. proposed new
techniques applied to heterogeneous dense LU factonzbgamling to a balanced use
of a multicore CPU and a GPU [22]. They designed a new alguorithich aims at re-
ducing the amount of pivoting. Then, they empirically fouhd best static schedule to
reach good performance. This predefined scheduling pesfarafi since the workload
is known for each iteration. The problem is less predictaidten the matrix contains
sparse blocks, motivating the search for dynamic scheglaligorithms. Deisher et al.
implemented a dynamic load balancing scheme to take adyaonfeCPUs and an Intel
MIC (Many Integrated Core) architecture but it was alsoorathade for a dense LU
factorization [11].

Sparse direct solvers emerged in the past ten years fordshamory machines,
distributes memory platforms, or combination of the two (MBS [3], PaStiX [13],
SuperLU [20], ...). To the best of our knowledge, the effitiexecution of sparse LU
factorization harnessing multiple CPUs and a GPU has netived much attention.
The sparseness of the matrix has a huge impact on worklotbdtsn. Sparse blocks
may turn into dense blocks from one iteration to another.sTkhe workload of a task
may change at any time. Obviously, a static approach or andignachedule based

on cost models could suffer from severe imbalance. Basetlismbservation, we de-
signed mechanisms to dynamically guide the cooperatiowdmat all heterogeneous
processing units. We employ a sparse LU decomposition withivoting to evaluate
our scheduler. The goal of this paper is not to propose a nexetdsolver for sparse
matrices. Nonetheless, some statistical techniques teulted to ensure the stability
of this algorithm. For instance, the Partial Random Bufgefflansformation (PRBT)
presented by Baboulin and al., is designed to avoid pivatirigJ factorization while
getting an accuracy close to the partial pivoting solutiln [

3 Task Granularity

When a program is decomposed into tasks, the quantity of ipesacontained in each
task has a major effect on performance. Granularity hasoolsiy a direct impact on
the number of tasks, but it also modifies the way processiitg ane harnessed. For
instance, GPUs are made of several hundreds of light cotlesl Gtream Processors
(SP). A task would intrinsically require a high degree ofghlatism to properly benefit
from that massively parallel architecture. Since a task beagither processed by CPU
core or a GPU, it implies trade-offs on granularity.

In the following, the input matrix consists &f blocks of size 19% 192.N varies
from 40 to 160, hence the total number of full and empty blogkses from 1600
to 25,600 (from 256 Mo to 3,775 Go if we consider dense matricesg third of the
blocks located off-diagonal are sparse. The position ofi @mapty block is determined
in advance for a given matrix size, so that the average puence between several
executions can be computed. Values inside dense blockswagdemly generated. We
believe that the choice of the block size is a good compran@se the one hand, we
wish the block size as small as possible to better represergparsity of a matrix. For
instance, if just one value in a block is non-null, the whdieck can not be mapped
as empty and computations linked to that block can not bedadoiA small block size
also permits to extract more fine-grained parallelism and,tbrings more flexibility
for the scheduler. On the other hand, we want a large enoughrdiion to preserve
good performance on block operations Higure 2a and2b, we show performance of
blocks multiplications on both GPU and CPU versus diffet#atk dimensions.

CY (b)

600 F-- " "1 GPU - Nvidia Geforce GTX 480 -] 20F 7 1CPU core - Intel E5520 (2.27GHz) -’
1 GPU - Nvidia Geforce GTX 470 —— 1 CPU core - AMD 6164HE (1.7GHz)

500

15

400

300

10 -

GFLOP/s
GFLOP/s

200

100

L i

0
32 64 96 128 160 192 224 256 288 32 64 96 128 160 192 224 256 288
b (block dimension) b (block dimension)

Fig. 2. Block multiplication performance versus block size (average on 10§)Jdn= AB + C
where A, B and C are kb blocks:(a) Nvidia CUBLAS 4.0 - 20 SGEMM streamed at the same
time (data transfers are not taken into accoyd)Intel MKL 10.2.6 - SGEMM.

In this section, we first evaluate the impact of differenktgeanularites on CPUs
and a GPU. We present the outcome of specific experimentsthétthird step of our
sparse LU implementation with a shared memory SMP machisgirtgptwo AMD
6164HE (2x12 CPU cores) and a Nvidia Geforce GTX 470 (448.9P&n, we explain
our multigrain task mechanism.

3.1 Single Granularity

In this evaluation, our runtime creates 24 threads to opekrdask producer, 22 CPU
consumers and 1 GPU consumer. Each thread is bound to a CeWYadthat several
workers cannot be multiplexed on the same core. Tasks at@faduced and shared
among all consumers in a round robin wiygure 3, Al). As soon as a CPU consumer
completes all its tasks, it tries to steal work from anothBtJGvorker Eigure 3, A2).
Similarly, when the producer reaches a synchronizatioridrait acts as a worker and
randomly steals tasks to help CPU workers instead of waffiigure 3, A3). Thus,
load balancing is automatically managed by work distrifutand work stealing [10,
1] mechanisms. When a task is scheduled on the GPU woFkgure 3, Bl), data
are copied into device memory, computed and finally transfelback to host memory.
For some evaluations we desactivated a few consumers tetabpiruntime to pure
CPUs or pure GPU executions. Thus, pure CPU execution imgkeworkers and 1
producer using 23 cores, whereas pure GPU execution measkénvattached to 1
core dedicated to pilot the GPU.

CPU task GPU task
@ T TN

! task \

= 45 LJ producer 0

L] ~rg -0 m|

| u @) 0 scheduler O

~a m| 10 m|

- worker“‘“.-\‘N.S. worker aworker @ WSY! helper worker

c c O a e -
i
CPU core CPU core CPU core CPU core CPU core GPU

Fig. 3. Scheduling with single task granularity.

Ouir first evaluation studies the performance of fine-gratask scheduling. In this
case, each task modifies only one 29292 matrix block. This block size is small
enough for a sparse matrix representation while assogiatifficient quantity of op-
erations per task to amortize the (low) task spawning anddiding overhead. In our
second evaluation, each task updates several matrix bMéksall this group of blocks
asuper-block. Since multiple blocks are accessed by the same processcohange the
way data are allocated to increase spatial locality. Thiesallocate each super-block
independently as shown figure 1b. All data are allocated in page-locked mode to
prevent the Cuda runtime from managing unnecessary coges fjageable to non-
pageable memory. To determine the size of each super-bicathiance, we pre-detect
which blocks will stay empty prior to launching the LU decawsjiion. This facilitates

data transfers to GPU memory. The execution time of thisdatection step is negli-
gible. We use CUBLAS functions (CUDA Toolkit 4.0) in our GPlssks; but kernels
could also be automatically generated by means of direcfi/2] or by automatically
parallelizing loops that can benefit form GPU execution [18§ choose super-blocks
consisting of 5¢< 5 blocks, because it contains (on average) sufficient fattkd to ben-
efit from their spatial locality and trigger packed transfeia the PCI-Express. It also
allows us to increase GPU occupancy by launching severakleon enough CUDA
streams. In other words, several functions are startedfteretit matrix blocks simul-
taneously.

Figure 4a compares the performance of the two approaches. We notitditie
granularity enhances performance on CPUs, especiallysnithler matrices: it allows
to create more tasks, improving load balancing opporéisibetween workers. We ob-
serve a different behavior for the GPU worker which achidyetter performance with
coarse-grained tasks: each task contains more data whikésnaata transfers more
efficient. Whereas the same amount of data is send over th&Rgéss bus, less trans-
fers are issued, resulting in reduced overhead and ina¢geséormance. In both cases
GPU performance are lower than those presentdéigare 2a. This is mainly due to
data transfers.

We can only hope that heterogeneous, multigrain task stihgdrombines the ad-
vantages of both fine-grained and coarse-grained confignsatin the next section we
describe our two-level task granularity mechanism.

@ (b)
350 - - 350
CPUs - fine-grained ----#---
CPUs - coarse-grained --@-
%0 GPU - coarse-grained -4 800 PR - —-—S S
250 GPU - fine-grained ---%-- 250“{ . T
@ L - - - o - K
T 200 o S T 200
o o o .
et K4 S o
b . L ¢
§ wope & 10
100 100®
50 50 GPU & CPUs - multi-grained - |
* GPU & CPUs - coarse-grained @
0 0 ., GPU & CPUs - fine-grained ---&--
(AR A A < - > 2 (AT R N A I < - > w2
© © © © © ° °© o © © © © ° °

Fig. 4. Sparse LU step 3, single precision, average on 10 executions foresadhGPU: Nvidia
Geforce GTX 470 controled by one 1 worker binded on 1 CPU core (A1B4HE).CPUs
consit of 23 workers binded on 23 CPU corgs.homogeneoub) heterogeneous scheduling.

3.2 Multi Granularity

The challenge is twofold. The runtime part has to handle W dranularities for a
specific task, while maintaining a dynamic behavior to adyusrkload between het-
erogeneous processors. It is important to notice that CRd&#Us are not controlled
the same way. A GPU is managed via one single system thredlé,aumulticore CPU

requires at least one thread per core. It commonly leads rigpettion between the
GPU and each CPU workers. Theoretical peak performance efent GPU is much
higher than the one of a CPU core released around the sanoel p&aisk consumption

is then significantly unbalanced. Several schedulers cosgte this difference in pro-
cessing power by introducing cost models [7]. Unfortunatebst models are not ideal
to handle sparse codes due to workload variations.

To better balance the workload, we virtually pack severalkens to build groups
of relatively close processing power. This also brings tiegeprocessors sharing the
same affinity for a particular task granularity. Thereby, gather processing power
of two multicore CPUs into one group. This group which camsaall CPU workers
competes now with the GPU worker. To integrate this new lefedcheduling into
our runtime, we definsuper-tasks as sets of tasks operating on the same super-block.
Spatial locality is maintained within a super-block, allogithe GPU worker to trigger
packed transfers through the PCI-Express bus.

A super-task is pushed in a double-ended queue (deque) tibgmaoducedigure
5, A). Only one worker at a time of each group is allowed to pop @stgsk. CPU
workers may dequeue super-tasks only from one Eiglife 5, B1), whereas the GPU
worker can only dequeue from the other eRty(re 5, C1). As soon as a CPU worker
picks a super-task, it breaks it down and generates smadlkes that are shared between
CPU consumersHigure 5, B2). Conversely, when the GPU worker picks a super-task,
all inner tasks are either launched from one function caleweral streamed calls to
maximize SPs occupancy.

list of super-tasks

y \ "o BN super-task & task
H H producer é’
0 0
[m] - scheduler 8
worker worker worker (] helper
worker
iy
CPU core CPU core CPU core CPU core CPU core GPU

Fig. 5. Super-task scheduling.

Work stealing between CPU workers describeiure 3 is maintained. Thus, we
obtain a two-level task scheduler. Super-task pickinggetn efficient load balancing
between heterogeneous processors, while fine-graineléhgteguilibrates tasks con-
sumption between processing units of the same kind. Wherattkequeue of a CPU
consumer becomes empty, the worker tries to steal a tasloth@nCPU worker queue.
If this operation does not succeed, the CPU worker tries th@ick a super-task.

We now present the performance obtained by harnessing GBWRWSs concur-
rently on the third step of our Sparse LU code. In our mulékged version, a super-
task operates on super-blocks, whereas a task works onsbypakularity.Figure 4b
shows results of multi-grained and single-grained taskeduling. Multi-grained ver-
sion reaches the best performance most of the time excegl&tively small matrices
where a fine-grained decomposition is slightly better.

4 Guided Software Cache

We showed that multigrain scheduling combines advantages lboth coarse-grained
and fine-grained decompositions. More specifically, likarse-grained scheduling it
increases spatial locality. In this section we focus on wmldocality improvements.

4.1 Design and Tuning

We designed a software cache to maximize data reuse in GPlWmeminimizing
data transfers between host and device. It automaticdtigates memory and triggers
transfers when data need to be accessed by the host or whastaltloes not fit in
device memory. Thus, it allows us to set up a dynamic data geanant, alleviating
programming efforts.

The replacement policy is the key component of our softwaohe. To reduce data
transfers over the PCI-express interconnect, the cachetaizs the most relevant data
in device memory. Each new piece of data that enters the dachesociated with a
marker indicating its reuse potential during the whole paogexecution. Data linked
to low reuse potential indices are flushed and transferreld fist when free space is
required. Each index can be provided either by the progranfona better control, or
by a preliminary step that profiles the first execution.

To tune the design of our software cache, we ran tests onitidestiep of the sparse
LU code. From an iteration to another, the LU decompositiomgpesses along the
diagonal of the matrixKigure 1a). Super-blocks close to the bottom right corner are
more used than the other ones. To symbolize this reuse padteait super-blocks are
tagged with the marken=i + j wherei and | are their position indexes in the matrix.
Data can also be locked in the software cache for a given ghefior instance, a block
computed during the second step can be required to updaeaseuper-blocks in the
third step. If this block is not maintained in device memammnecessary transfers may
me triggered. We force data to stay in the software cacherbpaearily attributing a
very high reuse value.

We conducted experiments with an Nvidia GeForce GTX 470.dJpGB are ded-
icated to the software cache, which is about 80% of the totaluant of device GDDR5
memory. The rest seems to be needed by the Cuda runtime sseere not able to
allocate a higher amount. We can clearly observe that thevad cache reduces the
number of memory transfers and total transfer time, due teti@bexploitation of data
locality (Figure 6a). A peak is reached with a square matrix containing0® blocks
where our software cache brings up to a 207% performanceoivaprent Figure 6c).

; - ; _computation workload __.. . o
In this configuration, theCT = frangfers ratio is maximized and most

of the data can fit in device memory. Then, performance deeredth bigger matri-
ces since all data cannot be maintained into GDDR5 mematygcing more transfers.
With small matrices, even if the cache is not fully utilizeldta have a lower reuse po-
tential due to the nature of the algorithm, leading to a IeggessiveCT ratio than with

a 6,400-block matrix Figure 6b).

(a) (b)

100

GPU @ 4 1.0e+12 | GPU - [workload] / [transfers time] ratio - |
90 - GPU - with software cache ---&---) . with software cache
80 ol le+12 o
Z 70 %
) » =
E 60 3 8e+11 v
o 50 T / k
2 = |] 3
@ 40 g o Ge+11 i "
) . & ¥
= ot - 4e+11 N
10 - Cm.
o eaS AR - 2e+11 il S
TR e R R A N) 2 CREQ R 2 Y 2 2 2 D
2 2w v o R v g © 2 3 2 209 QY v 9 Y W 5N
o 2229 o v v 9 @ 3 3} 2 2000 o vy © & O o)
22%22%2%2% %% % % % % 22922%%% % % % %
Blocks Blocks
(©) (d)
500 pooeent 0 T T T VOB e | D00 e B
e » L
400 .
@ S i o SR S SRR S S S— —
»
& 300 W “m & 4
o i S - [
L e e e I e a °
100 100 + GPU & CPUs - cache and ordered deque -
GPU & CPUs - software cache
GPU & CPUs -
0 0 e . ; \
TR e N N R = A N SR T e - R N N R A
QL Y = v 2 [} Q ™,) QY e v 2 o)) Q,
o 2229 o v g 9 @ 3)} o 22292 9 v v 9 @
22%22%2%2% %% % % % % 22222 %% % % %
Blocks Blocks

Fig. 6. Sparse LU step 3, single precision, average on 10 executions foresdh(a) cumula-
tive time of all data transferg) ratio of workload to cumulative time of all transfefs) GPU
performance with and without software cacft) heterogeneous execution and impact of the
scheduler/cache interactions.

4.2 Interaction with Heterogeneous Scheduling

Heterogeneous scheduling and software cache performaadmghtly linked. E.g., if
a CPU worker picks a super-task associated with highly fdasdata, it is very likely
that last up-to-date copies reside in the device memorys€muently, data should be
flushed from the software cache to ensure coherency. We tartlat improper super-
task picking may lead to a substantial increase of datafeesslo tackle with this
problem, we modified the super-task deque to make it awateeatache policy. When
a super-task is created, it is also associated with a dase iedex and inserted in the
deque which is now ordered by reuse potential. The GPU waqikks super-tasks with
the highest indexKigure 5, C1), whereas CPU workers are restricted to the one with
the lowest index Kigure 5, B1). This affinity mechanism guides super-task picking,
minimizing undesired effects on the software cache and ttesimizing temporal lo-
cality. Now, our runtime benefits from both spatial and teraptocality thanks to the
cooperation between our software cache and our heterogesebeduling.

Without modifying the way super-tasks are picked by workets software cache
improves heterogeneous execution performance by up to E@géré 6d). The sched-

uler also has a strong impact on the software cache efficieask scheduling guided
by cache affinity brings up to 70% performance improvemenigared to the version
without software cache.

5 Integrated Performance Evaluation

We now evaluate the complete sparse LU algorithm (all st@p$)o different systems.
The first one is the previous AMD platform used to gather imidliate results. The
second system is composed of two Intel Xeon E5520 (4 cords) @axd an Nvidia
GeForce GTX 480.

System # 1 (workers: 23 CPUs + 1 GPU) System #2 (workers: 7 CPUs + 1 GPU)
® AMD 6164HE x2 (24 cores @ 1.7 GHz) @ Intel E5520 x2 (8 cores @ 2.27 GHz)
® Nvidia Geforce GTX 470 (448 SPs @ 1.215 GHz, ® Nvidia Geforce GTX 480 (480 SPs @ 1.4 GHz,
1280 MiB GDDR5) 1536 MiB GDDR5)
(a) Sparse LU, step 3 only (b) Sparse LU, step 3 only
700 - v 700 - -
GPU & CPUs - theoretical combined —— GPU & CPUs - theoretical combined ——
600 GPU & CPUs B 600 | GPU & CPUs B |
GPU
500 [/ 500 CPUs :4
g *-0-g g 400 / p s = — e
T R o300l M e e
) "o) (I' """ .-...
.......... 200I T
..................... 1
100 100 44+
std deviation std deviation
0 0
AR R 2 2 ¥ L L =, >, Y, 2R R v v L ™, w2,
QY T v 2 ()} Q. ™ o) QY T v ()} Q. ™ [o)
Q2 o o o 2 Y 2 el [} [[Q. o o Y. ; © [O\ [
22022 % %% 2 % % 2 22222 % %% 2 % % 2
Blocks Blocks
(c) Sparse LU, all steps (d) Sparse LU, all steps
350 std deviation . L o e 350 d deviation
300
250
..... L
g £ 200 e —
o o ST TR TR s
% % 150 J
1OOI JUFE S S
50 with step 3 on GPU & CPUs 50 i with step 3 on GPU & CPUs
with step 3 on GPU only with step 3 on GPU only @
o) _with step 3 on CPUs only - o) _With step 3 on CPUs only ---&--
R R N N SR X X R A N N N
Q Y T v ()} Q. ™ [QY T v b ()} Q
o oo Q 2 % © [} O\ [2 oo Qo Q O A © [}
22%%2%2% %% 2 % % 2 2%%%2%2% %% % %
Blocks Blocks

Fig. 7. Average on 25 executions for each result in single precision (the tangjative standard
deviation is 2.25%)(a)(b) Step 3 only(c)(d) Global performance (step 3: GPU+CPUs, step 1&2:

CPUs only).

We show that the scheduler has a strong impact on the softeatee efficiency
(Figure 6d). Indeed, the improvement is more impressive with a taskdeling guided
by cache affinity. It brings up to 70% performance improvetreempared to the ver-
sion without a software cachEigure 7aand7b show the performance of step 3 in our
Sparse LU implementation. We notice that the performangrioé CPUs execution is
about twice better on the first system, mainly due to a higherler of CPU cores. As
expected, pure GPU executions reveal that the code runaltyldaster on a Geforce
GTX 480 compared to a Geforce GTX 470. The performance iseré&anot only in-
duced by a higher computation power but it is also due to a&tamghount of GDDR5
memory which enhances the impact of our software cache.

It is interesting to notice that heterogeneous executiagesform the cumulative
performance of the GPU-only and CPU-only versions for lageugh matrices. This
strong result is due to the locality-aware policy of the &iehical scheduler. Guided
by data affinity, the scheduler encourages cooperationdetWZPUs and GPU. Since
the GPU gets a higher affinity for particular tasks, it focisa a smaller set of blocks,
improving data locality. CPU workers preferentially attreasks linked to the other data
blocks, minimizing the need for coherence transfergure 7cand7d show the overall
performance of our Sparse LU implementation where the GRYJammtributes during
step 3.

6 Related Work

We discuss work related to task scheduling and to the maraxgerhdeported data.

Quintin et al. present an hierarchical work-stealing medra designed to reduce
the amount of communications in a distributed environm&mi.[Even if the targeted
platform is different, our multigrain scheduling presesdsne similitudes. They define
groups of workers restricted to a single or a set of multi€P&Js. Within each group, a
leader is designed to manage the workload and steal tagksudtge amount of work
from other groups. The leader can also split a coarse graastdinto smaller tasks
to increase the amount of parallelism inside its group. Ttheroworkers perform the
classical work-stealing algorithm inside their group.

Jiménez et al. propose a predictive task scheduler [18]. It sethan past perfor-
mance history to improve load balancing between a CPU andld, Gt data are not
handled via a software cache and transfers should be diplicanaged by the pro-
grammer. Ayguaé et al. extend StarSs to support multiple CPUs and GPUs #k T
creation is made easier for programmers since it includesuecs-to-source scheme
designed to translate OpenMP-like pragmas into task defsit It is also associated
with a runtime system which schedules tasks according iodhaga dependences.

Performance models are also popular. Weights are for iostattached to a directed
acyclic graph of tasks in order to adjust task affinities vpitbcessing units [7]. Such a
scheduling strategy can be activated in StarPU [4], a riexsipstem designed to harness
heterogeneous architectures within a SMP machine. It gesvihe programmer with
an interface to encapsulate existing functions in taskrabsvns named “codelets”.
Data transfers are then managed automatically by the rergiratem. It globaly leads
to good performance on dense linear agebra [2]. A similaragah is adopted by an

extension of the Kaapi runtime [14, 15] to schedule tasks &uU&and CPUs [17].
It focuses more specifically on an affinity scheme built to iove the efficiency of
heterogeneous work stealing. A task dependence graph (EQg@jtitioned and a two-
level scheduling strategy is adopted. Partitions areibiged to the different processing
units and the workload is balanced by using a locality guidedk stealing to move
some partitions. As for StarPU, deported data are mairdaime software-managed
cache and coherency is ensured via a distributed shared mén®M). Unfortunately,
evictions cannot be controlled, which may lead to more datasfers depending on the
application.

The Cell BE version of the StarSs platform [9], also takesaatkge of a two
level scheduler. Tasks are bundled from a TDG according t@ Idaality. A software
managed cache is used for each Synergistic Processor BI¢&RiE) to reduce DMA
transfers between a local storage and the main memory. Titwase cache employs
a Least Recently Used policy (LRU) and spatial locality isi@mced through local-
ity hints maintained by the runtime. This solution seemsveaient for programmers
since tasks are defined via pragmas, and reuse opportumitiesdjusted runtime. On
the other hand, tasks are bundled from a partial TDG and teahjacality may be
underexploited when the whole program is considered. litiaddload balancing be-
tween heterogeneous units is less tedious with a Cell BGtaothre. In CellSs, the
Power Processing Element (PPM) can directly help the SPEddajing tasks. In the
case of multiple CPU cores and a GPU, the need of quite diffetegrees of paral-
lelism and the large disparity in processing power indugengfer constraints on task
granularity.

Gelado et al. present GMAC, an asymmetric DSM designed tecesthe coherence
traffic and make data management easier to program withdygeeous systems [16].
Pages are protected on the system side and page faults dreesgerly transfer data.
However, the overhead of page faults may be avoided with las} parallelism by
associating data with in/out information (e.g. StarPU ¢eideor StarSs pragmas).

7 Conclusions and Future Work

We presented mechanisms designed to harness multiple GRlZs@PU in the context
of irregular numerical codes. Through multiple experinseot an optimized Sparse LU
implementation, we showed that multigranularity improkeserogeneous scheduling,
increasing spatial locality and leading to a better GPUzatiion. We also demonstrated
that scheduling should be guided by the software cache tdifgnbgmporal locality,
eliminating costly data transfers more effectively. We @aking on adding multi-
GPU support, relying on a distributed shared memory meshasuch as the one used
in StarPU. We also plan to manage data dependences moratgtio exploit more
parallelism and to hide the latency of sequential parts.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Acar, U.A,, Blelloch, G.E., Blumofe, R.D.: The data locality of watealing. In: Proc. of
the 12th ACM Symp. on Parallel Algorithms and Architectures (2000)

Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, Riib&ult, S., Tomov, S.: A
hybridization methodology for high-performance linear algebra soévier GPUs. In: GPU
Computing Gems. Morgan Kaufmann (2010)

. Amestoy, P.R., Duff, I.S., L'Excellent, J.Y., Koster, J.: A fulygynchronous multifrontal

solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23-41 (2001)

. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StaPuhified platform for task

scheduling on heterogeneous multicore architectures. In: Euro®Rap. 863—-874 (2009)

. Ayguad, E., Badia, R.M., lgual, F.D., Labarta, J., Mayo, R., Quintant;@.S.: An exten-

sion of the StarSs programming model for platforms with multiple GPU<£Eumo-Par’'09

. Baboulin, M., Dongarra, J., Herrmann, J., Tomov, S.: Acedileg linear system solutions

using randomization techniques. Tech. rep., INRIA (2011)

. Banino, C., Beaumont, O., Carter, L., Ferrante, J., LegrandR@bert, Y.: Scheduling strate-

gies for master-slave tasking on heterogeneous processor platfafsis TPDS (2004)

. Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana;@S.: Solving dense linear

systems on graphics processors. In: Euro-Par'08. pp. 739-Spthger-Verlag (2008)

. Bellens, P., Perez, J.M., Cabarcas, F., Ramirez, A., Badv&, Rabarta, J.: CellSs: Schedul-

ing techniques to better exploit memory hierarchy. Sci. Program. 285 {2009)

Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded comtipns by work stealing.

J. ACM 46, 720-748 (1999)

Deisher, M., Smelyanskiy, M., Nickerson, B., Lee, V.W., G¥lav, M., Dubey, P.: Designing
and dynamically load balancing hybrid LU for multi/many-core. In: ISCL2)

Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core flar@rogramming envi-

ronment. In: Proc. of the Workshop on GPGPU'07 (2007)

Faverge, M., Lacoste, X., Ramet, P.. A NUMA aware schedolea fparallel sparse direct
solver. In: PMAAQ8 (2008)

Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread sclieduuntime system for data
flow computations on cluster of multi-processors. In: PASCO’07 (2007

Gautier, T., Roch, J.L., Wagner, F.: Fine grain distributed impfat®n of a dataflow lan-
guage with provable performances. In: Proc. of the 7th Int. Conéer@n Computational
Science, Part Il. pp. 593—-600. Springer-Verlag (2007)

Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarréiwi, W.m.W.: An asymmetric

distributed shared memory model for heterogeneous parallel systen®oc. of the 15th

Edition of ASPLOS. pp. 347-358. ACM (2010)

Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.{tMBPU and multi-CPU paral-

lelization for interactive physics simulations. In: Euro-Par’'10. pp.-2286 (2010)

Jinénez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G., Naval¥o, Predictive runtime

code scheduling for heterogeneous architectures. In: HIPEAC{H94.$-33 (2009)

Leung, A., Lhaik, O., Lashari, G.: Automatic parallelization for graphics processititg.u

In: PPPJ'09. pp. 91-100. ACM (2009)

Li, X.S.: An overview of SuperLU: Algorithms, implementation, argtuinterface. ACM

Trans. Math. Softw. 31, 302—-325 (2005)

Quintin, J.N., Wagner, F.: Hierarchical work-stealing. Eurgi®a(2010)

Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linigabsa for hybrid gpu acceler-
ated manycore systems. Parallel Comput. 36, 232—240 (2010)

Volkov, V., Demmel, J.: LU, QR and cholesky factorizations usiegter capabilities of

GPUs. Tech. rep., University of California, Berkeley (2008)

