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We present a variational Bayesian method of joint image reconstruction and point spread

function (PSF) estimation when the PSF of the imaging device is only partially known.

To solve this semi-blind deconvolution problem, prior distributions are specified for the

PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed

within a Bayesian framework, using a variational algorithm to estimate the posterior

distribution. The image prior distribution imposes an explicit atomic measure that

corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algo-

rithm does not require hand tuning. Simulation results clearly demonstrate that the semi-

blind deconvolution algorithm compares favorably with previous Markov chain Monte

Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms

mismatched non-blind algorithms that rely on the assumption of the perfect knowledge

of the PSF. The algorithm is illustrated on real data from magnetic resonance force

microscopy (MRFM).

1. Introduction

The standard and popular image deconvolution techni-

ques generally assume that the space-invariant instrument

response, i.e., the point spread function (PSF), is perfectly

known. However, in many practical situations, the true PSF is

either unknown or, at best, partially known. For example, in

an optical system a perfectly known PSF does not exist

because of light diffraction, apparatus/lense aberration, out-

of-focus, or image motion [1,2]. Such imperfections are

common in general imaging systems including MRFM, where

there exist additional model PSF errors in the sensitive

magnetic resonance condition [3]. In such circumstances, the

PSF required in the reconstruction process is mismatched with

the true PSF. The quality of standard image reconstruction

techniques may suffer from this disparity. To deal with this

mismatch, deconvolution methods have been proposed to

estimate the unknown image and the PSF jointly. When prior

knowledge of the PSF is available, these methods are usually

referred to as semi-blind deconvolution [4,5] or myopic

deconvolution [6–8].

In this paper, we formulate the semi-blind deconvolution

task as an estimation problem in a Bayesian setting. Bayesian

estimation has the great advantage of offering a flexible

framework to solve complex model-based problems. Prior

information available on the parameters to be estimated can

be efficiently included within the model, leading to an implicit

regularization of our ill-posed problem. In addition, the Bayes

framework produces posterior estimates of uncertainty, via

posterior variance and posterior confidence intervals. Extend-

ing our previous work, we propose a variational estimator for

the parameters as contrasted to the Monte Carlo approach in

[9]. This extension is non-trivial. Our variational Bayes algo-

rithm iterates on a hidden variable domain associated with

the mixture coefficients. This algorithm is faster, more scalable

for equivalent image reconstruction qualities in [9].
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Like in [9], the PSF uncertainty is modeled as the

deviation of the a priori known PSF from the true PSF.

Applying an eigendecomposition to the PSF covariance, the

deviation is represented as a linear combination of orthogo-

nal PSF bases with unknown coefficients that need to be

estimated. Furthermore, we assume that the desired image is

sparse, corresponding to the natural sparsity of the molecu-

lar image. The image prior is a weighted sum of a sparsity

inducing part and a continuous distribution; a positive

truncated Laplacian and atom at zero (LAZE) prior1 [10].

Similar priors have been applied for estimating mixtures of

densities [11–13] and sparse, nonnegative hyperspectral

unmixing [14]. Here we introduce a hidden label variable

for the contribution of the discrete mass (empty pixel) and a

continuous density function (non-empty pixel). Similar to our

‘hybrid’ mixture model, inhomogeneous Gamma-Gaussian

mixture models have been proposed in [15].

Bayesian inference of parameters from the posterior dis-

tribution generally requires challenging computations, such as

functional optimization and numerical integration. One

widely advocated strategy relies on approximations to the

minimum mean square error (MMSE) or maximum a poster-

iori (MAP) estimators using samples drawn from the posterior

distribution. Generation of these samples can be accom-

plished using Markov chain Monte Carlo (MCMC) methods

[16]. MCMC has been successfully adopted in numerous

imaging problems such as image segmentation, denoising,

and deblurring [17,16]. Recently, to solve blind deconvolution,

two promising semi-blind MCMC methods have been sug-

gested [9,18]. However, these sampling methods have the

disadvantage that convergence may be slow.

An alternative to Monte Carlo integration is a variational

approximation to the posterior distribution, and this

approach is adopted in this paper. These approximations

have been extensively exploited to conduct inference in

graphical models [19]. If properly designed, they can produce

an analytical posterior distribution from which Bayesian

estimators can be efficiently computed. Compared to MCMC,

variational methods are of lower computational complexity,

since they avoid stochastic simulation. However, variational

Bayes (VB) approaches have intrinsic limits; the convergence

to the true distribution is not guaranteed, even though the

posterior distribution will be asymptotically normal with

mean equal to the maximum likelihood estimator under

suitable conditions [20]. In addition, variational Bayes

approximations can be easily implemented for only a limited

number of statistical models. For example, this method is

difficult to apply when latent variables have distributions

that do not belong to the exponential family (e.g. a discrete

distribution [9]). For mixture distributions, variational esti-

mators in Gaussian mixtures and in exponential family

converge locally to maximum likelihood estimator [21,22].

The theoretical convergence properties for sparse mixture

models, such as our proposed model, are as yet unknown.

This has not hindered the application of VB to sparse models

to problems in our sparse image mixture model. Another

possible intrinsic limit of the variational Bayes approach,

particularly in (semi)-blind deconvolution, is that the poster-

ior covariance structure cannot be effectively estimated nor

recovered, unless the true joint distributions have indepen-

dent individual distributions. This is primarily because VB

algorithms are based on minimizing the KL-divergence

between the true distribution and the VB approximating

distribution, which is assumed to be factorized with respect

to the individual parameters.

However, despite these limits, VB approaches have been

widely applied with success to many different engineering

problems [23–26]. A principal contribution of this paper is the

development and implementation of a VB algorithm for

mixture distributions in a hierarchical Bayesian model [27].

Similarly, the framework permits a Gaussian prior [28] or a

Student's-t prior [29] for the PSF. We present comparisons of

our variational solution to other blind deconvolutionmethods.

These include the total variation (TV) prior for the PSF [30]

and natural sharp edge priors for images with PSF regulariza-

tion [31]. We also compare to basis kernels [29], the mixture

model algorithm of Fergus et al. [32], and the related method

of Shan et al. [33] under a motion blur model.

To implement variational Bayesian inference, prior

distributions and the instrument-dependent likelihood

function are specified. Then the posterior distributions

are estimated by minimizing the Kullback–Leibler (KL)

distance between the model and the empirical distribu-

tion. Simulations conducted on synthetic images show

that the resulting myopic deconvolution algorithm out-

performs previous mismatched non-blind algorithms and

competes with the previous MCMC-based semi-blind

method [9] with lower computational complexity.

We illustrate the proposed method on real data from

magnetic resonance force microscopy (MRFM) experiments.

MRFM is an emerging molecular imaging modality that has

the potential for achieving 3D atomic scale resolution [34–

36]. Recently, MRFM has successfully demonstrated ima-

ging [37,38] of a tobacco mosaic virus [39]. The 3D image

reconstruction problem for MRFM experiments was inves-

tigated with Wiener filters [40,41,38], iterative least square

reconstruction approaches [42,39], and recently the Baye-

sian estimation framework [10,43,8,9]. The drawback of

these approaches is that they require prior knowledge on

the PSF. However, in many practical situations of MRFM

imaging, the exact PSF, i.e., the response of the MRFM tip, is

only partially known [3]. The proposed semi-blind recon-

struction method accounts for this partial knowledge.

The rest of this paper is organized as follows. Section 2

formulates the imaging deconvolution problem in a hier-

archical Bayesian framework. Section 3 covers the variational

methodology and our proposed solutions. Section 4 reports

simulation results and an application to the real MRFM data.

Section 6 discusses our findings and concludes.

2. Formulation

2.1. Image model

As in [9,43], the image model is defined as

y¼Hx þ n¼ Tðκ; xÞ þ n; ð1Þ

1 A Laplace distribution as a prior distribution acts as a sparse

regularization using ℓ1 norm. This can be seen by taking negative

logarithm on the distribution.



where y is a P % 1 vectorized measurement, x¼ ½x1;…;

xN'T≽0 is an N % 1 vectorized sparse image to be recovered,

Tðκ; (Þ is a convolution operator with the PSF κ,

H¼ ½h1;…;hN' is an equivalent system matrix, and n is the

measurement noise vector. In this work, the noise vector n is

assumed to be Gaussian,2 n∼N ð0; s2IPÞ. The PSF κ is assumed

to be unknown but a nominal PSF estimate κ0 is available. The

semi-blind deconvolution problem addressed in this paper

consists of the joint estimation of x and κ from the noisy

measurements y and nominal PSF κ0.

2.2. PSF basis expansion

The nominal PSF κ0 is assumed to be generated with

known parameters (gathered in the vector ζ0) tuned

during imaging experiments. However, due to model

mismatch and experimental errors, the true PSF κ may

deviate from the nominal PSF κ0. If the generation model

for PSFs is complex, direct estimation of a parameter

deviation, Δζ ¼ ζtrue−ζ0, is difficult.

We model the PSF κ (resp. fHg) as a perturbation about

a nominal PSF κ0 (resp. fH0g) with K basis vectors κk, k¼1,

…,K, that span a subspace representing possible perturba-

tions Δκ. We empirically determined this basis using the

following PSF variational eigendecomposition approach.

A number of PSFs ~κ are generated following the PSF

generation model with parameters ζ randomly drawn

according to the Gaussian distribution3 centered at the

nominal values ζ0. Then a standard principal component

analysis (PCA) of the residuals f ~κ j−κ0gj ¼ 1;…
is used to

identify K principal axes that are associated with the basis

vectors κk. The necessary number of basis vectors, K, is

determined empirically by detecting a knee at the scree

plot. The first few eigenfunctions, corresponding to the

first few largest eigenvalues, explain major portion of the

observed perturbations. If there is no PSF generation

model, then we can decompose the support region of the

true (suspected) PSF to produce an orthonormal basis. The

necessary number of the bases is again chosen to explain

most support areas that have major portion/energy of the

desired PSF. This approach is presented in our experiment

with Gaussian PSFs.

We use a basis expansion to present κðcÞ as the

following linear approximation to κ:

κðcÞ ¼ κ0 þ ∑
K

i ¼ 1

ciκi; ð2Þ

where fcig determine the PSF relative to this bases. With

this parameterization, the objective of semi-blind decon-

volution is to estimate the unknown image, x, and the

linear expansion coefficients c¼ ½c1;…; cK 'T .

2.3. Determination of priors

The priors on the PSF, the image, and the noise are

constructed as latent variables in a hierarchical

Bayesian model.

2.3.1. Likelihood function

Under the hypothesis that the noise in (1) is white

Gaussian, the likelihood function takes the form

pðyjx; c;s2Þ ¼ 1

2πs2

! "P=2

% exp −
‖y−TðκðcÞ; xÞ‖2

2s2

! "

; ð3Þ

where ‖ ( ‖ denotes the ℓ2 norm ‖x‖2 ¼ xTx.

2.3.2. Image and label priors

To induce sparsity and positivity of the image, we use

an image prior consisting of “a mixture of a point mass at

zero and a single-sided exponential distribution” [10,43,9].

This prior is a convex combination of an atom at zero and

an exponential distribution:

pðxija;wÞ ¼ ð1−wÞδðxiÞ þwgðxijaÞ: ð4Þ

In (4), δð ( Þ is the Dirac delta function, w¼ Pðxi≠0Þ is

the prior probability of a non-zero pixel and gðxijaÞ ¼
ð1=aÞ expð−xi=aÞ1R

n

þ
ðxiÞ is a single-sided exponential distribu-

tion where R
n

þ is a set of positive real numbers and 1Eð ( Þ
denotes the indicator function on the set E

1EðxÞ ¼
1 if x∈E;

0 otherwise

#

ð5Þ

A distinctive property of the image prior (4) is that it

can be expressed as a latent variable model

pðxija; ziÞ ¼ ð1−ziÞδðxiÞ þ zigðxijaÞ; ð6Þ

where the binary variables fzigN1 are independent and

identically distributed and indicate if the pixel xi is active

zi ¼
1 if xi≠0;

0 otherwise:

(

ð7Þ

and have the Bernoulli probabilities: zi∼BerðwÞ.
The prior distribution of pixel value xi in (4) can be

rewritten conditionally upon latent variable zi as

pðxijzi ¼ 0Þ ¼ δðxiÞ;
pðxija; zi ¼ 1Þ ¼ gðxijaÞ;

which can be summarized in the following factorized

form:

pðxija; ziÞ ¼ δðxiÞ1−zigðxijaÞzi : ð8Þ

By assuming each component xi to be conditionally inde-

pendent given zi and a, the following conditional prior

distribution is obtained for x:

pðxja; zÞ ¼ ∏
N

i ¼ 1

½δðxiÞ1−zigðxijaÞzi ' ð9Þ

where z¼ ½z1;…; zN'.
This factorized form will turn out to be crucial for

simplifying the variational Bayes reconstruction algorithm

in Section 3.

2 N ðμ;ΣÞ denotes a Gaussian random variable with mean μ and

covariance matrix Σ.
3 The variances of the Gaussian distributions are carefully tuned so

that their standard deviations produce a minimal volume ellipsoid that

contains the set of valid PSFs.



2.3.3. PSF parameter prior

We assume that the PSF parameters c1;…; cK are

independent and ck is uniformly distributed over intervals

Sk ¼ ½−Δck;Δck': ð10Þ

These intervals are specified a priori and are associated

with error tolerances of the imaging instrument. The joint

prior distribution of c¼ ½c1;…; cK 'T is therefore

pðcÞ ¼ ∏
K

k ¼ 1

1

2Δck
1Sk

ðckÞ: ð11Þ

2.3.4. Noise variance prior

A conjugate inverse-Gamma distribution with para-

meters ς0 and ς1 is assumed as the prior distribution for

the noise variance (see Appendix A.1 for the details of this

distribution):

s
2jς0; ς1∼IGðς0; ς1Þ: ð12Þ

The parameters ς0 and ς1 will be fixed to a number small

enough to obtain a vague hyperprior, unless we have good

prior knowledge.

2.4. Hyperparameter priors

As reported in [10,43], the values of the hyperparameters

fa;wg greatly impact the quality of the deconvolution. Follow-

ing the approach in [9], we propose to include them within

the Bayesian model, leading to a second level of hierarchy in

the Bayesian paradigm. This hierarchical Bayesian model

requires the definition of prior distributions for these hyper-

parameters, also referred to as hyperpriors which are defined

below.

2.4.1. Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for

the Laplacian scale parameter a

ajα∼IGðα0; α1Þ; ð13Þ

with α¼ ½α0; α1'T . The parameters α0 and α1 will be fixed to

a number small enough to obtain a vague hyperprior,

unless we have good prior knowledge.

2.4.2. Hyperparameter w

We assume a Beta random variable with parameters

ðβ0; β1Þ, which are iteratively updated in accordance

with data fidelity. The parameter values will reflect the

degree of prior knowledge and we set β0 ¼ β1 ¼ 1 to obtain

a non-informative prior (see Appendix A.2 for the details of

this distribution)

w∼Bðβ0; β1Þ: ð14Þ

2.5. Posterior distribution

The conditional relationships between variables are

illustrated in Fig. 1. The resulting posterior of hidden

variables given the observation is

pðx; a; z;w; c; s2jyÞ∝pðyjx; c; s2Þ
%pðxja; zÞpðzjwÞpðwÞpðaÞpðcÞpðs2Þ: ð15Þ

Since it is too complex to derive exact Bayesian estimators

from this posterior, a variational approximation of this

distribution is proposed in the next section.

3. Variational approximation

3.1. Basics of variational inference

In this section, we show how to approximate the poster-

ior densities within a variational Bayes framework. Denote

by U the set of all hidden parameter variables including the

image variable x in the model, denoted by M. The hier-

archical model implies the Markov representation

pðy;UjMÞ ¼ pðyjU;MÞpðUjMÞ. Our objective is to compute

the posterior pðxjy;MÞ ¼
R
pðyjU;MÞpðUjMÞdU\x=pðyjMÞ,

where U\x is a set of variables in U except x. Let q be any

arbitrary distribution of U. Then

ln pðyjMÞ ¼LðqÞ þ KLðq∥pÞ ð16Þ

with

LðqÞ ¼
Z

qðUjMÞ ln pðy;UjMÞ
qðUjMÞ

! "

dU ð17Þ

KLðq∥pÞ ¼−
Z

qðUjMÞ ln pðUjy;MÞ
qðUjMÞ

! "

dU: ð18Þ

We observe that maximizing the lower bound LðqÞ is

equivalent to minimizing the Kullback-Leibler (KL) divergence

KLðq∥pÞ. Consequently, instead of directly evaluating pðyjMÞ
given M, we will specify a distribution qðUjMÞ that approx-
imates the posterior pðUjy;MÞ. The best approximation

maximizes LðqÞ. We present Algorithm 1 that iteratively

increases the value of LðqÞ by updating posterior surrogate

densities. To obtain a tractable approximating distribution q,

we will assume a factorized form as qðUÞ ¼∏jqðUjÞ where U

has been partitioned into disjoint groups Uj. Subject to this

factorization constraint, the optimal distribution qnðUÞ ¼
∏jq

nðUjÞ is given by

lnqn

j ðUjÞ ¼ E\Uj
½ln pðU; yÞ' þ ðconstÞ; ∀j ð19Þ

where E\Uj
denotes the expectation4 with respect to all factors

Ui except i¼ j. We will call qnðUÞ the posterior surrogate for p.

Fig. 1. Conditional relationships between variables. A node at an arrow

tail conditions the node at the arrow head.

4 In the sequel, we use both E½ ( ' and 〈 ( 〉 to denote the expectation.

To make our expressions more compact, we use subscripts to denote

expectation with respect to the random variables in the subscripts. These

notations with the subscripts of ‘\v’ denote expectation with respect to all

random variables except for the variable v. e.g. E\Uj
.



3.2. Suggested factorization

Based on our assumptions on the image and hidden

parameters, the random vector is U≜fθ;ϕg ¼ fx; a; z;w; c; s2g
with θ¼ fx; z; cg and ϕ¼ fa;w; s2g. We propose the follow-

ing factorized approximating distribution:

qðUÞ ¼ qðx; a; z;w; c; s2Þ ¼ qðx; z; cÞqða;w;s2Þ: ð20Þ

Ignoring constants,5 (19) leads to

ln qða;w;s2Þ ¼ E\aln pðxja; zÞpðaÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ln qðaÞ

þE\wln pðzjwÞpðwÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ln qðwÞ

þ E\s2 ln pðyjx; s2Þpðs2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ln qðs2Þ

ð21Þ

which induces the factorization

qðϕÞ ¼ qðaÞqðwÞqðs2Þ: ð22Þ

Similarly, the factorized distribution for x, z and c is

qðθÞ ¼ ∏
i

qðxijziÞ
" #

qðzÞqðcÞ ð23Þ

leading to the fully factorized distribution

qðθ;ϕÞ ¼ ∏
i

qðxijziÞ
" #

qðaÞqðzÞqðwÞqðcÞqðs2Þ ð24Þ

3.3. Approximating distribution q

In this section, we specify the marginal distributions in the

approximated posterior distribution required in (24). More

details are described in Appendix B. The parameters for the

posterior distributions are evaluated iteratively due to the

mutual dependence of the parameters in the distributions for

the hidden variables, as illustrated in Algorithm 1.

3.3.1. Posterior surrogate for a

qðaÞ ¼ IGð ~α0; ~α1Þ; ð25Þ

with ~α0 ¼ α0 þ∑〈zi〉, ~α1 ¼ α1 þ∑〈zixi〉.

3.3.2. Posterior surrogate for w

qðwÞ ¼ Bð ~β0; ~β1Þ; ð26Þ

with ~β0 ¼ β0 þ N−∑〈zi〉, ~β1 ¼ β1 þ∑〈zi〉.

3.3.3. Posterior surrogate for s2

qðs2Þ ¼ IGð~ς0; ~ς1Þ; ð27Þ

with ~ς0 ¼ P=2þ ς0, ~ς1 ¼ 〈‖y−Hx‖2〉=2þ ς1, and 〈‖y−Hx‖2〉
¼ ‖y−〈H〉〈x〉‖2 þ∑var½xi'½‖〈κ〉‖2 þ∑lscl‖κl‖

2' þ∑lscl‖H
l

〈x〉‖2, where scl is the variance of the Gaussian distribution

qðclÞ given in (33) and var½xi' is computed under the

distribution qðxiÞ defined in the next section and described

in Appendix B.3.

3.3.4. Posterior surrogate for x

We first note that

ln qðx; zÞ ¼ ln qðxjzÞqðzÞ ¼ E½ln pðyjx; s2Þpðxja; zÞpðzjwÞ':
ð28Þ

The conditional density of x given z is pðxja; zÞ ¼∏N
i gzi ðxiÞ,

where g0ðxiÞ≜δðxiÞ; g1ðxiÞ≜gðxijaÞ. Therefore, the conditional

posterior surrogate for xi is

qðxijzi ¼ 0Þ ¼ δðxiÞ; ð29Þ

qðxijzi ¼ 1Þ ¼ ϕþðμi; ηiÞ; ð30Þ

where ϕþðμ; s2Þ is a positively truncated-Gaussian density

function with the hidden mean μ and variance s
2,

ηi ¼ 1=½〈∥hi∥
2〉〈1=s2〉', μi ¼ ηi½〈h

T
i ei〉〈1=s

2〉−〈1=a〉', ei ¼ y−
Hx−i, x−i is x except for the ith entry replaced with 0,

and hi is the ith column of H. Therefore

qðxiÞ ¼ qðzi ¼ 0ÞδðxiÞ þ qðzi ¼ 1Þϕþðμi; ηiÞ; ð31Þ

which is a Bernoulli truncated-Gaussian density.

3.3.5. Posterior surrogate for z

For i¼1,…,N

qðzi ¼ 1Þ ¼ 1=½1þ C′i' and qðzi ¼ 0Þ ¼ 1−qðzi ¼ 1Þ; ð32Þ

with C′i ¼ expðCi=2 %~ς0=~ς1 þ μi ~α0= ~α1 þ ln ~α1−ψð ~α0Þ þ
ψð ~β0Þ− ψð ~β1ÞÞ. ψ is the digamma function and

Ci ¼ 〈‖hi‖
2〉ðμ2i þ ηiÞ−2〈eTi hi〉μi.

3.3.6. Posterior surrogate for c

For j¼ 1;…;K

qðcjÞ ¼ ϕðμcj ; scj Þ; ð33Þ

where ϕðμ; sÞ is the probability density function for the

normal distribution with the mean μ and variance s

μcj ¼
〈xTHjTy−xHjTH0x−∑l≠jx

THjTHlclx〉

〈xTHjTHjx〉
;

and 1=scj ¼ 〈1=s2〉〈xTHjTHjx〉.

Algorithm 1. VB semi-blind image reconstruction algorithm.

1: % Initialization:

2: Initialize estimates 〈xð0Þ〉, 〈zð0Þ〉, and wð0Þ , and set c¼ 0 to have

κ̂
ð0Þ ¼ κ0 ,

3: % Iterations:

4: for t ¼ 1;2;…, do

5: Evaluate ~α
ðtÞ
0 ; ~α ðtÞ

1 in (25) by using 〈xðt−1Þ〉; 〈zðt−1Þ〉,

6: Evaluate ~β
ðtÞ
0 ; ~β

ðtÞ
1 in (26) by using 〈zðt−1Þ〉,

7: Evaluate ~ς
ðtÞ
0 ; ~ς ðtÞ1 in (27) from 〈‖y−Hx‖2〉,

8: for i¼ 1;2;…;N do

9: Evaluate necessary statistics (μi ; ηi) for qðxijzi ¼ 1Þ in (29),

10: Evaluate qðzi ¼ 1Þ in (32),

11: Evaluate 〈xi〉;var½xi',
12: For l¼1,…,K, evaluate μcl ;1=scl for qðclÞ in (33),

13: end for

14: end for

The final iterative algorithm is presented in Algorithm 1,

where required shaping parameters under distributional

assumptions and related statistics are iteratively updated.

5 In the sequel, constant terms with respect to the variables of

interest can be omitted in equations.



4. Simulation results

We first present numerical results obtained for Gaussian

and typical MRFM PSFs, shown in Figs. 2 and 6, respectively.

Then the proposed variational algorithm is applied to a

tobacco virus MRFM data set. There are many possible

approaches for selecting hyperparameters, including the

non-informative approach of [9] and the expectation–max-

imization approach of [12]. In our experiments, hyper-

parameters ς0, ς1, α0, and α1 for the densities are chosen

based on the framework advocated in [9]. This leads to the

vague priors corresponding to selecting small values

ς0 ¼ ς1 ¼ α0 ¼ α1 ¼ 1. For w, the noninformative initialization

is made by setting β0 ¼ β1 ¼ 1, which gives flexibility to the

surrogate posterior density for w. The resulting prior Beta

distribution for w is a uniform distribution on ½0;1' for the

mean proportion of non-zero pixels.

w∼Bðβ0; β1Þ∼Uð½0;1'Þ: ð34Þ

The initial image used to initialize the algorithm is

obtained from one Landweber iteration [44].

4.1. Simulation with Gaussian PSF

The true image x used to generate the data, observation y,

the true PSF, and the initial, mismatched PSF are shown in

Fig. 2. Some quantities of interest, computed from the outputs

of the variational algorithm, are depicted as functions of

the iteration number in Fig. 3. These plots indicate that

Fig. 2. Experiment with Gaussian PSF: true image (a), observation (b), true PSF (c) and mismatched PSF (κ0) (d).

Fig. 3. Result of Algorithm 1: curves of residual, error, E½1=a';E½1=s2'; E½w';E½c', as functions of the number of iterations. These curves show how fast the

convergence is achieved. (a) log‖y−EHEx‖2 (solid line) and noise level (dashed line), (b) log‖xtrue−Ex‖2 , (c) E½1=a' (solid line) and true value (dashed line),

(d) E½1=s2' (solid line) and true value (dashed line), (e) E½w' (solid line) and true value (dashed line) and (f) E½c'. Four PSF coefficients.



convergence to the steady state is achieved after few itera-

tions. In Fig. 3, E½w' and E½1=a' get close to the true level but

E½1=s2' shows a deviation from the true values. This large

deviation implies that our estimation of noise level is con-

servative; the estimated noise level is larger than the true

level. This relates to the large deviation in projection error

from noise level (Fig. 3(a)). The drastic changes in the initial

steps seen in the curves of E½1=a', E½w' are due to the

imperfect prior knowledge (initialization). The final estimated

PSF and reconstructed image are depicted in Fig. 4, along with

the reconstructed variances and posterior probability of zi≠0.
We decomposed the support region of the true PSF to produce

orthonormal bases fκigi shown in Fig. 5. We extracted 4 bases

because these four PSF bases clearly explain the significant

part of the true Gaussian PSF. In other words, little energy

resides outside of this basis set in PSF space.

The reconstructed PSF clearly matches the true one, as

seen in Figs. 2 and 4. Note that the restored image is slightly

attenuated while the restored PSF is amplified because of

intrinsic scale ambiguity.

4.2. Simulation with MRFM type PSFs

The true image x used to generate the data, observation y,

the true PSF, and the initial, mismatched PSF are shown in

Fig. 6. The PSF models the PSF of the MRFM instrument,

derived by Mamin et al. [3]. The convergence of the algorithm

is achieved after the 10th iteration. The reconstructed image

can be compared to the true image in Fig. 7, where the pixel-

wise variances and posterior probability of zi≠0 are rendered.

The PSF bases are obtained by the procedure proposed in

Section 2.2 with the simplified MRFM PSF model and the

nominal parameter values [10]. Specifically, by detecting a

knee K¼4 at the scree plot, explaining more than 98.69% of

the observed perturbations (Fig. 3 in [9]), we use the first four

eigenfunctions, corresponding to the first four largest eigen-

values. The resulting K¼4 principal basis vectors are depicted

in Fig. 8. The reconstructed PSF with the bases clearly matches

the true one, as seen in Figs. 6 and 7.

4.3. Comparison with PSF-mismatched reconstruction

The results from the variational deconvolution algorithm

with a mismatched Gaussian PSF and a MRFM type PSF are

presented in Figs. 9 and 10, respectively; the relevant PSFs and

observations are presented in Fig. 2 in Section 4.1 and in Fig. 6

in Section 4.2, respectively. Compared with the results of our

VB semi-blind algorithm (Algorithm 1), shown in Figs. 4 and 7,

the reconstructed images from the mismatched non-blind VB

algorithm in Figs. 9 and 10, respectively, inaccurately estimate

signal locations and blur most of the non-zero values.

Additional experiments (not shown here) establish that

the PSF estimator is very accurate when the algorithm is

initialized with the true image.

4.4. Comparison with other algorithms

To quantify the comparison, we performed experi-

ments with the same set of four sparse images and the

MRFM type PSFs as used in [9]. By generating 100 different

noise realizations for 100 independent trials with each

true image, we measured errors according to various

criteria. We tested four sparse images with sparsity levels

‖x‖0 ¼ 6;11;18;30.

Fig. 4. (a) Restored PSF, (b) image, (c) map of pixel-wise (posterior) variance, and (d) weight map. κ̂ ¼ Eκ is close to the true one. A pixel-wise weight

shown in (d) is the posterior probability of the pixel being a nonzero signal.



Under these criteria,6 Fig. 11 visualizes the recon-

struction error performance for several measures of

error. From these figures we conclude that the VB

semi-blind algorithm performs at least as well as the

previous MCMC semi-blind algorithm. In addition, the

VB method outperforms AM [45] and the mismatched

non-blind MCMC [43] methods. In terms of PSF estima-

tion, for very sparse images the VB semi-blind method

seems to outperform the MCMC method. Also, the

proposed VB semi-blind method converges more quickly

and requires fewer iterations. For example, the VB

Fig. 5. PSF bases, κ1;…; κ4 , for Gaussian PSF. (a) The first basis κ1 , (b) the second basis κ2 , (c) the third basis κ3 , (d) the fourth basis κ4 .

Fig. 6. Experiment with simplified MRFM PSF: true image (a), observation (b), true PSF (c), and mismatched PSF (κ0) (d).

6 Note that the ℓ0 norm has been normalized. The true image has

value 1; ‖x̂‖0=‖x‖0 is used for MCMC method; E½w' % N=‖x‖0 for varia-

tional method since this method does not produce zero pixels but E½w'.
Note also that, for our simulated data, the (normalized) true noise

levels are ‖n‖2=‖x‖0 ¼ 0:1475, 0.2975, 0.2831, 0.3062 for ‖x‖0 ¼ 6;11;

18;30, respectively.



semi-blind algorithm converges in approximately 9.6 s

after 12 iterations, but the previous MCMC algorithm

takes more than 19.2 s after 40 iterations to achieve

convergence.7

In addition, we made comparisons between our

sparse image reconstruction method and other state-

of-the-art blind deconvolution methods [28–33], as

shown in our previous work [9]. These algorithms were

initialized with the nominal, mismatched PSF and were

applied to the same sparse image as our experiment

above. For a fair comparison, we made a sparse prior

modification in the image model of other algorithms, as

Fig. 7. Restored PSF and image with pixel-wise variance and weight map. κ̂ ¼ Eκ is close to the true one: (a) Estimated PSF, (b) estimated image, (c)

variance map, and (d) weight map.

Fig. 8. PSF bases, κ1 ;…; κ4 , for MRFM PSF: (a) the first basis κ1 , (b) the second basis κ2 , (c) the third basis κ3 , and (d) the fourth basis κ4 .

7 The convergence here is defined as the state where the change in

estimation curves over time is negligible.



needed. Most of these methods do not assume or fit

into the sparse model in our experiments, thus leading

to poor performance in terms of image and PSF estima-

tion errors. Among these tested algorithms, two of

them, proposed by Tzikas et al. [29] and Almeida et al.

[31], produced non-trivial and convergent solutions

and the corresponding results are compared to ours in

Fig. 11. By using basis kernels the method proposed by

Tzikas et al. [29] uses a similar PSF model to ours.

Because a sparse image prior is not assumed in their

algorithm [29], we applied their suggested PSF model

along with our sparse image prior for a fair comparison.

The method proposed by Almeida et al. [31] exploits the

sharp edge property in natural images and uses initial,

Fig. 9. (Mismatched) non-blind result with a mismatched Gaussian PSF: (a) true image, (b) estimated image, (c) variance map, and (d) weight map.

Fig. 10. (Mismatched) non-blind result with a mismatched MRFM type PSF: (a) true image, (b) estimated image, (c) variance map, and (d) weight map.



high regularization for effective PSF estimation. Both of

these perform worse than our VB method as seen in

Fig. 11. The remaining algorithms [28,30,32,33], which

focus on photo image reconstruction or motion blur,

either produce a trivial solution (x̂≈y) or are a special

case of Tzikas's model [29].

To show lower bound our myopic reconstruction algo-

rithm, we used the Iterative Shrinkage/Thresholding (IST)

algorithm with a true PSF. This algorithm effectively restores

sparse images with a sparsity constraint [46]. We demonstrate

comparisons of the computation time8 of our proposed

reconstruction algorithm to that of others in Table 1.

4.5. Application to tobacco mosaic virus (TMV) data

We applied the proposed variational semi-blind sparse

deconvolution algorithm to the tobacco mosaic virus data,

made available by our IBM collaborators [39], shown in the

first row in Fig. 12. Our algorithm is easily modifiable to

these 3D raw image data and 3D PSF with an additional

dimension in dealing with basis functions to evaluate each

voxel value xi. The noise is assumed Gaussian [37,39] and

the four PSF bases are obtained by the procedure proposed

in Section 2.2 with the physical MRFM PSF model and the

nominal parameter values [3]. The reconstruction of the

sixth layer is shown in Fig. 12(b), and is consistent with the

results obtained by other methods. (see [9,43].) The

estimated deviation in PSF is small, as predicted in [9].

While they now exhibit similar smoothness, the VB

and MCMC images are still somewhat different since each

algorithm follows different iterative trajectories in the

Fig. 11. For various image sparsity levels (x-axis: log10‖x‖0), performance of several blind, semi-blind, and non-blind deconvolution algorithms: the

proposed method (red), AM (blue), Almeida's method (green), Tzikas's method (cyan), semi-blind MC (black), and mismatched non-blind MC (magenta).

Errors are illustrated with standard deviations. (a) Estimated sparsity. Normalized true level is 1 (black circles). (b) Normalized error in reconstructed

image. For the lower bound, information about the true PSF is only available to the oracle IST (black circles). (c) Residual (projection) error. The noise level

appears in black circles. (d) PSF recovery error, as a performance gauge of our semi-blind method. At the initial stage of the algorithm,

‖κ0=∥κ0∥−κ=∥κ∥‖22 ¼ 0:5627. (Some of the sparsity measure and residual errors are too large to be plotted together with results from other algorithms.)

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

8 Matlab is used under Windows 7 Enterprise and HP-Z200 (Quad

2.66 GHz) platform.



high-dimensional space of 3D images, thus converging

possibly to slightly different stopping points near the

maximum of the surrogate distribution. We conclude that

the two images from VB and MCMC are comparable in that

both represent the 2D SEM image well, but VB is signifi-

cantly faster.

5. Discussion

5.1. Solving scale ambiguity

In blind deconvolution, joint identifiability is a common

issue. For example, because of scale ambiguity, the unicity

cannot be guaranteed in a general setting. It is not proven

in our solution either. However, the shift/time ambiguity

issue noticed in [47] is implicitly addressed in our method

using a nominal and basis PSFs. Moreover, our constraint

on the PSF space using a basis approach effectively

excludes a delta function as a PSF solution, thus avoiding

the trivial solution. Secondly, the PSF solution is restricted

to this linear spanning space, starting form the initial,

mismatched PSF. We can, therefore, reasonably expect that

the solution provided by the algorithm is close to the true

PSF, away from the trivial solution or the initial PSF.

To resolve scale ambiguity in a MCMC Bayesian frame-

work, stochastic samplers are proposed in [47] by impos-

ing a fixed variance on a certain distribution.9 Another

approach to resolve the scale ambiguity is to assume a

hidden scale variable that is multiplied to the PSF and

dividing the image (or vice versa), where the scale is

drawn along each iteration of the Gibbs sampler [48].

5.2. Exploiting spatial correlations

Our Bayesian hierarchical model (Fig. 1) does not account

for possible spatial dependencies that might exist in the

image. Spatial dependency can be easily incorporated in the

model by adding a spatial latent variable with an associated

prior distribution. This can be accomplished, for example, by

adding a hidden Markov random field model to the vector x

in Fig. 1. Examples of Markov random field models that have

been applied to imaging problems similar to ours are Ising or

Potts models [49], Gauss–Markov random fields [50], and

Hierarchical Dirichlet processes [51]. Bayesian inference of

the hidden parameters of such model is feasible using Monte

Carlo and Gibbs sampling, as in [51,52], and using variational

Bayes EM [53]. Spatial dependency extensions of our model

is a worthwhile and interesting topic for future study but will

not be pursued further in this paper.

6. Conclusion

We suggested a novel variational solution to a semi-

blind sparse deconvolution problem. Our method uses

Bayesian inference for image and PSF restoration with a

sparsity-inducing image prior via the variational Bayes

Table 1

Computation time of algorithms (in seconds), for the data

in Fig. 6.

Our method 9.58

Semi-blind MC [9] 19.20

Bayesian non-blind [43] 3.61

AM [45] 0.40

Almeida's method [31] 5.63

Amizic's method [30] 5.69

Tzikas's method [29] 20.31

(oracle) IST [46] 0.09

Fig. 12. (a) TMV raw data, (b) estimated virus image by VB, (c) estimated virus image by MCMC [9], and (d) virus image from electron microscope [39].

9 We note that this MCMC method designed for 1D signal deconvo-

lution is not efficient for analyzing 2D and 3D images, since the grouped

and marginalized samplers are usually slow to converge requiring

hundreds of iterations [47].



approximation. Its power in automatically producing all

required parameter values from the data merits further

attention for the extraction of image properties and

retrieval of necessary features.

From the simulation results, we conclude that the

performance of the VB method competes with MCMC

methods in sparse image estimation, while requiring

fewer computations. Compared to a non-blind algorithm

whose mismatched PSF leads to imprecise and blurred

signal locations in the restored image, the VB semi-blind

algorithm correctly produces sparse image estimates. The

benefits of this solution compared to the previous solution

[9] are faster convergence and stability of the method.
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Appendix A. Useful distributions

A.1. Inverse Gamma distribution

The density of an inverse Gamma random variable

X∼IGða; bÞ is ðba=ΓðaÞÞx−a−1 expð−b=xÞ, for x∈ð0;∞Þ.
EX−1 ¼ a=b and E lnðXÞ ¼ lnðbÞ−ψðaÞ.

A.2. Beta distribution

The density of a Beta random variable X∼Bða;bÞ is

ðΓðaÞΓðbÞ=Γðaþ bÞÞxb−1ð1−xÞa−1, for x∈ð0;1Þ, with

ΓðcÞ ¼
R∞
0 tc−1e−t dt. The mean of Bða; bÞ is b=ðaþ bÞ and

E lnðBða; bÞÞ ¼ ψðbÞ−ψðaþ bÞ, where ψ is a digamma

function.

A.3. Positively truncated Gaussian distribution

The density of a truncated Gaussian random variable xi
is denoted by xi∼N þðxi; μ; ηÞ, and its statistics used in the

paper are

E½xi xi40' ¼ E½N þðxi; μ; ηÞ'
.
.

¼ μþ ffiffiffi
η

p ϕð−μ= ffiffiffi
η

p Þ
1−Φ0ð−μ=

ffiffiffi
η

p Þ ;

E½x2i jxi40' ¼ var½xijxi40' þ ðE½xijxi40'Þ2

¼ ηþ μðE½xijxi40'Þ;

where Φ0 is a cumulative distribution function for the

standard normal distribution.

Appendix B. Derivations of qð ( Þ

In this section, we derive the posterior densities

defined by variational Bayes framework in Section 3.

B.1. Derivation of qðcÞ

We denote the expected value of the squared residual

term by R¼ E‖y−Hx‖2. For cl, l¼ 1;…;K

R¼ E‖y−H0x−∑
l≠j
Hlxcl−H

jxcj‖
2

¼ c2j 〈x
THjTHjx〉−2cj〈x

THjTy−xHjTH0x

−∑
l≠j
xTHjTHlclx〉þ const;

where Hj is the convolution matrix corresponding to the

convolution with κj. For i≠j and i; j40, EðHixÞT ðHjxÞ ¼
trðHiTHjðcovðxÞ þ 〈x〉〈xT 〉ÞÞ ¼ ðHi

〈x〉ÞT ðHj
〈x〉Þ, since trðHiTHj

covðxÞÞ ¼ trðHiDTHjDÞ ¼∑kd
2
kh

i
kh

j
k ¼ 0. Here, covðxÞ is

approximated as a diagonal matrix D2 ¼ diagðd21;…; d
2
nÞ.

This is reasonable, especially when the expected recovered

signal x̂ exhibits high sparsity. Likewise, EðH0xÞT ðHjxÞ ¼
κT0κj∑ivar½xi' þ ðH0

〈x〉ÞT ðHj
〈x〉Þ and EðHjxÞT ðHjxÞ ¼ ‖κj‖

2

∑ivar½xi' þ ∥Hj
〈x〉∥2.

Then, we factorize

E −
R

2s2

0 1

¼−
ðcj−μcj Þ

2

2scj
;

with

μcj ¼
〈xTHjTy−xHjTH0x−∑l≠jx

THjTHlclx〉

〈xTHjTHjx〉
;

1=scj ¼ 〈1=s2〉〈xTHjTHjx〉:

If we set the prior, pðcjÞ, to be a uniform distribution

over a wide range of the real line that covers error

tolerances, we obtain a normally distributed variational

density qðcjÞ ¼ ϕðμcj ; scj Þ with its mean μcj and variance scj

defined above, because ln qðcjÞ ¼ E½−R=2s2'. By the inde-

pendence assumption, qðcÞ ¼∏qðcjÞ, so qðcÞ can be easily

evaluated.

B.2. Derivation of qðs2Þ

We evaluate R ignoring edge effects; R¼ ‖y−〈H〉〈x〉‖2 +

∑var½xi'½‖〈κ〉‖2 þ∑lscl‖κl‖
2' + ∑lscl‖H

l
〈x〉‖2. ∥κ∥2 is a ker-

nel energy in ℓ2 sense and the variance terms add

uncertainty, due to the uncertainty in κ, to the estimation

of density. Applying (19) (ignoring constants)

ln qðs2Þ ¼ E\s2 ½ln pðy x; c; s2Þpðs2Þpðx a;wÞpðwÞpðaÞ'
.
.

.

.

¼ Ex;c½ln pðy x; s2Þ' þ ln pðs2Þ
.
.

¼ −
Ex;c½‖y−Hx‖2'

2s2
−
P

2
ln s

2 þ ln pðs2Þ:

IGð~ς0; ~ς1Þ≜qðs2Þ ¼ IGðP=2þ ς0; 〈‖y−Hx‖2〉=2þ ς1Þ

where E\s2 denotes expectation with respect to all vari-

ables except s2.

B.3. Derivation of qðxÞ

For xi, i¼ 1;…;N, R¼ E‖ei−hixi‖
2 with ei ¼ y−Hx−i¼

y−H0x−i−∑lH
lclx−i,



hi ¼ ½H0 þ∑Hlcl'i ¼ h
0
i þ∑h

l
icl ¼ ðith column ofHÞ. Ignor-

ing constants, R¼ 〈‖hi‖
2〉x2i −2〈h

T
i ei〉xi.

Using the orthogonality of the kernel bases and uncorre-

latedness of cl's, we derive the following terms (necessary

to evaluate R): 〈∥hi∥
2〉¼ ‖h

0
i ‖

2 þ∑lscl‖h
l
i‖

2 and, 〈h
T
i ei〉¼

〈h
T
i 〉ðy−〈H〉〈x−i〉Þ−∑lvar½cl'hl

iTH
l
〈x−i〉.

Then, var½xi' ¼w′iE½x2i jxi40'−w′2
i ðE½xijxi40'Þ2, E½xi' ¼

w′iE½xijxi40', where w′i ¼ qðzi ¼ 1Þ is the posterior weight

for the normal distribution and 1−w′i is the weight for the

delta function. The required statistics of xi that are used to

derive the distribution above are obtained by applying

Appendix A.3.

B.4. Derivation of qðzÞ

To derive qðzi ¼ 1Þ ¼ 〈zi〉, we evaluate the unnormalized

version q̂ðziÞ of qðziÞ and normalize it.

ln q̂ðzi ¼ 1Þ ¼ E\zi −‖ei−hixi‖
22s2−ln a−

xi
a
þ ln w

h i

with xi∼Nþðμi; ηiÞ

and

ln q̂ðzi ¼ 0Þ ¼ E\zi −
‖ei‖

2

2s2
þ lnð1−wÞ

0 1

with xi ¼ 0:

The normalized version of the weight is qðzi ¼ 1Þ ¼
1=½1þ C′i'. C′i ¼ expðln q̂ðzi ¼ 0Þ−ln q̂ðzi ¼ 1ÞÞ ¼ expðCi=2%
〈1=s2〉 þ μ〈1=a〉 þ 〈ln a〉 þ 〈lnð1−wÞ−ln w〉¼ expðCi=2% ~ς0=

~ς1 þ μ ~α0= ~α1 þ ln ~α1−ψð ~α0Þ þ ψð ~β0Þ−ψð ~β1ÞÞ.ψ is a digamma

function and Ci ¼ 〈‖hi‖
2〉ðμ2i þηiÞ−2〈eTi hi〉μi.
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