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Abstract—This paper studies the sum-capacity of the Gaussian
half-duplex causal cognitive interference channel, a channel
model with two transmitter-receiver pairs where a (cognitive)
source cooperates with the other (primary) source in sending data
through a shared channel. In contrast to the classical cognitive
radio model, here the cognitive source can not transmit and
receive at the same time and must causally learn the primary
message through a noisy channel. Achievable strategies are
developed and shown to match known upper bounds on the
symmetric sum-capacity of this channel to within a constant
gap for all values of channel parameters. In the process, the
generalized degrees of freedom of the channel is characterized.

I. INTRODUCTION

We consider the Gaussian cognitive overlay channel char-
acterized by two sources, namely PTx and CTx, and two
destinations, namely PRx and CRx. Each source wishes to
communicate with the corresponding receiver (PTx with PRx,
CTx with CRx). PTx and PRx are deployed by the spectrum
license owner and are referred to as the primary pair. CTx
and CRx opportunistically use the licensed spectrum and are
referred to as the cognitive pair. The classical information the-
oretic model for the cognitive overlay channel assumes that the
CTx has a non-causal and perfect knowledge of the primary
user’s message prior to transmission [1]. This assumption has
been very useful to show the potential fundamental gains of
a cognitive radio technology. However, from a practical point
of view, it might not be realistic. In this work we remove
this ideal assumption by imposing causality constraints for the
CTx. To this end, the CTx must learn the primary message over
a lossy communication link between PTx and CTx. Moreover,
we assume that the CTx operates in Half-Duplex (HD) mode,
i.e., it can either transmit or receive at any given time, but not
both. We shall denote this system as the Half-Duplex Causal
Cognitive Interference Channel (HD-CCIC).

Related Work. The exact characterization of the capacity
region for a general memoryless network is challenging.
Recently, it has been advocated that progress can be made
towards determining the capacity by showing that achievable
strategies are provably close to computable outer bounds [2].
For the non-causal cognitive channel in Gaussian noise the ca-
pacity region has been exactly determined for some parameter
regimes and it is known to within 1 bit otherwise [3].

This work considers the HD-CCIC, which can be studied
within the framework of the Interference Channel (IC) with
generalized feedback, or with bilateral Full-Duplex (FD)
source cooperation [4], [5], [6], by imposing that only the CTx
cooperates and by using the formalism of [7]. In [7], it was
showed that there is no need to develop a separate theory for
memoryless networks with HD nodes as the HD constraints
can be incorporated into the memoryless FD framework by
introducing a “state random variable” in the input definition. In
[7], it was also proved that the largest rate can be achieved by
randomly switching between the transmit- and receive-phases
at the HD relay node in a simple relay channel. In this way, the
randomness that lies into the switch can be used to transmit (at
most 1 bit per channel use of) information to the destination.
We shall refer to this specific HD mode of operation as
random switch [7], as opposed to deterministic switch where
the transmit- and receive-phases are predetermined.

Outer and inner bounds for the sum-capacity of the Gaussian
IC with either FD source or destination bilateral cooperation
were derived in [4]; in [8], a sum-rate outer bound for the
general memoryless IC with source cooperation was derived
by extending the work of [9]; in [5], a sum-rate outer-bound
for a special class of “injective” IC with FD source cooperation
was proposed by extending the work of [10]. The largest
known achievable region for the general memoryless IC with
FD source cooperation, to the best of our knowledge, is in [6].
In [5, Prop.3] the symmetric sum-capacity of the Gaussian IC
with FD source cooperation was characterized to within 6 bits,
and in [11] to within 2 bits in the “strong cooperation regime”.

The Gaussian IC with bilateral and unilateral HD source
cooperation was studied in [12] where the sum-capacity was
characterized to within 20 bits and 31 bits, respectively, by
considering deterministic switch at the CTx in both inner
and outer bounds. In this work we overcome a number of
limitations and improve on the results of [12] as follows: (i)
we properly account for random switch at the CTx in the
outer bound, (ii) we consider the classical definition of sum-
capacity without introducing any ‘back-off’ in the PTx rate,
(iii) we derive the generalized Degrees-of-Freedom (gDoF) in
closed form rather than expressing it implicitly as the solution
of a linear program, and (iv) we reduce the gap to 10.503 bits.
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Fig. 1. The 2-user G-HD-CCIC.

Contributions and Paper Outline. We focus on the sym-
metric Gaussian HD-CCIC, described in Section II, and char-
acterize its gDoF in closed-form and its sum-capacity to within
a constant gap in Section IV. In order to accomplish this we
first specialize, in Section III, the sum-rate bounds of [4], [5],
[8] to the HD-CCIC by using the formalism of [7]. We then
develop achievable schemes that are asymptotically optimal
for different parameter regimes. These schemes could possibly
be obtained as a special case of [6]; due to the complexity
of [6] we develop schemes inspired by the linear deterministic
approximation of the Gaussian HD-CCIC in the spirit of [2]
(not reported here for space limitations but available at [13]).
An interesting feature of these schemes is that they employ
successive decoding at the receivers, which is simpler than
joint decoding. Moreover, our novel achievable schemes give
insights on when causal cognitive radio might be of practical
interest, i.e., when it outperforms the non-cooperative case,
and it performs as bilateral cooperation.

II. SYSTEM MODEL

General Memoryless Channel Model. A CCIC is de-
scribed by two input alphabets (Xp,Xc), three output al-
phabets (Yf ,Yp,Yc) and a memoryless transition probability
PYf ,Yp,Yc|Xp,Xc

. PTx aims to transmit a message Wp ∈ [1 :
2NRp ] to PRx and CTx wishes to send a message Wc ∈
[1 : 2NRc ] to CRx, where N denotes the codeword length
and Rp and Rc are the transmission rates for PTx and CTx,
respectively, measured in bits per channel use (logarithms are
in base 2). The messages Wp and Wc are independent and
uniformly distributed on their respective domains. At time
i ∈ [1 :N ] PTx encodes its message Wp into Xp,i(Wp) and
CTx maps its message Wc and its past channel observations
into Xc,i(Wc, Y

i−1
f ). At time N , PRx estimates its intended

message Wp based on all its channel observations as Ŵp(Y
N
p ),

and similarly CRx outputs Ŵc(Y
N
c ). The capacity region is

defined as the convex closure of all non-negative rate pairs
(Rp, Rc) such that maxu∈{c,p} P[Ŵu 6=Wu]→ 0 as N→+∞.

Gaussian HD-CCIC (G-HD-CCIC). HD channels repre-
sent a special case of the memoryless FD framework [7]. With
a slight abuse of notation compared to the previous paragraph,
let the channel input at the CTx be the pair (Xc,Mc), where

Xc ∈ Xc as before and Mc ∈ {0, 1} is the state random
variable that indicates whether the CTx is in receive-mode
(Mc = 0) or in transmit-mode (Mc = 1). The single-antenna
G-HD-CCIC, in Fig. 1, has the input/output relationshipYfYp

Yc

 =

1−Mc 0 0
0 1 0
0 0 1

H

[
1 0
0 Mc

] [
Xp

Xc

]
+

ZfZp
Zc

 , (1)

where the inputs are subject to the average power constraints
E
[
|Xi|2

]
≤ 1, i ∈ {p, c}, and H is the constant complex-

valued channel matrix that defines the connectivity of the
network defined in the symmetric case as

H :=

hpf ?
hpp hcp
hpc hcc

 =


√
C ?√
S

√
Iejθ1√

Iejθ2
√
S

 , (2)

where ? indicates the channel gain that does not affect the
capacity region (because CTx can remove its transmitted signal
Xc from its channel output Yf ) and where some channel gains
can be taken to be real-valued and non-negative because a node
can compensate for the phase of one of its channel gains. The
noises are proper-complex Gaussian random variables with
parameter Zk ∼ N (0, 1), k ∈ {f, p, c}. In the following we
assume that the noises are independent.

Performance metrics. The capacity of the channel in (1)
is unknown. Here we make progress by first determining its
gDoF and then showing that the sum-capacity outer-bound
is achievable to within a constant gap for any value of the
channel parameters. The gDoF of a symmetric Gaussian noise
channel is defined as [10]

d(α, β) := lim
S→+∞

max{Rp +Rc}
2 log(1 + S)

, (3)

where the maximization is over all achievable rate pairs
(Rc, Rp) and where, for some fixed non-negative (α, β), we
parameterized C = Sβ and I = Sα. Here S represents the
SNR on the direct links.

The gDoF region gives an asymptotically exact character-
ization of the capacity at infinite SNR. At finite SNR the
sum-capacity is said to be known to within GAP bits if we
can show an inner bound (Rp+Rc)

(IB) and an outer bound
(Rp+Rc)

(OB) such that

0 ≤ (Rp+Rc)
(OB) − (Rp+Rc)

(IB) ≤ GAP

for all channel parameters (S,C, I, θ1, θ2).

III. OUTER BOUNDS

In the literature several outer-bounds are known for bilateral
source cooperation, where each source works in FD mode [4],
[5], [8]. Here we specialize them for the case of HD unilateral
cooperation by following [7]. In particular, we proceed through
the following steps: (i) in the outer bounds for the general
memoryless channel with input Xc, we substitute Xc with the
pair (Xc,Mc); (ii) we apply the mutual information chain rule
so as for any triplet of random variables (A,B,C) we have the
bound I(A,Xc,Mc;B|C) ≤ H(Mc) + I(A,Xc;B|C,Mc);



Rp +Rc ≤ min{(Rp +Rc)
(OB−CS)

, (Rp +Rc)
(OB−DT)

, (Rp +Rc)
(OB−PV)}, (4)

(Rp +Rc)
(OB−CS)

:= 2.507 + γ log (1 + S + C) + 2 (1− γ) log (1 + S) , (5)

(Rp +Rc)
(OB−DT)

:= 3 + γ log (1 + S) + (1− γ) log
(
max {I, S}

I

)
+ (1− γ) log

(
1 +

(√
S +
√
I
)2)

, (6)

(Rp +Rc)
(OB−PV)

:= 5.503 + γ log (1 + S + C + I) + 2 (1− γ) log

(
1 + I +

S + 2
√
IS

1 + I

)
. (7)

this follows since for a binary-valued random variable Mc we
have I(Mc;B|C) ≤ H(Mc) = H(γ) for some γ := P[Mc =
0] ∈ [0, 1] and where H(γ) is the binary entropy defined as
H(γ) = −γ log(γ) − (1 − γ) log(1 − γ); (iii) for all the
remaining mutual information terms, which are conditioned
on Mc, the ‘Gaussian maximizes entropy’-principle [14, Ap-
pendix 16A] guarantees that we can restrict attention to joint
Gaussian inputs with covariance matrix

Cov

[
Xp

Xc

]∣∣∣∣
Mc=̀

=

[
Pp,` ρ`

√
Pp,`Pc,`

ρ∗`
√
Pp,`Pc,` Pc,`

]
: |ρ`|≤1

for ` ∈ {0, 1} and for some (Pp,0, Pp,1, Pc,0, Pc,1) ∈ R4
+

satisfying the average power constraint

γPu,0+(1− γ)Pu,1≤1, u ∈ {p, c} ;

(iv) we rewrite the average power constraint as follows: since
PTx transmits in both states Mc = 0 and Mc = 1 we define,
for some β ∈ [0, 1], Pp,0 = β

γ and Pp,1 = 1−β
1−γ ; since the CTx

transmission only affects the receivers output when Mc = 1,
we let Pc,0 = 0 and Pc,1 = 1

1−γ ; (v) finally, the upper bounds
in (5) (obtained from the cut-set bound [4, eq.(81)+eq.(82)]),
in (6) (obtained from [8, eq.(4d)]) and in (7) (obtained from [5,
eq.(6-7)]), given at the top of this page, are obtained by
upper bounding each individual mutual information term over
(ρ0, ρ1, β) ∈ [0, 1]3, for a fixed γ; (vi) after these steps,
each outer bound has terms that are linear combinations of
terms of the type ‘γ log

(
1
γ

)
’; by numerically optimizing these

quantities, we obtain the constants that characterize the outer
bounds in (5), (6) and (7).

IV. GDOF AND SUM-CAPACITY TO WITHIN A CONSTANT

Our first main results is:

Theorem 1 The gDoF of the symmetric G-HD-CCIC is

d(α,β) ≤ 1

2
max
γ

min {γmax {1, β}+ 2 (1− γ) , (8a)

γ + (1− γ)
(
max {1, α}+ [1− α]+

)
, (8b)

γmax {α, β, 1}+(1−γ)max {2α, 2−2α}} (8c)

=



1−α+ 1
2
[β−2+2α]+α

β+α−1 α ∈ [0, 1/2)

α+ 1
2
[β−2α]+(2−3α)

β−3α+1 α ∈ [1/2, 2/3)

1− 1
2α α ∈ [2/3, 1)

1
2α α ∈ [1, 2)

1 + 1
2
[β−2]+ (α−2)

β+α−3 α ∈ [2,∞).

(8d)

Proof: The proof that (8d) upper bounds the gDoF
follows by substituting the sum-rate upper bounds in (5), (6)
and (7) into the gDoF definition in (3). The proof that (8d) is
achievable is given in the Appendix.

Fig. 2 shows the optimal gDoF and the gap for the sym-
metric G-HD-CCIC. The whole set of parameters has been
partitioned into multiple sub-regions depending upon different
levels of cooperation (β) and interference (α) strengths.

The gDoF in (8d), in the different interference regimes
(i.e., different values of α), is the sum of the gDoF without
cooperation (obtained for β = 0) and a term that is strictly
positive only for sufficiently large β. In particular, β must
be larger than the gDoF without cooperation. This can be
explained as follows:
• In weak interference α ∈ [0, 2/3) and without cooperation
β = 0 the PV bound in (8c) is the tightest [10]. The PV bound
in (8c) is optimized by γ = 0, which is equivalent to no-
cooperation, whenever max{1, α, β} ≤ 2max{1 − α, α} =
2d(NoCoop)(α) ⇐⇒ β ≤ 2d(NoCoop)(α). Thus, unilateral HD
cooperation is beneficial in terms of gDoF only when β is
larger than the gDoF without cooperation. In this case, the
optimal γ, obtained by equating the PV bound in (8c) to the
DT bound in (8b), is

γ(PV.DT) =
min{2− 3α, α}

min{2− 3α, α}+ β − 1
, (9)

which then leads to the first two cases in (8d).
• In very strong interference α≥ 2 and without cooperation
β=0 the CS bound in (8a) is the tightest [9]. The CS bound
in (8a) is optimized by γ = 0, which is equivalent to no-
cooperation, whenever max{1,β} ≤ 2 = 2d(NoCoop)(α) ⇐⇒
β ≤ 2d(NoCoop)(α). Again we see that unilateral HD cooper-
ation is beneficial in terms of gDoF only when β is larger
than the gDoF without cooperation. In this case, the optimal
γ, obtained by equating the CS bound in (8c) to the DT one
in (8b), is

γ(CS.DT) =
α− 2

β + α− 3
, (10)

which then leads to the last case in (8d).
• In moderately-weak and strong interference α ∈ [2/3, 2)
and with no cooperation β = 0 the DT bound in (8b) is the
tightest [9]. This bound is always optimized by γ = 0, which is
equivalent to no-cooperation. Hence in this regime it is always
gDoF-optimal to operate the channel as a pure IC.

Summarizing the above results we have:
• In regions 1, 2, 4, 5, 6, 7 and 9 in Fig. 2, unilateral HD
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Fig. 2. Optimal gDoF and constant gap for the symmetric G-HD-CCIC in the different regimes of (α, β).

cooperation might not be worth implementing in practical
systems since the same gDoF is achieved without cooperation.
• In regions 1, 4, 5 and 6 the gDoF is equal to the one
with unilateral FD cooperation [15]. This implies that, in these
regimes, the same gap results found for the FD case in [15]
hold in the case of unilateral HD cooperation. In these regimes
there is no penalty in HD cooperation.
• By computing the gDoF of the IC with bilateral HD source
cooperation [16] we see that in regions 1, 2, 6, 7, 9, part of
5 (with β ≤ 3 − 2α) and part of 4 (with β ≤ 2α − 1), the
gDoF are the same as those computed in the unilateral case.
Thus, for this set of parameters, unilateral cooperation attains
the same gDoF of bilateral cooperation but with less resources
and therefore represents a better trade-off in practical systems.

Our second main result is:

Theorem 2 The sum-rate upper bound in (4) is achievable to
within 10.503 bits for the symmetric G-HD-CCIC.

Proof: The proof can be found in the Appendix.
Before concluding we make some more remarks on the gap:

• Most of our proposed schemes only use superposition cod-
ing. The only exception is in weak interference, i.e., regions 8

and 10 in Fig. 2, where we were not able to characterize the
sum-rate to within a constant gap with superposition only.
• All the achievable schemes presented here use successive
decoding at the receivers. This form of decoding, in practice,
is simpler than joint decoding; thus our schemes may be used
as guidelines to deploy practical cognitive radio systems.
• The gap computed in this work is around 3 bits bigger than
the one computed in the FD case [15]. Possible ways to reduce
this gap may be: (i) apply joint decoding at the receivers, (ii)
develop block Markov schemes instead of taking inspiration by
the linear deterministic approximation channel of the Gaussian
noise channel at high SNR, (iii) develop achievable schemes
that exploit the randomness in the switch to convey further
useful information, (iv) develop tighter upper bounds than
those used in this work, especially in weak interference where
the gap is quite large.

V. CONCLUSIONS

In this work we considered the half-duplex causal cognitive
channel. Differently from the original overlay cognitive model,
in which the CTx has a full a priori knowledge of the
message of the PTx, we consider a more practical scenario in
which the CTx learns this message through a noisy link and



(Rp +Rc)
(IB 1) =γ∗ log (1 + S)− γ∗ log

(
1 +

S

1 + S

)
+ γ∗ log

(
1 +

C

1 + S

)
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S

1 + S

)
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S

1 + S
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+ γ∗ log
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)
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(
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S
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(
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I
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+
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(
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S

1 + S

)
+ γ∗ log

(
1+

C

1 + S

)
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1+I+
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)
+ (1− γ∗) log

(
1+

I

1 + I
+ S

)
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(
1+

I

1 + I
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operates in HD mode. We derived the gDoF of the channel
and characterized its symmetric sum-capacity to within a
constant gap. This has been accomplished by developing novel
achievable schemes for the different parameter regimes.
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APPENDIX

We develop achievable schemes inspired by the linear
deterministic approximation of the G-HD-CCIC at high SNR.
The details of the derivation may be found in [13].
• Region 1 (α ≥ 2 and β ≤ 1), Region 2 (α ≥ 2 and
1 < β ≤ 2), Region 4 (1≤ α< 2), Region 5 ( 23 ≤ α < 1),
Region 6 ( 12 ≤ α <

2
3 and β≤2α−1), Region 7 ( 12 ≤ α <

2
3

and 2α−1 < β ≤ 2α) and Region 9 (α < 1
2 and β≤2−2α). In

these regions the gDoF upper bound equals that of the classical
IC. Therefore an achievable scheme is given by the classical
IC. The gap is at most of GAP ≤ 9.503 bits.
• Region 3: α ≥ 2 and β > 2. With the achievable scheme
in [13, Appendices D-A, D-B], i.e., a two-phase strategy with
superposition coding and successive decoding, we can achieve
(Rp+Rc)

(IB 1) at the top of the page, where the limit behavior
of γ∗ is the one in (10). The tightest upper bounds are those
in (5) and in (6). The gap is GAP≤5 bits.
• Region 8: 1

2 ≤ α < 2
3 and β > 2α. With the achievable

scheme in [13, Appendices D-A, D-C], i.e., a two-phase
strategy with superposition coding, dirty-paper-coding and
successive decoding, we can achieve (Rp+Rc)

(IB 2) at the
top of the page, where the limit behavior of γ∗ is the one in
(9). The tightest upper bounds are those in (6) and in (7). The

gap is GAP ≤ 10.503 bits.
• Region 10: α < 1

2 and β > 2 − 2α. With the achievable
scheme in [13, Appendices D-A, D-D], a two-phase strategy
with superposition coding, dirty-paper-coding and successive
decoding, we can achieve (Rp+Rc)

(IB 3) at the top of the
page, where the limit behavior of γ∗ is the one in (9). The
tightest upper bounds are those in (6) and in (7). The gap is
GAP ≤ 9.503 bits.
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