Stability properties for quasilinear parabolic equations with measure data and applications
Marie-Françoise Bidaut-Véron, Hung Nguyen Quoc

To cite this version:
Marie-Françoise Bidaut-Véron, Hung Nguyen Quoc. Stability properties for quasilinear parabolic equations with measure data and applications. 2013. <hal-00874943v2>

HAL Id: hal-00874943
https://hal.archives-ouvertes.fr/hal-00874943v2
Submitted on 4 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Stability properties for quasilinear parabolic equations with measure data and applications

Marie-Françoise BIDAUT-VERON∗ Hung NGUYEN QUOC†

Abstract

Let Ω be a bounded domain of \(\mathbb{R}^N\), and \(Q = \Omega \times (0,T)\). We first study problems of the model type

\[
\begin{align*}
 u_t - \Delta_p u &= \mu & \text{in } Q, \\
 u &= 0 & \text{on } \partial \Omega \times (0,T), \\
 u(0) &= u_0 & \text{in } \Omega,
\end{align*}
\]

where \(p > 1\), \(\mu \in \mathcal{M}_b(Q)\) and \(u_0 \in L^1(\Omega)\). Our main result is a stability theorem extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators \(u \mapsto -\nabla \cdot (A(x,t,\nabla u))\).

As an application, we consider perturbed problems of type

\[
\begin{align*}
 u_t - \Delta_p u + G(u) &= \mu & \text{in } Q, \\
 u &= 0 & \text{on } \partial \Omega \times (0,T), \\
 u(0) &= u_0 & \text{in } \Omega,
\end{align*}
\]

where \(G(u)\) may be an absorption or a source term. In the model case \(G(u) = \pm |u|^{q-1} u (q > p - 1)\), or \(G\) has an exponential type. We give existence results when \(q\) is subcritical, or when the measure \(\mu\) is good in time and satisfies suitable capacity conditions.

∗Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours France. E-mail: veronmf@univ-tours.fr

†Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours France. E-mail: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
1 Introduction

Let Ω be a bounded domain of \mathbb{R}^N, and $Q = \Omega \times (0, T)$, $T > 0$. We denote by $\mathcal{M}_b(\Omega)$ and $\mathcal{M}_b(Q)$ the sets of bounded Radon measures on Ω and Q respectively. We are concerned with the problem

$$\begin{cases}
 u_t - \text{div}(A(x, t, \nabla u)) = \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial\Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}$$

(1.1)

where $\mu \in \mathcal{M}_b(Q)$, $u_0 \in L^1(\Omega)$ and A is a Caratheodory function on $Q \times \mathbb{R}^N$, such that for a.e. $(x, t) \in Q$, and any $\xi, \zeta \in \mathbb{R}^N$,

$$A(x, t, \xi) \cdot \xi \geq c_1 |\xi|^p, \quad |A(x, t, \xi)| \leq a(x, t) + c_2 |\xi|^{p-1}, \quad c_1, c_2 > 0, a \in L^p(Q),$$

(1.2)

$$A(x, t, \xi) - A(x, t, \zeta) \cdot (\xi - \zeta) > 0 \quad \text{if } \xi \neq \zeta.$$

(1.3)

This includes the model problem

$$\begin{cases}
 u_t - \Delta_p u = \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial\Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}$$

(1.4)

where Δ_p is the p-Laplacian defined by $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$ with $p > 1$.

As an application, we consider problems with a nonlinear term of order 0:

$$\begin{cases}
 u_t - \text{div}(A(x, \nabla u)) + G(u) = \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial\Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}$$

(1.5)

where A is a Caratheodory function on $\Omega \times \mathbb{R}^N$, such that, for a.e. $x \in \Omega$, and any $\xi, \zeta \in \mathbb{R}^N$,

$$A(x, \xi) \cdot \xi \geq c_1 |\xi|^p, \quad |A(x, \xi)| \leq c_2 |\xi|^{p-1}, \quad c_3, c_4 > 0,$$

(1.6)

$$A(x, \xi) - A(x, \zeta) \cdot (\xi - \zeta) > 0 \quad \text{if } \xi \neq \zeta,$$

(1.7)

and $G(u)$ may be an absorption or a source term, and possibly depends on $(x, t) \in Q$. The model problem is the case where G has a power-type $G(u) = \pm |u|^{q-1}u \quad (q > p - 1)$, or an exponential type.

First make a brief survey of the elliptic associated problem:

$$\begin{cases}
 -\text{div}(A(x, \nabla u)) = \mu & \text{in } \Omega, \\
 u = 0 & \text{on } \partial\Omega,
\end{cases}$$

with $\mu \in \mathcal{M}_b(\Omega)$ and assumptions (1.6), (1.7). When $p = 2$, $A(x, \nabla u) = \nabla u$ existence and uniqueness are proved for general elliptic operators by duality methods in [58]. For $p > 2 - 1/N$, the existence of solutions in the sense of distributions is obtained in [23] and [24]. The condition
on p ensures that the gradient ∇u is well defined in $(L^1(\Omega))^N$. For general $p > 1$, new classes of solutions are introduced, first when $\mu \in L^1(\Omega)$, such as entropy solutions, and renormalized solutions, see [13], and also [57], and existence and uniqueness is obtained. For any $\mu \in \mathcal{M}_b(\Omega)$ the main work is done in [32, Theorems 3.1, 3.2], where not only existence is proved, but also a stability result, fundamental for applications. Uniqueness is still an open problem.

Next we make a brief survey about problem (1.1).

The first studies concern the case $\mu \in L^p'(Q)$ and $u_0 \in L^2(\Omega)$, where existence and uniqueness is obtained by variational methods, see [45]. In the general case $\mu \in \mathcal{M}_b(Q)$ and $u_0 \in \mathcal{M}_b(\Omega)$, the pioneer results come from [23], proving the existence of solutions in the sense of distributions for $p > p_1 = 2 - \frac{1}{N+1}$, \begin{equation} \tag{1.8} \end{equation}

see also [55], [56], and [26]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces $u \in L^{p_c,\infty}(Q)$ and $|\nabla u| \in L^{m_c,\infty}(Q)$, where $p_c = p - 1 + \frac{p}{N}$, \begin{equation} \tag{1.9} \end{equation}

This condition (1.8) ensures that u and $|\nabla u|$ belong to $L^1(Q)$, since $m_c > 1$ means $p > p_1$ and $p_c > 1$ means $p > 2N/(N + 1)$. Uniqueness follows in the case $p = 2$, $A(x,t,\nabla u) = \nabla u$, by duality methods, see [48].

For $\mu \in L^1(Q)$, uniqueness is obtained in new classes of solutions: entropy solutions, and renormalized solutions, see [19], [54], see also [3] for a semi-group approach.

Then a class of regular measures is studied in [33], where a notion of parabolic capacity c^Q_p is introduced, defined by $c^Q_p(E) = \inf \left\{ \inf_{E \subset U \text{ open} \subset Q} \{|u|_W : u \in W, u \geq \chi_U \text{ a.e. in } Q \} \right\}$, for any Borel set $E \subset Q$, where $X = L^p(0,T; W_{0}^{1,p}(\Omega) \cap L^2(\Omega))$, $W = \{ z : z \in X, \quad z_t \in X' \}$, embedded with the norm $||u||_W = ||u||_X + ||u_t||_{X'}$.

Let $\mathcal{M}_0(Q)$ be the set of Radon measures μ on Q that do not charge the sets of zero c^Q_p-capacity: $\forall E$ Borel set $\subset Q$, $c^Q_p(E) = 0 \implies |\mu(E)| = 0$.

Then existence and uniqueness of renormalized solutions holds for any measure $\mu \in \mathcal{M}_b(Q) \cap \mathcal{M}_0(Q)$, called regular (or diffuse) and $u_0 \in L^1(\Omega)$, and $p > 1$. The equivalence with the notion of entropy solutions is shown in [34]; see also [20] for more general equations.

Next consider any measure $\mu \in \mathcal{M}_b(Q)$. Let $\mathcal{M}_s(Q)$ be the set of all bounded Radon measures on Q with support on a set of zero c^Q_p-capacity, also called singular. Let $\mathcal{M}_b^+(Q), \mathcal{M}_b^+(Q), \mathcal{M}_s^+(Q)$
be the positive cones of $\mathcal{M}_b(Q), \mathcal{M}_0(Q), \mathcal{M}_s(Q)$. From [33], μ can be written (in a unique way) under the form
\[
\mu = \mu_0 + \mu_s, \quad \mu_0 \in \mathcal{M}_0(Q), \quad \mu_s = \mu_s^+ - \mu_s^-, \quad \mu_s^+, \mu_s^- \in \mathcal{M}_s^+(Q),
\]
and $\mu_0 \in \mathcal{M}_0(Q)$ admits (at least) a decomposition under the form
\[
\mu_0 = f - \text{div} \ g + h_t, \quad f \in L^1(Q), \quad g \in (L^p(Q))^N, \quad h \in X,
\]
and we write $\mu_0 = (f, g, h)$. The solutions of (1.1) are searched in a renormalized sense linked to this decomposition, introduced in [19], [49]. In the range (1.8) the existence of a renormalized solution relative to the decomposition (1.11) is proved in [49], using suitable approximations of μ_0 and μ_s.

Next consider the problem (1.5). First we consider the case of an absorption term: $\mathcal{G}(u)u \geq 0$. Let us recall the case $p = 2$, $A(x, \nabla u) = \nabla u$ and $\mathcal{G}(u) = |u|^{q-1}u$ ($q > 1$). The first results concern the case $\mu = 0$ and u_0 is a Dirac mass in Ω, see [28]: existence holds if and only if $q < (N + 2)/N$. Then optimal results are given in [7], for any $\mu \in \mathcal{M}_b(Q)$ and $u_0 \in \mathcal{M}_b(\Omega)$. Here two capacities are involved: the elliptic Bessel capacity $C_{\alpha,k}$, $(\alpha, k > 1)$ defined, for any Borel set $E \subset \mathbb{R}^N$, by
\[
C_{\alpha,k}(E) = \inf \{ \| \varphi \|_{L^k(\mathbb{R}^N)} : \varphi \in L^k(\mathbb{R}^N), \ G_\alpha * \varphi \geq \chi_E \},
\]
where G_α is the Bessel kernel of order α, and a capacity $c_{G,k}$ ($k > 1$) adapted to the operator of the heat equation of kernel $G(x,t) = \chi_{(0,\infty)}(4\pi t)^{-N/2}e^{-|x|^2/4t}$: for any Borel set $E \subset \mathbb{R}^{N+1}$,
\[
c_{G,k}(E) = \inf \{ \| \varphi \|_{L^k(\mathbb{R}^{N+1})} : \varphi \in L^k(\mathbb{R}^{N+1}), \ G * \varphi \geq \chi_E \}.
\]
From [7], there exists a solution if and only if μ does not charge the sets of $c_{G,k}(E)$ capacity zero and u_0 does not charge the sets of $C_{2/qd'}$, capacity zero. Observe that one can reduce to a zero initial data, by considering the measure $\mu + u_0 \otimes \delta_0$ in $\Omega \times (-T, T)$, where \otimes is the tensorial product and δ_0 is the Dirac mass in time at 0.

For $p \neq 2$ such a linear parabolic capacity cannot be used. Most of the contributions are relative to the case $\mu = 0$ with Ω bounded, or $\Omega = \mathbb{R}^N$. The case where u_0 is a Dirac mass in Ω is studied in [36], [40] when $p > 2$, and [29] when $p < 2$. Existence and uniqueness hold in the subcritical case $q < p_c$. If $q \geq p_c$ and $q > 1$, there is no solution with an isolated singularity at $t = 0$. For $q < p_c$, and $u_0 \in \mathcal{M}_b^+(\Omega)$, the existence is obtained in the sense of distributions in [60], and for any $u_0 \in \mathcal{M}_b(\Omega)$ in [16]. The case $\mu \in L^1(Q)$, $u_0 = 0$ is treated in [30], and $\mu \in L^1(Q)$, $u_0 = L^1(\Omega)$ in [4] where \mathcal{G} can be multivalued. The case $\mu \in \mathcal{M}_0(Q)$ is studied in [50], with a new formulation of the solutions, and existence and uniqueness is obtained for any function $\mathcal{G} \in C(\mathbb{R})$ such that $\mathcal{G}(u)u \geq 0$. Up to our knowledge, up to now no existence results have been obtained for a general measure $\mu \in \mathcal{M}_b(Q)$.

The case of a source term $\mathcal{G}(u) = -u^q$ with $u \geq 0$ has been treated in [6] for $p = 2$, where optimal conditions are given for existence. As in the absorption case the arguments of proofs cannot be extended to general p.

4
2 Main results

In all the sequel we suppose that \(p \) satisfies (1.8). Then

\[
X = L^p(0,T; W^{1,p}_0(\Omega)), \quad X' = L^{p'}(0,T; W^{-1,p'}(\Omega)).
\]

We first study problem (1.1). In Section 3 we give some approximations of \(\mu \in \mathcal{M}_b(Q) \), useful for the applications. In Section 4 we recall the definition of renormalized solutions, that we call R-solutions of (1.1), relative to the decomposition (1.11) of \(\mu_0 \), and study some of their properties.

Our main result is a stability theorem for problem (1.1), proved in Section 5, extending to the parabolic case the stability result of [32, Theorem 3.4], and improving the result of [49]:

Theorem 2.1 Let \(A : Q \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) satisfying (1.2), (1.3). Let \(u_0 \in L^1(\Omega) \), and

\[
\mu = f - \text{div} \, g + h, \quad \mu^+_n - \mu^-_n \in \mathcal{M}_b(Q),
\]

with \(f \in L^1(Q), g \in (L^{p'}(Q))^N, \ h \in X \) and \(\mu^+_n, \mu^-_n \in \mathcal{M}_s^+(Q) \). Let \(u_{0,n} \in L^1(\Omega) \),

\[
\mu_n = f_n - \text{div} \, g_n + h_n + \rho_n - \eta_n \in \mathcal{M}_b(Q),
\]

with \(f_n \in L^1(Q), g_n \in (L^{p'}(Q))^N, h_n \in X, \) and \(\rho_n, \eta_n \in \mathcal{M}_b(Q) \), such that

\[
\rho_n = \rho_n^1 - \text{div} \, \rho_n^2 + \rho_{n,s}, \quad \eta_n = \eta_n^1 - \text{div} \, \eta_n^2 + \eta_{n,s},
\]

with \(\rho_n^1, \eta_n^1 \in L^1(Q), \rho_n^2, \eta_n^2 \in (L^{p'}(Q))^N \) and \(\rho_{n,s}, \eta_{n,s} \in \mathcal{M}_s^+(Q) \). Assume that

\[
\sup_n |\mu_n| (Q) < \infty,
\]

and \(\{u_{0,n}\} \) converges to \(u_0 \) strongly in \(L^1(\Omega) \), \(\{f_n\} \) converges to \(f \) weakly in \(L^1(Q) \), \(\{g_n\} \) converges to \(g \) strongly in \((L^{p'}(Q))^N \), \(\{h_n\} \) converges to \(h \) strongly in \(X \), \(\{\rho_n\} \) converges to \(\mu^+_n \) and \(\{\eta_n\} \) converges to \(\mu^-_n \) in the narrow topology of measures; and \(\{\rho_n^1\}, \{\eta_n^1\} \) are bounded in \(L^1(Q) \), and \(\{\rho_n^2\}, \{\eta_n^2\} \) bounded in \((L^{p'}(Q))^N \). Let \(\{u_n\} \) be a sequence of R-solutions of

\[
\begin{aligned}
\left\{ \begin{array}{l}
u_{n,t} - \text{div}(A(x,t,\nabla u_n)) = \mu_n \quad \text{in } Q, \\
u_n = 0 \quad \text{on } \partial Q \times (0,T), \\
u_n(0) = u_{0,n} \quad \text{in } \Omega.
\end{array} \right.
\end{aligned}
\tag{2.1}
\]

relative to the decomposition \(\{f_n + \rho_n^1 - \eta_n^1, g_n + \rho_n^2 - \eta_n^2, h_n\} \) of \(\mu_{n,0} \). Let \(v_n = u_n - h_n \). Then up to a subsequence, \(\{u_n\} \) converges a.e. in \(Q \) to a R-solution \(u \) of (1.1), and \(\{v_n\} \) converges a.e. in \(Q \) to \(v = u - h \). Moreover, \(\{\nabla u_n\}, \{\nabla v_n\} \) converge respectively to \(\nabla u, \nabla v \) a.e. in \(Q \), and \(\{T_k(u_n)\}, \{T_k(v_n)\} \) converge to \(T_k(u), T_k(v) \) strongly in \(X \) for any \(k > 0 \).

In Section 6 we give applications to problems of type (1.5).

We first give an existence result of subcritical type, valid for any measure \(\mu \in \mathcal{M}_b(Q) \):
Theorem 2.2 Let $A : Q \times \mathbb{R}^N \to \mathbb{R}^N$ satisfying (1.2), (1.3) with $a \equiv 0$. Let $(x, t, r) \mapsto G(x, t, r)$ be a Caratheodory function on $Q \times \mathbb{R}$ and $G \in C(\mathbb{R}^+)$ be a nondecreasing function with values in \mathbb{R}^+, such that

$$|G(x, t, r)| \leq G(|r|) \quad \text{for a.e. } (x, t) \in Q \text{ and any } r \in \mathbb{R},$$

$$\int_1^\infty G(s)s^{-1-p}ds < \infty.$$

(i) Suppose that $G(x, t, r)r \geq 0$, for a.e. (x, t) in Q and any $r \in \mathbb{R}$. Then, for any $\mu \in M_b(Q)$ and $u_0 \in L^1(\Omega)$, there exists a R-solution u of problem

$$\begin{cases}
 u_t - \text{div}(A(x, t, \nabla u)) + G(u) = \mu & \text{in } Q, \\
 u = 0 & \text{in } \partial Q \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega.
\end{cases}$$

(ii) Suppose that $G(x, t, r)r \leq 0$, for a.e. $(x, t) \in Q$ and any $r \in \mathbb{R}$, and $u_0 \geq 0, \mu \geq 0$. There exists $\varepsilon > 0$ such that for any $\lambda > 0$, any $\mu \in M_b(Q)$ and $u_0 \in L^1(\Omega)$ with $\lambda + |\mu|(Q) + ||u_0||_{L^1(\Omega)} \leq \varepsilon$, problem

$$\begin{cases}
 u_t - \text{div}(A(x, t, \nabla u)) + \lambda G(u) = \mu & \text{in } Q, \\
 u = 0 & \text{in } \partial Q \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}$$

admits a nonnegative R-solution.

In particular for any $0 < q < p_c$, if $G(u) = |u|^{q-1}u$, existence holds for any measure $\mu \in M_b(Q)$; if $G(u) = -|u|^{q-1}u$, existence holds for μ small enough. In the supercritical case $q \geq p_c$, the class of "admissible" measures, for which there exist solutions, is not known.

Next we give new results relative to measures that have a good behaviour in t, based on recent results of [17] relative to the elliptic case. We recall the notions of (truncated) Wölf potential for any nonnegative measure $\omega \in \mathcal{M}^+(\mathbb{R}^N)$ any $R > 0, x_0 \in \mathbb{R}^N$,

$$\mathcal{W}^R_{1,\rho}[\omega](x_0) = \int_0^R (t^{p-N}\omega(B(x_0, t)))^{\frac{1}{p-1}} dt.$$

Any measure $\omega \in M_b(\Omega)$ is identified with its extension by 0 to \mathbb{R}^N. In case of absorption, we obtain the following:

Theorem 2.3 Let $A : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ satisfying (1.6), (1.7). Let $p < N$, $q > p - 1$, $\mu \in M_b(Q)$, $f \in L^1(Q)$ and $u_0 \in L^1(\Omega)$. Assume that

$$|\mu| \leq \omega \otimes F, \quad \text{with } \omega \in \mathcal{M}^+_b(\Omega), F \in L^1((0, T)), F \geq 0,$$

and ω does not charge the sets of $C_p\frac{q}{q-1-p}\text{-capacity zero}$. Then there exists a R-solution u of problem

$$\begin{cases}
 u_t - \text{div}(A(x, \nabla u)) + |u|^{q-1}u = f + \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial \Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega.
\end{cases}$$
We show that some of these measures may not lie in $\mathcal{M}_0(Q)$, which improves the existence results of [50], see Proposition 3.3 and Remark 6.7. Otherwise our result can be extended to a more general function \mathcal{G}, see Remark 6.9. We also consider a source term:

Theorem 2.4 Let $A : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ satisfying (1.6), (1.7). Let $p < N$, $q > p - 1$. Let $\mu \in \mathcal{M}_b^+(Q)$, and $u_0 \in L^\infty(\Omega)$, $u_0 \geq 0$. Assume that

$$\mu \leq \omega \otimes \chi_{(0,T)}, \quad \text{with } \omega \in \mathcal{M}_b^+(\Omega).$$

Then there exist $\lambda_0 = \lambda_0(N, p, q, c_3, c_4, \text{diam}\Omega)$ and $b_0 = b_0(N, p, q, c_3, c_4, \text{diam}\Omega)$ such that, if

$$\omega(E) \leq \lambda_0 c_{p,q-1}^{-1}(E), \quad \forall E \text{ compact } \subset \mathbb{R}^N, \quad \|u_0\|_{\infty, \Omega} \leq b_0,$$

there exists a nonnegative R-solution u of problem

$$u_t - \text{div}(A(x, \nabla u)) = u^q + \mu \quad \text{in } Q,$$

$$u = 0 \quad \text{on } \partial \Omega \times (0, T),$$

$$u(0) = u_0 \quad \text{in } \Omega,$$

which satisfies, a.e. in Q,

$$u(x, t) \leq C \mathcal{W}^{2 \text{diam}\Omega}[\omega](x) + 2\|u_0\|_{L^\infty},$$

where $C = C(N, p, c_3, c_4)$.

Corresponding results in case where \mathcal{G} has exponential type are given at Theorems 6.10 and 6.15.

3 Approximations of measures

For any open set ω of \mathbb{R}^m and $F \in (L^k(\omega))^\nu$, $k \in [1, \infty]$, $m, \nu \in \mathbb{N}^*$, we set $\|F\|_{k, \omega} = \|F\|_{(L^k(\omega))^\nu}$.

First we give approximations of nonnegative measures in $\mathcal{M}_0(Q)$. We recall that any measure $\mu \in \mathcal{M}_0(Q) \cap \mathcal{M}_b(Q)$ admits a decomposition under the form $\mu = (f, g, h)$ given by (1.11). Conversely, any measure of this form, such that $h \in L^\infty(Q)$, lies in $\mathcal{M}_0(Q)$, see [50, Proposition 3.1].

Lemma 3.1 Let $\mu \in \mathcal{M}_0(Q) \cap \mathcal{M}_b^+(Q)$ and $\varepsilon > 0$.

(i) Then, we can find a decomposition $\mu = (f, g, h)$ with $f \in L^1(Q), g \in (L^{p'}(Q))^N, h \in X$ such that

$$\|f\|_{1,Q} + \|g\|_{p',Q} + \|h\|_{X} \leq (1 + \varepsilon)\mu(Q), \quad \|g\|_{p',Q} + \|h\|_{X} \leq \varepsilon.$$ \hspace{1cm} (3.1)

(ii) Furthermore, there exists a sequence of measures $\mu_n = (f_n, g_n, h_n)$, such that $f_n, g_n, h_n \in C^\infty_c(Q)$ and strongly converge to f, g, h in $L^1(Q), (L^{p'}(Q))^N$ and X respectively, and μ_n converges to μ in the narrow topology, and satisfying

$$\|f_n\|_{1,Q} + \|g_n\|_{p',Q} + \|h_n\|_{X} \leq (1 + 2\varepsilon)\mu(Q), \quad \|g_n\|_{p',Q} + \|h_n\|_{X} \leq 2\varepsilon.$$ \hspace{1cm} (3.2)
Proof. (i) Step 1. Case where μ has a compact support in Q. By [33], we can find a decomposition $\mu = (f, g, h)$ with f, g, h have a compact support in Q. Let $\{\varphi_n\}$ be sequence of mollifiers in \mathbb{R}^{N+1}. Then $\mu_n = \varphi_n * \mu \in C_c^\infty(Q)$ for n large enough. We see that $\mu_n(Q) = \mu(Q) \mu_n$ admits the decomposition $\mu_n = (f_n, g_n, h_n) = (\varphi_n * f, \varphi_n * g, \varphi_n * h)$. Since $(f_n), \{g_n\}, \{h_n\}$ strongly converge to f, g, h in $L^1(Q), (L^p(Q))^N$ and X respectively, we have for n_0 large enough,
\[
\|f - f_{n_0}\|_{1,Q} + \|g - g_{n_0}\|_{p',Q} + \|h - h_{n_0}\|_X \leq \varepsilon \min\{\mu(Q), 1\}.
\]
Then we obtain a decomposition $\mu = (\hat{f}, \hat{g}, \hat{h}) = (\mu_{n_0} + f - f_{n_0}, g - g_{n_0}, h - h_{n_0})$, such that
\[
\|\hat{f}\|_{1,Q} + \|\hat{g}\|_{p',Q} + \|\hat{h}\|_X \leq (1 + \varepsilon) \mu(Q), \quad \|\hat{g}\|_{p',Q} + \|\hat{h}\|_X \leq \varepsilon.
\]
(3.3)

Step 2. General case. Let $\{\theta_n\}$ be a nonnegative, nondecreasing sequence in $C_c^\infty(Q)$ which converges to 1, a.e. in Q. Set $\tilde{\mu}_0 = \theta_0 \mu$, and $\tilde{\mu}_n = (\theta_n - \theta_{n-1}) \mu$, for any $n \geq 1$. Since $\tilde{\mu}_n \in \mathcal{M}_0(Q) \cap \mathcal{M}_b^+(Q)$ has compact support, by Step 1, we can find a decomposition $\tilde{\mu}_n = (\tilde{f}_n, \tilde{g}_n, \tilde{h}_n)$ such that
\[
\|\tilde{f}_n\|_{1,Q} + \|\tilde{g}_n\|_{p',Q} + \|\tilde{h}_n\|_X \leq (1 + \varepsilon) \mu_n(Q), \quad \|\tilde{g}_n\|_{p',Q} + \|\tilde{h}_n\|_X \leq 2^{-n-1} \varepsilon.
\]
Let $\tilde{T}_n = \sum_{k=0}^n \tilde{f}_k, \tilde{g}_n = \sum_{k=0}^n \tilde{g}_k$ and $\tilde{h}_n = \sum_{k=0}^n \tilde{h}_k$. Clearly, $\theta_n \mu = (\tilde{T}_n, \tilde{g}_n, \tilde{h}_n)$, and $\{\tilde{T}_n\}, \{\tilde{g}_n\}, \{\tilde{h}_n\}$ converge strongly to some f, g, h, respectively, in $L^1(Q), (L^p(Q))^N, X$, with
\[
\|\tilde{T}_n\|_{1,Q} + \|\tilde{g}_n\|_{p',Q} + \|\tilde{h}_n\|_X \leq (1 + \varepsilon) \mu(Q), \quad \|\tilde{g}_n\|_{p',Q} + \|\tilde{h}_n\|_X \leq \varepsilon.
\]
Therefore, $\mu = (f, g, h)$ and (3.1) holds.

(ii) We take a sequence $\{m_n\}$ in \mathbb{N} such that $f_n = \varphi_{m_n} * \tilde{T}_n, g_n = \varphi_{m_n} * \tilde{g}_n, h_n = \varphi_{m_n} * \tilde{h}_n \in C_c^\infty(Q)$ and
\[
\|f_n - \tilde{T}_n\|_{1,Q} + \|g_n - \tilde{g}_n\|_{p',Q} + \|h_n - \tilde{h}_n\|_X \leq \frac{\varepsilon}{n+1} \min\{\mu(Q), 1\}.
\]
Let $\mu_n = \varphi_{m_n} * (\theta_n \mu) = (f_n, g_n, h_n)$. Therefore, $(f_n), \{g_n\}, \{h_n\}$ strongly converge to f, g, h in $L^1(Q), (L^p(Q))^N$ and X respectively. And (3.2) holds. Furthermore, $\{\mu_n\}$ converges weak-* to μ, and $\mu_n(Q) = \int_Q \theta_n d\mu$ converges to $\mu(Q)$, thus $\{\mu_n\}$ converges in the narrow topology. ■

As a consequence, we get an approximation property for any measure $\mu \in \mathcal{M}_b^+(Q)$:

Proposition 3.2 Let $\mu \in \mathcal{M}_b^+(Q)$ and $\varepsilon > 0$. Let $\{\mu_n\}$ be a nondecreasing sequence in $\mathcal{M}_b^+(Q)$ converging to μ in $\mathcal{M}_b(Q)$. Then, there exist $f_n, f \in L^1(Q), g_n, g \in (L^p(Q))^N$ and $h_n, h \in X, \mu_n,s, \mu_s \in \mathcal{M}_b^+(Q)$ such that
\[
\mu = f - \text{div} g + h_t + \mu_s, \quad \mu_n = f_n - \text{div} g_n + (h_n)_t + \mu_n,s,
\]
and $(f_n), \{g_n\}, \{h_n\}$ strongly converge to f, g, h in $L^1(Q), (L^p(Q))^N$ and X respectively, and $\{\mu_n,s\}$ converges to μ_s (strongly) in $\mathcal{M}_b(Q)$ and
\[
\|f_n\|_{1,Q} + \|g_n\|_{p',Q} + \|h_n\|_X + \mu_n,s(\Omega) \leq (1 + \varepsilon) \mu(Q), \quad \text{and} \quad \|g_n\|_{p',Q} + \|h_n\|_X \leq \varepsilon.
\]
(3.4)
Proposition 3.3

Let \(f \in L^1((0, T)) \) with \(\int_0^T F(t) dt \neq 0 \), and \(\mu \in M_b(\Omega) \),
then \(\omega \in M_{0,e}(\Omega) \) if and only if \(\omega \otimes F \in M_0(\Omega) \).

Proof. Assume that \(\omega \otimes F \in M_0(\Omega) \). Then, there exist \(f \in L^1(\Omega) \), \(g \in \left(L^p'(\Omega) \right)^N \) and \(h \in X \), such that

\[
\int_{\Omega} \varphi(x, t) F(t) d\omega(x) dt = \int_{\Omega} \varphi(x, t) f(x, t) dx dt + \int_{\Omega} g(x, t) \nabla \varphi(x, t) dx dt - \int_{\Omega} h(x, t) \varphi_t(x, t) dx dt,
\]
for all \(\varphi \in C_c^\infty(\Omega \times [0, T]) \), see [50, Lemma 2.24 and Theorem 2.27]. By choosing \(\varphi(x, t) = \varphi(x) \in C_c^\infty(\Omega) \) and using Fubini’s Theorem, (3.5) is rewritten as

\[
\int_{\Omega} \varphi(x) d\omega(x) = \int_{\Omega} \varphi(x) \tilde{f}(x) dx + \int_{\Omega} \tilde{g}(x) \nabla \varphi(x) dx,
\]
where \(\tilde{f}(x) = \left(\int_0^T F(t) dt \right)^{-1} \int_0^T f(x, t) dt \in L^1(\Omega) \) and \(\tilde{g}(x) = \left(\int_0^T F(t) dt \right)^{-1} \int_0^T g(x, t) dt \in \left(L^p'(\Omega) \right)^N \); hence \(\omega \in M_{0,e}(\Omega) \).
Conversely, assume that \(\omega = \tilde{f} - \text{div} \, \tilde{g} \in M_{0,e}(\Omega) \), with \(\tilde{f} \in L^1(\Omega) \) and \(\tilde{g} \in \left(L^p(\Omega) \right)^N \). So \(\omega \otimes T_n(F) = f_n - \text{div} \, g_n \), with \(f_n = \tilde{f} T_n(F) \in L^1(Q) \) and \(g_n = \tilde{g} T_n(F) \in \left(L^p(\Omega) \right)^N \). Then \(\omega \otimes T_n(F) \) admits the decomposition \((f_n, g_n, h) \), with \(h = 0 \in L^\infty(Q) \), thus \(\omega \otimes T_n(F) \in M_0(Q) \). And \(\{ \omega \otimes T_n(F) \} \) converges to \(\omega \otimes F \) strongly in \(M_b(Q) \), since \(\| \omega \otimes (F - T_n(F)) \|_{M_b(Q)} \leq \| \omega \|_{M_{0b}(\Omega)} \| F - T_n(F) \|_{L^1((0,T))} \). Then \(\omega \otimes F \in M_0(Q) \), since \(M_0(Q) \cap M_b(Q) \) is strongly closed in \(M_b(Q) \).

4 Renormalized solutions of problem (1.1)

4.1 Notations and Definition

For any function \(f \in L^1(Q) \), we write \(\int_Q f \) instead of \(\int_Q f \, dxdt \), and for any measurable set \(E \subset Q \), \(\int_E f \) instead of \(\int_E f \, dxdt \).

We set \(T_k(r) = \max \{ \min \{ r, k \}, -k \} \), for any \(k > 0 \) and \(r \in \mathbb{R} \). We recall that if \(u \) is a measurable function defined and finite a.e. in \(Q \), such that \(T_k(u) \in X \) for any \(k > 0 \), there exists a measurable function \(w \) from \(Q \) into \(\mathbb{R}^N \) such that \(\nabla T_k(u) = \chi_{|u|\leq k} \, w \), a.e. in \(Q \), and for any \(k > 0 \). We define the gradient \(\nabla u \) of \(u \) by \(w = \nabla u \).

Let \(\mu = \mu_0 + \mu_s \in M_b(Q) \), and \((f, g, h)\) be a decomposition of \(\mu_0 \) given by (1.11), and \(\tilde{\mu}_0 = \mu_0 - h_t = f - \text{div} \, g \). In the general case \(\tilde{\mu}_0 \notin M(Q) \), but we write, for convenience,

\[
\int_Q \omega d\tilde{\mu}_0 := \int_Q (fw + g, \nabla w), \quad \forall w \in X \cap L^\infty(Q).
\]

Definition 4.1 Let \(u_0 \in L^1(\Omega) \), \(\mu = \mu_0 + \mu_s \in M_b(Q) \). A measurable function \(u \) is a renormalized solution, called R-solution of (1.1) if there exists a decomposition \((f, g, h)\) of \(\mu_0 \) such that

\[
v = u - h \in L^\sigma(0, T; W_{0,t}^{1,\sigma}(\Omega) \cap L^\infty(0, T; L^1(\Omega))), \quad \forall \sigma \in [1, m_c); \quad T_k(v) \in X, \quad \forall k > 0, \quad (4.1)
\]

and:

(i) for any \(S \in W^{2,\infty}(\mathbb{R}) \) such that \(S' \) has compact support on \(\mathbb{R} \), and \(S(0) = 0 \),

\[
- \int_\Omega S(u_0) \varphi(0) \, dx - \int_Q \varphi_t S(v) + \int_Q S'(v) A(x, t, \nabla u) \cdot \nabla \varphi + \int_Q S''(v) \varphi A(x, t, \nabla u) \cdot \nabla \varphi = \int_Q S'(v) \varphi \, d\tilde{\mu}_0,
\]

for any \(\varphi \in X \cap L^\infty(Q) \) such that \(\varphi_t \in X' \cap L^1(Q) \) and \(\varphi(T, \cdot) = 0 \);

(ii) for any \(\phi \in C(\overline{Q}) \),

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \phi A(x, t, \nabla u) \cdot \nabla v = \int_Q \phi \, d\mu_s^+.
\]
\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \phi A(x, t, \nabla u). \nabla v = \int_Q \phi \mu_+^\infty.
\] (4.4)

Remark 4.2 As a consequence, \(S(v) \in C([0, T]; L^1(\Omega)) \) and \(S(v)(0, \cdot) = S(u_0) \) in \(\Omega \); and \(u \) satisfies the equation
\[
(S(v))_t - \text{div}(S'(v)A(x, t, \nabla u)) + S''(v)A(x, t, \nabla u). \nabla v = fS'(v) - \text{div}(gS'(v)) + S''(v)g. \nabla v,
\] (4.5)
in the sense of distributions in \(Q \), see [49, Remark 3]. Moreover
\[
\|S(v)_t\|_{X' + L^1(\Omega)} \leq \left\|\text{div}(S'(v)A(x, t, \nabla u))\right\|_{X'} + \left\|S''(v)A(x, t, \nabla u). \nabla v\right\|_{1, Q} + \left\|S'(v)f\right\|_{1, Q} + \left\|gS''(v)\nabla v\right\|_{1, Q} + \left\|\text{div}(S'(v)g)\right\|_{X'}.
\]

Thus, if \([-M, M] \supset \text{supp} S'\),
\[
\left\|S''(v)A(x, t, \nabla u). \nabla v\right\|_{1, Q} \leq \left\|S\right\|_{W^{2, \infty}(\mathbb{R})} \left(\|A(x, t, \nabla u)\chi_{|v| \leq M}\|_{P, Q}^p + \|\nabla T_M(v)\|_{p, Q}^p\right)
\leq C \left\|S\right\|_{W^{2, \infty}(\mathbb{R})} \left(\|\nabla u\|_1^p \chi_{|v| \leq M}\|_{1, Q} + \|a\|_{P, Q}^p + \|\nabla T_M(v)\|_{p, Q}^p\right)
\]

thus
\[
\|S(v)_t\|_{X' + L^1(\Omega)} \leq C \left\|S\right\|_{W^{2, \infty}(\mathbb{R})} \left(\|\nabla u\|_1^p \chi_{|v| \leq M}\|_{1, Q} + \|a\|_{P, Q}^p + \|f\|_{1, Q} + \|g\|_{P, Q} \|\nabla u\|_1^{1/p} \chi_{|v| \leq M}\|_{1, Q}^{1/p} + \|g\|_{P, Q}\right)
\] (4.6)

We also deduce that, for any \(\varphi \in X \cap L^\infty(\Omega) \), such that \(\varphi \in X' + L^1(\Omega) \),
\[
\int_\Omega S(v(T)) \varphi(T) dx - \int_\Omega S(u_0) \varphi(0) dx - \int_Q \varphi \cdot S(v) + \int_Q S'(v)A(x, t, \nabla u). \nabla \varphi
+ \int_Q S''(v)A(x, t, \nabla u). \nabla \varphi = \int_Q S'(v) \varphi d\mu_0.
\] (4.7)

Remark 4.3 Let \(u, v \) satisfying (4.1). It is easy to see that the condition (4.3) (resp. (4.4)) is equivalent to
\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \phi A(x, t, \nabla u). \nabla u = \int_Q \phi d\mu_+^\infty
\] (4.8)
resp.
\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \phi A(x, t, \nabla u). \nabla u = \int_Q \phi d\mu_-^\infty.
\] (4.9)

In particular, for any \(\varphi \in L^p(\Omega) \) there holds
\[
\lim_{m \to \infty} \frac{1}{m} \int_{m \leq |v| < 2m} |\nabla u| \varphi = 0, \quad \lim_{m \to \infty} \frac{1}{m} \int_{m \leq |v| < 2m} |\nabla v| \varphi = 0.
\] (4.10)
Remark 4.4 (i) Any function $U \in X$ such that $U_t \in X' + L^1(Q)$ admits a unique $c^0\nu$-quasi continuous representative, defined $c^0\nu$-quasi a.e. in Q, still denoted U. Furthermore, if $U \in L^\infty(Q)$, then for any $\mu_0 \in \mathcal{M}_0(Q)$, there holds $U \in L^\infty(Q, d\mu_0)$, see [49, Theorem 3 and Corollary 1].

(ii) Let u be any R-solution of problem (1.1). Then, $v = u - h$ admits a $c^0\nu$-quasi continuous functions representative which is finite $c^0\nu$-quasi a.e. in Q, and u satisfies definition 4.1 for every decomposition $(\tilde{f}, \tilde{g}, \tilde{h})$ such that $h - \tilde{h} \in L^\infty(Q)$, see [49, Proposition 3 and Theorem 4].

4.2 Steklov and Landes approximations

A main difficulty for proving Theorem 2.1 is the choice of admissible test functions (S, φ) in (4.2), valid for any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted to parabolic equations:

Definition 4.5 Let $\varepsilon \in (0, T)$ and $z \in L^1_{\text{loc}}(Q)$. For any $l \in (0, \varepsilon)$ we define the Steklov time-averages $[z]_l, [z]_{-l}$ of z by

$$[z]_l(x, t) = \frac{1}{l} \int_{t}^{t+l} z(x, s) ds \quad \text{for a.e. } (x, t) \in \Omega \times (0, T - \varepsilon),$$

$$[z]_{-l}(x, t) = \frac{1}{l} \int_{t-l}^{t} z(x, s) ds \quad \text{for a.e. } (x, t) \in \Omega \times (\varepsilon, T).$$

The idea to use this approximation for R-solutions can be found in [22]. Recall some properties, given in [50]. Let $\varepsilon \in (0, T)$, and $\varphi_1 \in C^\infty_c(\overline{\Omega} \times [0, T])$, $\varphi_2 \in C^\infty_c(\overline{\Omega} \times (0, T])$ with $\text{Supp} \varphi_1 \subset \overline{\Omega} \times [0, T - \varepsilon]$, $\text{Supp} \varphi_2 \subset \overline{\Omega} \times [\varepsilon, T]$. There holds

(i) If $z \in X$, then $\varphi_1[z]_l$ and $\varphi_2[z]_{-l} \in W$.

(ii) If $z \in X$ and $z_t \in X' + L^1(Q)$, then, as $l \to 0$, $(\varphi_1[z]_l)$ and $(\varphi_2[z]_{-l})$ converge respectively to $\varphi_1 z$ and $\varphi_2 z$ in X, and a.e. in Q; and $(\varphi_1[z]_l)_t, (\varphi_2[z]_{-l})_t$ converge to $(\varphi_1 z)_t, (\varphi_2 z)_t$ in $X' + L^1(Q)$.

(iii) If moreover $z \in L^\infty(Q)$, then from any sequence $\{l_n\} \to 0$, there exists a subsequence $\{l_{n'}\}$ such that $\{[z]_{l_{n'}}\}, \{[z]_{-l_{n'}}\}$ converge to z, $c^0\nu$-quasi everywhere in Q.

Next we recall the approximation introduced in [42], used in [30], [26], [21]:

Definition 4.6 Let $\mu \in \mathcal{M}_0(Q)$ and $u_0 \in L^1(\Omega)$. Let u be a R-solution of (1.1), and $v = u - h$ given at (4.1), and $k > 0$. For any $\nu \in \mathbb{N}$, the Landes-time approximation $(T_k(v))_\nu$ of the truncate function $T_k(v)$ is defined in the following way:
Let \(\{ z_{\nu} \} \) be a sequence of functions in \(W^{1,p}_{0}(\Omega) \cap L^\infty(\Omega) \), such that \(\| z_{\nu} \|_{\infty,\Omega} \leq k \), \(\{ z_{\nu} \} \) converges to \(T_k(u_0) \) a.e. in \(\Omega \), and \(\nu^{-1}\| z_{\nu} \|_{W^{1,p}_{0}(\Omega)} \) converges to 0. Then, \((T_k(v))_\nu \) is the unique solution of the problem

\[
((T_k(v))_\nu)_t = \nu (T_k(v) - (T_k(v))_\nu) \quad \text{in the sense of distributions,} \quad (T_k(v))_\nu(0) = z_{\nu}, \quad \text{in } \Omega.
\]

Therefore, \((T_k(v))_\nu \in X \cap L^\infty(Q) \) and \((T_k(v))_\nu)_t \in X \), see [42]. Furthermore, up to subsequences, \(\{ (T_k(v))_\nu \} \) converges to \(T_k(v) \) strongly in \(X \) and a.e. in \(Q \), and \(\| (T_k(v))_\nu \|_{L^\infty(Q)} \leq k \).

4.3 First properties

In the sequel we use the following notations: for any function \(J \in W^{1,\infty}(\mathbb{R}) \), nondecreasing with \(J(0) = 0 \), we set

\[
\overline{J}(r) = \int_0^r J(\tau)d\tau, \quad \underline{J}(r) = \int_0^r J'(\tau)\tau d\tau.
\]

(4.11)

It is easy to verify that \(\overline{J}(r) \geq 0 \),

\[
\overline{J}(r) + \underline{J}(r) = J(r)r, \quad \text{and} \quad \overline{J}(r) - \underline{J}(s) \geq s(J(r) - J(s)) \quad \forall r, s \in \mathbb{R}.
\]

(4.12)

In particular we define, for any \(k > 0 \), and any \(r \in \mathbb{R} \),

\[
\overline{T_k}(r) = \int_0^r T_k(\tau)d\tau, \quad \underline{T_k}(r) = \int_0^r T'_k(\tau)\tau d\tau.
\]

(4.13)

and we use several times a truncature used in [32]:

\[
H_m(r) = \chi_{[-m,m]}(r) + \frac{2m - |s|}{m} \chi_{m < |s| \leq 2m}(r), \quad \overline{H_m}(r) = \int_0^r H_m(\tau)d\tau.
\]

(4.14)

The next Lemma allows to extend the range of the test functions in (4.2). Its proof, given in the Appendix, is obtained by Steklov approximation of the solutions.

Lemma 4.7 Let \(u \) be a R-solution of problem (1.1). Let \(J \in W^{1,\infty}(\mathbb{R}) \) be nondecreasing with \(J(0) = 0 \), and \(\overline{J} \) defined by (4.11). Then,

\[
\int_Q S'(v)A(x,t,\nabla u)\cdot \nabla (\xi J(S(v))) + \int_Q S''(v)A(x,t,\nabla u)\cdot \nabla v \xi J(S(v))
\]

\[
- \int_\Omega \xi(0)J(S(u_0))S(u_0) - \int_\Omega \xi_t \overline{J}(S(v))
\]

\[
\leq \int_Q S'(v)\xi J(S(v))d\mu_0,
\]

(4.15)

for any \(S \in W^{2,\infty}(\mathbb{R}) \) such that \(S' \) has compact support on \(\mathbb{R} \) and \(S(0) = 0 \), and for any \(\xi \in C^1(Q) \cap W^{1,\infty}(Q) \), \(\xi \geq 0 \).
Next we give estimates of the gradient, following the first estimates of [26], see also [33], [49, Proposition 2], [43].

Proposition 4.8 If \(u \) is a R-solution of problem (1.1), then there exists \(c = c(p) \) such that, for any \(k \geq 1 \) and \(\ell \geq 0 \),

\[
\int_{\ell \leq |v| \leq \ell + k} |\nabla u|^p + \int_{\ell \leq |v| \leq \ell + k} |\nabla v|^p \leq ckM \tag{4.16}
\]

and

\[
\|v\|_{L^\infty((0,T);L^1(\Omega))} \leq c(M + |\Omega|), \tag{4.17}
\]

where

\[
M = \|u_0\|_{1,\Omega} + |\mu_s| (Q) + \|f\|_{1,Q} + \|g\|_{\mu',Q}^P + \|h\|_X + \|a\|_{\mu',Q}^P.
\]

As a consequence, for any \(k \geq 1 \),

\[
\text{meas } \{ |v| > k \} \leq C_1M_1k^{-p_c}, \quad \text{meas } \{ |\nabla v| > k \} \leq C_2M_2k^{-m_c}, \tag{4.18}
\]

\[
\text{meas } \{ |u| > k \} \leq C_3M_3k^{-p_c}, \quad \text{meas } \{ |\nabla u| > k \} \leq C_4M_2k^{-m_c}, \tag{4.19}
\]

where \(C_i = C_i(N,p,c_1,c_2), \) \(i = 1-4 \), and \(M_1 = (M+|\Omega|)^{\frac{p}{p-1}}M \) and \(M_2 = M_1 + M \).

Proof. Set for any \(r \in \mathbb{R} \), and \(m, k, \ell > 0 \),

\[
T_{k,\ell}(r) = \max\{\min\{r - \ell, k\}, 0\} + \min\{\max\{r + \ell, -k\}, 0\}.
\]

For \(m > k + \ell \), we can choose \((J, S, \xi) = (T_{k,\ell}(\overline{H}_m), \xi)\) as test functions in (4.15), where \(\overline{H}_m \) is defined at (4.14) and \(\xi \in C^1([0, T]) \) with values in \([0, 1]\), independent on \(x \). Since \(T_{k,\ell}(\overline{H}_m(r)) = T_{k,\ell}(r) \) for all \(r \in \mathbb{R} \), we obtain

\[
- \int_\Omega \xi(0) T_{k,\ell}(u_0) \overline{H}_m(u_0) - \int_Q \xi T_{k,\ell}(\overline{H}_m(v)) + \int_{\{\ell \leq |v| < \ell + k\}} \xi A(x, t, \nabla u) \cdot \nabla v - \frac{k}{m} \int_{\{\ell \leq |v| < 2m\}} \xi A(x, t, \nabla u) \cdot \nabla v \leq \int_Q \overline{H}_m(v) \xi T_{k,\ell}(v) \, d\mu_0.
\]

And

\[
\int_Q \overline{H}_m(v) \xi T_{k,\ell}(v) \, d\mu_0 = \int_Q \overline{H}_m(v) \xi T_{k,\ell}(v) f + \int_{\{\ell \leq |v| < \ell + k\}} \xi \nabla v \cdot g - \frac{k}{m} \int_{\{\ell \leq |v| < 2m\}} \xi \nabla v \cdot g.
\]

Let \(m \to \infty \); then, for any \(k \geq 1 \), since \(v \in L^1(Q) \) and from (4.3), (4.4), and (4.10), we find

\[
- \int_Q \xi T_{k,\ell}(v) + \int_{\{\ell \leq |v| < \ell + k\}} \xi A(x, t, \nabla u) \cdot \nabla v \leq \int_{\{\ell \leq |v| < \ell + k\}} \xi \nabla v \cdot g + k(\|u_0\|_{1,\Omega} + |\mu_s| (Q) + \|f\|_{1,Q}). \tag{4.20}
\]
Next, we take \(\xi \equiv 1 \). We verify that there exists \(c = c(p) \) such that

\[
A(x, t, \nabla u) \cdot \nabla v - \nabla v \cdot g \geq C_1 \left(|\nabla u|^p + |\nabla v|^p \right) - c(|g|^p + |\nabla h|^p + |a|^p)
\]

where \(c_1 \) is the constant in (1.2). Hence (4.16) follows. Thus, from (4.20) and the Hölder inequality, we get, with another constant \(c \), for any \(\xi \in C^1([0, T]) \) with values in \([0, 1]\),

\[
- \int_Q \xi t \frac{\partial v}{\partial t} \leq c k M
\]

Thus \(\int_\Omega T_k(v)(t) \leq c k M \), for a.e. \(t \in (0, T) \). We deduce (4.17) by taking \(k = 1, \ell = 0 \), since \(T_{1,0}(r) = T_1(r) \geq |r| - 1 \), for any \(r \in \mathbb{R} \).

Next, from the Gagliardo-Nirenberg embedding Theorem, we have

\[
\int_Q \left| T_k(v) \right|^\frac{p(N+1)}{N} \leq C_1 \| v \|_{L^\infty((0,T);L^1(\Omega))}^\frac{N}{p} \int_Q |\nabla T_k(v)|^p,
\]

where \(C_1 = C_1(N, p) \). Then, from (4.16) and (4.17), we get, for any \(k \geq 1 \),

\[
\text{meas} \{ |v| > k \} \leq k^{-\frac{p(N+1)}{N}} \int_Q |T_k(v)|^\frac{p(N+1)}{N} \leq C \| v \|_{L^\infty((0,T);L^1(\Omega))}^\frac{N}{p} k^{-\frac{p(N+1)}{N}} \int_Q |\nabla T_k(v)|^p \leq C_2 M_1 k^{-p c},
\]

with \(C_2 = C_2(N, p, c_1, c_2) \). We obtain

\[
\text{meas} \{ |\nabla v| > k \} \leq \frac{1}{k^p} \int_0^{k^p} \text{meas} \left(\{|\nabla v|^p > s\} \right) ds
\]

\[
\leq \text{meas} \left\{ |v| > k^\frac{N}{N+p} \right\} + \frac{1}{k^p} \int_0^{k^p} \text{meas} \left(\{|\nabla v|^p > s, |v| \leq k^\frac{N}{N+p}\} \right) ds
\]

\[
\leq C_3 M_1 k^{-m c} + \frac{1}{k^p} \int_{|v| \leq k^\frac{N}{N+p}} |\nabla v|^p \leq C_2 M_2 k^{-m c},
\]

with \(C_3 = C_3(N, p, c_1, c_2) \). Furthermore, for any \(k \geq 1 \),

\[
\text{meas} \{ |h| > k \} + \text{meas} \{ |\nabla h| > k \} \leq C_4 k^{-p} \| h \|_{L^p}^p,
\]

where \(C_4 = C_4(N, p, c_1, c_2) \). Therefore, we easily get (4.19). \(\square \)

Remark 4.9 If \(\mu \in L^1(Q) \) and \(a = 0 \) in (1.2), then (4.16) holds for all \(k > 0 \) and the term \(|\Omega|\) in inequality (4.17) can be removed where \(M = \| u_0 \|_{L^1(\Omega)} + |\mu|(Q) \). Furthermore, (4.19) is stated as follows:

\[
\text{meas} \{ |u| > k \} \leq C_3 M^{-\frac{p+N}{N}} k^{-p c}, \quad \text{meas} \{ |\nabla u| > k \} \leq C_4 M^{-\frac{N+2}{N+4}} k^{-m c}, \forall k > 0.
\]
To see last inequality, we do in the following way:

\[
\text{meas}\{|\nabla v| > k\} \leq \frac{1}{k^p} \int_0^{k^p} \text{meas}\{|\nabla v|^p > s\}\,ds
\]

\[
\leq \text{meas}\{|v| > M^{\frac{1}{N+1}} k^{\frac{N}{N+1}}\} + \frac{1}{k^p} \int_0^{k^p} \text{meas}\{|\nabla v|^p > s, |v| \leq M^{\frac{1}{N+1}} k^{\frac{N}{N+1}}\}\,ds
\]

\[
\leq C_4 M^{\frac{N+1}{N}} k^{-m_c}.
\]

Proposition 4.10 Let \(\{\mu_n\} \subset \mathcal{M}_b(Q)\), and \(\{u_{0,n}\} \subset L^1(\Omega)\), with

\[
\sup_n |\mu_n| (Q) < \infty, \text{ and } \sup_n \|u_{0,n}\|_{1,\Omega} < \infty.
\]

Let \(u_n\) be a \(R\)-solution of (1.1) with data \(\mu_n = \mu_{n,0} + \mu_{n,s}\) and \(u_{0,n}\), relative to a decomposition \((f_n, g_n, h_n)\) of \(\mu_{n,0}\), and \(v_n = u_n - h_n\). Assume that \(\{f_n\}\) is bounded in \(L^1(\Omega)\), \(\{g_n\}\) bounded in \((L^p(\Omega))^N\) and \(\{h_n\}\) bounded in \(X\).

Then, up to a subsequence, \(\{v_n\}\) converges a.e. to a function \(v\), such that \(T_k(v) \in X\) and \(v \in L^2((0,T);W^{1,p}(\Omega)) \cap L^\infty((0,T);L^1(\Omega))\) for any \(\sigma \in [1, m_c]\). And

(i) \(\{v_n\}\) converges to \(v\) strongly in \(L^\sigma(\Omega)\) for any \(\sigma \in [1, m_c]\), and \(\sup_n \|v_n\|_{L^\infty((0,T);L^1(\Omega))} < \infty\),

(ii) \(\sup_{k \geq 0} \sup_n \frac{1}{k+1} \int_Q |\nabla T_k(v_n)|^p < \infty\),

(iii) \(\{T_k(v_n)\}\) converges to \(T_k(v)\) weakly in \(X\), for any \(k > 0\),

(iv) \(\{A(x, t, \nabla (T_k(v_n) + h_n))\}\) converges to some \(F_k\) weakly in \((L^p(\Omega))^N\).

Proof. Take \(S \in W_{2,\infty}(\mathbb{R})\) such that \(S'\) has compact support on \(\mathbb{R}\) and \(S(0) = 0\). We combine (4.6) with (4.16), and deduce that \(\{S(v_n)\}_k\) is bounded in \(X' + L^1(\Omega)\) and \(\{S(v_n)\}_k\) bounded in \(X\). Hence, \(\{S(v_n)\}_k\) is relatively compact in \(L^1(\Omega)\). On the other hand, we choose \(S = S_k\) such that \(S_k(z) = z\), if \(|z| < k\) and \(S(z) = 2k - z\) sign \(z\), if \(|z| > 2k\). Thanks to (4.17), we obtain

\[
\text{meas}\{|v_n - v_m| > \sigma\} \leq \text{meas}\{|v_n| > k\} + \text{meas}\{|v_m| > k\} + \text{meas}\{|S_k(v_n) - S_k(v_m)| > \sigma\}
\]

\[
\leq \frac{1}{k} (|v_n|_{1,Q} + |v_m|_{1,Q}) + \text{meas}\{|S_k(v_n) - S_k(v_m)| > \sigma\}
\]

\[
\leq C + \text{meas}\{|S_k(v_n) - S_k(v_m)| > \sigma\}.
\]

(4.22)

Thus, up to a subsequence \(\{u_n\}\) is a Cauchy sequence in measure, and converges a.e. in \(Q\) to a function \(u\). Thus, \(\{T_k(v_n)\}\) converges to \(T_k(v)\) weakly in \(X\), since \(\sup_n \|T_k(v_n)\|_X < \infty\) for any \(k > 0\). And \(\{\nabla (T_k(v_n) + h_n)\}\) converges to some \(F_k\) weakly in \((L^p(\Omega))^N\). Furthermore, from (4.18), \(\{v_n\}\) converges to \(v\) strongly in \(L^\sigma(\Omega)\), for any \(\sigma < p_c\).
5 The convergence theorem

We first recall some properties of the measures, see [49, Lemma 5], [32].

Proposition 5.1 Let \(\mu_s = \mu^+_s - \mu^-_s \in \mathcal{M}_b(Q) \), where \(\mu^+_s \) and \(\mu^-_s \) are concentrated, respectively, on two disjoint sets \(E^+ \) and \(E^- \) of zero \(\mathcal{C}_p^Q \)-capacity. Then, for any \(\delta > 0 \), there exist two compact sets \(K^+_\delta \subseteq E^+ \) and \(K^-\delta \subseteq E^- \) such that

\[
\mu^+_s(E^+ \setminus K^+_\delta) \leq \delta, \quad \mu^-_s(E^- \setminus K^-\delta) \leq \delta,
\]

and there exist \(\psi_\delta^+, \psi_\delta^- \in C_c^1(Q) \) with values in \([0,1]\), such that \(\psi_\delta^+, \psi_\delta^- = 1 \) respectively on \(K^+_\delta, K^-\delta \), and \(\text{supp}(\psi_\delta^+) \cap \text{supp}(\psi_\delta^-) = \emptyset \), and

\[
\|\psi_\delta^+\|_X + \|\psi_\delta^-\|_{X' + L^1(Q)} \leq \delta, \quad \|\psi_\delta^-\|_X + \|\psi_\delta^+\|_{X + L^1(Q)} \leq \delta.
\]

There exist decompositions \((\psi_\delta^+)_t = (\psi_{\delta_1}^+)_t + (\psi_{\delta_2}^+)_t \) and \((\psi_\delta^-)_t = (\psi_{\delta_1}^-)_t + (\psi_{\delta_2}^-)_t \) in \(X' + L^1(Q) \), such that

\[
\left\| (\psi_{\delta_1}^+)_t \right\|_{X'} \leq \frac{\delta}{3}, \quad \left\| (\psi_{\delta_2}^+)_t \right\|_{1,Q} \leq \frac{\delta}{3}, \quad \left\| (\psi_{\delta_1}^-)_t \right\|_{X'} \leq \frac{\delta}{3}, \quad \left\| (\psi_{\delta_2}^-)_t \right\|_{1,Q} \leq \frac{\delta}{3}. \tag{5.1}
\]

Both \(\{\psi_\delta^+\} \) and \(\{\psi_\delta^-\} \) converge to 0, *-weakly in \(L^\infty(Q) \), and strongly in \(L^1(Q) \) and up to subsequences, a.e. in \(Q \), as \(\delta \) tends to 0.

Moreover if \(\rho_n \) and \(\eta_n \) are as in Theorem 2.1, we have, for any \(\delta, \delta_1, \delta_2 > 0 \),

\[
\int_Q \psi^-_\delta \, d\rho_n + \int_Q \psi^+_\delta \, d\eta_n = \omega(n, \delta), \quad \int_Q \psi^-_\delta \, d\mu^+_s \leq \delta, \quad \int_Q \psi^+_\delta \, d\mu^-_s \leq \delta, \tag{5.2}
\]

\[
\int_Q (1 - \psi_{\delta_1}^+ \psi_{\delta_2}^+) \, d\rho_n = \omega(n, \delta_1, \delta_2), \quad \int_Q (1 - \psi_{\delta_1}^+ \psi_{\delta_2}^+) \, d\mu^+_s \leq \delta_1 + \delta_2, \tag{5.3}
\]

\[
\int_Q (1 - \psi_{\delta_1}^- \psi_{\delta_2}^-) \, d\eta_n = \omega(n, \delta_1, \delta_2), \quad \int_Q (1 - \psi_{\delta_1}^- \psi_{\delta_2}^-) \, d\mu^-_s \leq \delta_1 + \delta_2. \tag{5.4}
\]

Hereafter, if \(n, \varepsilon, ..., \nu \) are real numbers, and a function \(\phi \) depends on \(n, \varepsilon, ..., \nu \) and eventual other parameters \(\alpha, \beta, ..., \gamma \), and \(n \to n_0, \varepsilon \to \varepsilon_0, ..., \nu \to \nu_0 \), we write \(\phi = \omega(n, \varepsilon, ..., \nu) \), then this means \(\lim_{n \to n_0} \lim_{\varepsilon \to \varepsilon_0} \lim_{\nu \to \nu_0} \lim_{n \to n_0} |\phi| = 0 \), when the parameters \(\alpha, \beta, ..., \gamma \) are fixed. In the same way, \(\phi \leq \omega(n, \varepsilon, \delta, ..., \nu) \) means \(\lim_{n \to n_0} \lim_{\varepsilon \to \varepsilon_0} \lim_{\delta \to \delta_0} \lim_{n \to n_0} \phi \leq 0 \), and \(\phi \geq \omega(n, \varepsilon, ..., \nu) \) means \(-\phi \leq \omega(n, \varepsilon, ..., \nu) \).

Remark 5.2 In the sequel we use a convergence property, consequence of the Dunford-Pettis theorem, still used in [32]: If \(\{a_n\} \) is a sequence in \(L^1(Q) \) converging to a weakly in \(L^1(Q) \) and \(\{b_n\} \) a bounded sequence in \(L^\infty(Q) \) converging to \(b \), a.e. in \(Q \), then \(\lim_{n \to \infty} \int_Q a_n b_n = \int_Q ab \).
Next we prove Theorem 2.1.

Scheme of the proof. Let \(\{\mu_n\}, \{u_{0,n}\} \) and \(\{u_n\} \) satisfying the assumptions of Theorem 2.1. Then we can apply Proposition 4.10. Setting \(v_n = u_n - h_n \), up to subsequences, \(\{u_n\} \) converges \(a.e. \) in \(Q \) to some function \(u \), and \(\{v_n\} \) converges \(a.e. \) to \(v = u - h \), such that \(T_k(v) \in X \) and \(v \in L^\sigma((0,T); W_0^{1,\sigma}(\Omega)) \cap L^\infty((0,T); L^1(\Omega)) \) for every \(\sigma \in [1,m_c) \). And \(\{v_n\} \) satisfies the conclusions (i) to (iv) of Proposition 4.10. We have

\[
\begin{aligned}
\mu_n &= \left(f_n - \text{div} g_n + (h_n)_t \right) + \left(\rho_n^1 - \text{div} \rho_n^2 \right) - \left(\eta_n^1 - \text{div} \eta_n^2 \right) + \rho_{n,s} - \eta_{n,s} \\
&= \mu_{n,0} + (\rho_{n,s} - \eta_{n,s})^+ - (\rho_{n,s} - \eta_{n,s})^-,
\end{aligned}
\]

where

\[
\mu_{n,0} = \lambda_{n,0} + \rho_{n,0} - \eta_{n,0}, \quad \text{with} \quad \lambda_{n,0} = f_n - \text{div} g_n + (h_n)_t, \quad \rho_{n,0} = \rho_n^1 - \text{div} \rho_n^2, \quad \eta_{n,0} = \eta_n^1 - \text{div} \eta_n^2.
\]

Hence

\[
\rho_{n,0}, \eta_{n,0} \in M^+_b(Q) \cap M_0(Q), \quad \text{and} \quad \rho_n \geq \rho_{n,0}, \quad \eta_n \geq \eta_{n,0}.
\]

Let \(E^+, E^- \) be the sets where, respectively, \(\mu_+^\sigma \) and \(\mu_-^\sigma \) are concentrated. For any \(\delta_1, \delta_2 > 0 \), let \(\psi_{\delta_1}^+, \psi_{\delta_2}^+ \) and \(\psi_{\delta_1}^-, \psi_{\delta_2}^- \) as in Proposition 5.1 and set

\[
\Phi_{\delta_1, \delta_2} = \psi_{\delta_1}^+ \psi_{\delta_2}^+ + \psi_{\delta_1}^- \psi_{\delta_2}^-.
\]

Suppose that we can prove the two estimates, near \(E \)

\[
I_1 := \int_{\{|v_n| \leq k\}} \Phi_{\delta_1, \delta_2} A(x, t, \nabla u_n) \cdot \nabla (v_n - (T_k(v))_\nu) \leq \omega(n, \nu, \delta_1, \delta_2),
\]

and far from \(E \),

\[
I_2 := \int_{\{|v_n| \leq k\}} (1 - \Phi_{\delta_1, \delta_2}) A(x, t, \nabla u_n) \cdot \nabla (v_n - (T_k(v))_\nu) \leq \omega(n, \nu, \delta_1, \delta_2).
\]

Then it follows that

\[
\overline{\lim}_{n, \nu} \int_{\{|v_n| \leq k\}} A(x, t, \nabla u_n) \cdot \nabla (v_n - (T_k(v))_\nu) \leq 0,
\]

which implies

\[
\overline{\lim}_{n \to \infty} \int_{\{|v_n| \leq k\}} A(x, t, \nabla u_n) \cdot \nabla (v_n - T_k(v)) \leq 0,
\]

since \(\{|T_k(v)_\nu\} \) converges to \(T_k(v) \) in \(X \). On the other hand, from the weak convergence of \(\{|T_k(v_n)\} \) to \(T_k(v) \) in \(X \), we verify that

\[
\int_{\{|v_n| \leq k\}} A(x, t, \nabla (T_k(v) + h_n)) \cdot \nabla (T_k(v_n) - T_k(v)) = \omega(n).
\]
Thus we get
\[
\int_{\{\lvert v_n \rvert \leq k\}} (A(x, t, \nabla u_n) - A(x, t, \nabla (T_k(v) + h_n))) \cdot \nabla (u_n - (T_k(v) + h_n)) = \omega(n).
\]

Then, it is easy to show that, up to a subsequence,
\[
\{\nabla u_n\} \text{ converges to } \nabla u, \quad \text{a.e. in } Q.
\] (5.11)

Therefore, \{\{A(x, t, \nabla u_n)\} converges to \(A(x, t, \nabla u)\) weakly in \((L^p(Q))^N\); and from (5.10) we find
\[
\lim_{n \to \infty} \int_Q A(x, t, \nabla u_n) \nabla T_k(v_n) \leq \int_Q A(x, t, \nabla u) \nabla T_k(v).
\]

Otherwise, \{\{A(x, t, \nabla (T_k(v_n) + h_n))\} converges weakly in \((L^p(Q))^N\) to some \(F_k\), from Proposition 4.10, and we obtain that \(F_k = A(x, t, \nabla (T_k(v) + h))\). Hence
\[
\lim_{n \to \infty} \int_Q A(x, t, \nabla (T_k(v_n) + h_n)) \cdot \nabla (T_k(v_n) + h_n) \leq \lim_{n \to \infty} \int_Q A(x, t, \nabla u_n) \nabla T_k(v)
\]
\[
+ \lim_{n \to \infty} \int_Q A(x, t, \nabla (T_k(v_n) + h_n)) \cdot \nabla h_n
\]
\[
\leq \int_Q A(x, t, \nabla (T_k(v) + h)) \cdot \nabla (T_k(v) + h).
\]

As a consequence
\[
\{T_k(v_n)\} \text{ converges to } T_k(v), \text{ strongly in } X, \quad \forall k > 0.
\] (5.12)

Then to finish the proof we have to check that \(u\) is a solution of (1.1). \[\blacksquare\]

In order to prove (5.7) we need a first Lemma, inspired of [32, Lemma 6.1], extending [49, Lemma 6 and Lemma 7]:

Lemma 5.3 Let \(\psi_{1,\delta}, \psi_{2,\delta} \in C^1(Q)\) be uniformly bounded in \(W^{1,\infty}(Q)\) with values in \([0,1]\), such that \(\int_Q \psi_{1,\delta} d\mu_s^+ \leq \delta\) and \(\int_Q \psi_{2,\delta} d\mu_s^- \leq \delta\). Then, under the assumptions of Theorem 2.1,
\[
\frac{1}{m} \int_{\{m \leq v_n < 2m\}} |\nabla u_n|^p \psi_{2,\delta} = \omega(n, m, \delta),
\]
\[
\frac{1}{m} \int_{\{m \leq v_n < 2m\}} |\nabla v_n|^p \psi_{2,\delta} = \omega(n, m, \delta),
\] (5.13)
\[
\frac{1}{m} \int_{-2m < v_n \leq -m} |\nabla u_n|^p \psi_{1,\delta} = \omega(n, m, \delta),
\]
\[
\frac{1}{m} \int_{-2m < v_n \leq -m} |\nabla v_n|^p \psi_{1,\delta} = \omega(n, m, \delta),
\] (5.14)
and for any \(k > 0\),
\[
\int_{\{m \leq v_n < m+k\}} |\nabla u_n|^p \psi_{2,\delta} = \omega(n, m, \delta),
\]
\[
\int_{\{m \leq v_n < m+k\}} |\nabla v_n|^p \psi_{2,\delta} = \omega(n, m, \delta),
\] (5.15)
functions in (4.15) for A

Proof. (i) Proof of (5.13), (5.14). Set for any $r \in \mathbb{R}$ and any $m, \ell \geq 1$

$$S_{m,\ell}(r) = \int_0^r \left(-\frac{m + \tau}{m} \chi_{[m,2m]}(\tau) + \chi_{[2m,2m+\ell]}(\tau) + \frac{4m + 2h - \tau}{2m + \ell} \chi_{(2m+\ell,4m+2h]}(\tau) \right) d\tau,$$

$$S_m(r) = \int_0^r \left(-\frac{m + \tau}{m} \chi_{[m,2m]}(\tau) + \chi_{(2m,\infty)}(\tau) \right) d\tau.$$}

Note that $S_{m,\ell}' = \chi_{[m,2m]}/m - \chi_{[2m+\ell,2(2m+\ell)]}/(2m+\ell)$. We choose $(\xi, I, S) = (\psi_2, \delta, T_1, S_{m,\ell})$ as test functions in (4.15) for u_n, and observe that, from (5.5),

$$\mu_n = \mu_{n,0} - (h_n)_{1} = \frac{x_n}{\rho} + \rho_n - \eta_n = \psi_n + \rho_n - \eta_n$$

Thus we can write $\sum_{i=1}^6 A_i \leq \sum_{i=7}^{12} A_i$, where

$$A_1 = -\int_{\Omega} \psi_2, (0) T_1 (S_{m,\ell}(u_{0,n})) S_{m,\ell}(u_{0,n}), \quad A_2 = -\int_{Q} (\psi_2, \delta) T_1 (S_{m,\ell}(v_0)),$$

$$A_3 = \int_{Q} S_{m,\ell}'(v_0) T_1 (S_{m,\ell}(v_0)) A(x, t, \nabla u_n) \nabla \psi_2,,$$

$$A_4 = \int_{Q} S_{m,\ell}'(v_0)^2 \psi_2, T_1 (S_{m,\ell}(v_0)) A(x, t, \nabla u_n) \nabla v_n,$$

$$A_5 = \frac{1}{m} \int_{\{m \leq n \leq 2m\}} \psi_2, T_1 (S_{m,\ell}(v_0)) A(x, t, \nabla u_n) \nabla v_n,$$

$$A_6 = \frac{1}{2m + \ell} \int_{\{2m + \ell \leq n < 2(2m + \ell)\}} \psi_2, \delta A(x, t, \nabla u_n) \nabla v_n,$$

$$A_7 = \int_{Q} S_{m,\ell}'(v_0) T_1 (S_{m,\ell}(v_0)) \psi_2, f_n, \quad A_8 = \int_{Q} S_{m,\ell}'(v_0) T_1 (S_{m,\ell}(v_0)) g_n \nabla \psi_2,,$$

$$A_9 = \int_{Q} (S_{m,\ell}'(v_0))^2 T_1 (S_{m,\ell}(v_0)) \psi_2, \delta g_n \nabla v_n, \quad A_{10} = \frac{1}{m} \int_{m \leq n \leq 2m} T_1 (S_{m,\ell}(v_0)) \psi_2, \delta g_n \nabla v_n,$$

$$A_{11} = \frac{1}{2m + \ell} \int_{\{2m + \ell \leq n < 2(2m + \ell)\}} \psi_2, \delta g_n \nabla v_n, \quad A_{12} = \int_{Q} S_{m,\ell}'(v_0) T_1 (S_{m,\ell}(v_0)) \psi_2, \delta d (\rho_n - \eta_n).$$

Since $||S_{m,\ell}(u_{0,n})||_{1, \Omega} \leq \int_{\{m \leq u_{0,n}\}} u_{0,n} dx$, we find $A_1 = \omega(\ell, n, m)$. Otherwise

$$|A_2| \leq ||\psi_2, ||_{W^{1,\infty}(Q)} \int_{\{m \leq v_n\}} v_n, \quad |A_3| \leq ||\psi_2, ||_{W^{1,\infty}(Q)} \int_{\{m \leq v_n\}} (|a| + c_2 ||\nabla u_n||_{p-1}).$$

20
which implies \(A_2 = \omega(\ell, n, m) \) and \(A_3 = \omega(\ell, n, m) \). Using (4.3) for \(u_n \), we have

\[
A_6 = - \int_Q \psi_{2,\delta} d(\rho_{n,s} - \eta_{n,s})^+ + \omega(\ell) = \omega(\ell, n, m, \delta).
\]

Hence \(A_6 = \omega(\ell, n, m, \delta) \), since \((\rho_{n,s} - \eta_{n,s})^+ \) converges to \(\mu_\delta^+ \) as \(n \to \infty \) in the narrow topology, and \(\int_Q \psi_{2,\delta} d\mu_\delta^+ \leq \delta \). We also obtain \(A_{11} = \omega(\ell) \) from (4.10).

Now \(\left\{ S'_{m,\ell}(v_n)T_1(S_m(v_n)) \right\}_n \) converges to \(S'_m(v)T_1(S_m(v)) \). Using the Holder inequality we have

\[
\int_Q \int_{S(m,v_n)} \psi_{2,\delta} \leq \int_Q \psi_{2,\delta} d\mu_\delta^+ \leq \delta.
\]

Similarly we also show that \(A \) implies

\[
A_{12} \leq \int_Q \psi_{2,\delta} d\rho_n, \quad \text{and} \quad \int_Q \psi_{2,\delta} d\rho_n \text{ converges to } \int_Q \psi_{2,\delta} d\mu_\delta^+, \text{ hence } A_{12} \leq \omega(\ell, n, m, \delta).
\]

Using the Holder inequality and the condition (1.2) we have

\[
g_n \nabla v_n - A(x, t, \nabla u_n) \nabla v_n \leq C_1 \left(|g_n|^p' + |\nabla h_n|^p + |a|^p' \right)
\]

with \(C_1 = C_1(p, c_2) \), which implies

\[
A_9 - A_4 \leq C_1 \int_Q \left(S'_{m,\ell}(v_n) \right)^2 T_1(S_m(v_n)) \psi_{2,\delta} \left(|g_n|^p' + |h_n|^p + |a|^p' \right) = \omega(\ell, n, m).
\]

Similarly we also show that \(A_{10} - A_5/2 \leq \omega(\ell, n, m) \). Combining the estimates, we get \(A_{5}/2 \leq \omega(\ell, n, m, \delta) \). Using the Holder inequality we have

\[
A(x, t, \nabla u_n) \nabla v_n \geq C_2 \int_Q \left(|\nabla u_n|^p - C_2(|a|^p' + |\nabla h_n|^p) \right).
\]

with \(C_2 = C_2(p, c_1, c_2) \), which implies

\[
\frac{1}{m} \int_{\{m \leq v_n < 2m\}} |\nabla u_n|^p \psi_{2,\delta} T_1(S_m(v_n)) = \omega(\ell, n, m, \delta).
\]

Note that for all \(m > 4 \), \(S_m(\ell) \geq 1 \) for any \(r \in [\frac{3}{2}m, 2m] \); hence \(T_1(S_m(\ell) = 1 \). So,

\[
\frac{1}{m} \int_{\{\frac{3}{2}m \leq v_n < 2m\}} |\nabla u_n|^p \psi_{2,\delta} = \omega(\ell, n, m, \delta).
\]
Since $|\nabla v_n|^p \leq 2^{p-1}(|\nabla u_n|^p + 2^{p-1} |\nabla h_n|^p)$, there also holds
\[
\frac{1}{m} \int_{\{\frac{1}{2}m \leq v_n < 2m\}} |\nabla v_n|^p \psi_{2,\delta} = \omega(\ell, n, m, \delta).
\]

We deduce (5.13) by summing on each set $\{(\frac{1}{2})^\nu m \leq v_n \leq (\frac{1}{2})^{\nu+1}m\}$ for $\nu = 0, 1, 2$. Similarly, we can choose $(\xi, \psi, S) = (\psi_1, \delta, T_1, \tilde{S}_{m,\ell})$ as test functions in (4.15) for u_n, where $\tilde{S}_{m,\ell}(r) = S_{m,\ell}(-r)$, and we obtain (5.14).

(ii) Proof of (5.15), (5.16). We set, for any $k, m, \ell \geq 1$,
\[
S_{k,m,\ell}(r) = \int_0^r \left(T_k(\tau - T_m(\tau)) \chi_{[m,k+m+\ell]} + k\frac{2(k + \ell + m) - \tau}{k + m + \ell} \chi_{[k+m+\ell,2(k+m+\ell)]} \right) d\tau.
\]
\[
S_{k,m}(r) = \int_0^r T_k(\tau - T_m(\tau)) \chi_{[m,\infty)} d\tau.
\]

We choose $(\xi, \psi, S) = (\psi_2, \delta, T_1, S_{k,m,\ell})$ as test functions in (4.15) for u_n. In the same way we also obtain
\[
\int_{\{m \leq v_n < m+k\}} |\nabla u_n|^p \psi_{2,\delta} T_1(S_{k,m,\ell}(v_n)) = \omega(\ell, n, m, \delta).
\]

Note that $T_1(S_{k,m,\ell}(r)) = 1$ for any $r \geq m + 1$, thus
\[
\int_{\{m+1 \leq v_n < m+k\}} |\nabla u_n|^p \psi_{2,\delta} = \omega(n, m, \delta),
\]
which implies (5.15) by changing m into $m - 1$. Similarly, we obtain (5.16).

Next we look at the behaviour near E.

Lemma 5.4 Estimate (5.7) holds.

Proof. There holds
\[
I_1 = \int_Q \Phi_{\delta_1, \delta_2} A(x, t, \nabla u_n) \cdot \nabla T_k(v_n) - \int_{\{\{v_n\} \leq k\}} \Phi_{\delta_1, \delta_2} A(x, t, \nabla u_n) \cdot \nabla T_k(v)_{\nu}.
\]

From Proposition 4.10, (iv), $\{A(x, t, \nabla (T_k(v_n) + h_n)) \cdot \nabla T_k(v)_{\nu}\}$ converges weakly in $L^1(Q)$ to $F_k \nabla T_k(v)_{\nu}$, and $\{\chi_{\{|v_n| \leq k\}}\}$ converges to $\chi_{|v| \leq k}$, a.e. in Q, and $\Phi_{\delta_1, \delta_2}$ converges to 0 a.e. in Q as $\delta_1 \to 0$, and $\Phi_{\delta_1, \delta_2}$ takes its values in $[0, 1]$. Thanks to Remark 5.2, we have
\[
\int_{\{|v_n| \leq k\}} \Phi_{\delta_1, \delta_2} A(x, t, \nabla u_n) \cdot \nabla T_k(v)_{\nu}
\]
\[
= \int_Q \chi_{\{|v_n| \leq k\}} \Phi_{\delta_1, \delta_2} A(x, t, \nabla (T_k(v_n) + h_n)) \cdot \nabla T_k(v)_{\nu}
\]
\[
= \int_Q \chi_{|v| \leq k} \Phi_{\delta_1, \delta_2} F_k \nabla T_k(v)_{\nu} + \omega(n) = \omega(n, \nu, \delta_1).
\]

22
Therefore, if we prove that
\[\int_Q \Phi_{\delta_1, \delta_2} A(x, t, \nabla u_n) \nabla T_k(v_n) \leq \omega(n, \delta_1, \delta_2), \]
(5.18)
then we deduce (5.7). As noticed in [32], [49], it is precisely for this estimate that we need the double cut \(\psi_{\delta_1}^+ \psi_{\delta_2}^+ \). To do this, we set, for any \(m > k > 0 \), and any \(r \in \mathbb{R} \),
\[\hat{S}_{k,m}(r) = \int_0^r (k - T_k(\tau)) H_m(\tau) d\tau, \]
where \(H_m \) is defined at (4.14). Hence \(\text{supp} \hat{S}_{k,m} \subset [-2m, k] \); and \(\hat{S}_{k,m}' = -\chi_{[-k,k]} + \frac{2k}{m} \chi_{[-2m,-m]} \).
We choose \((\varphi, S) = (\psi_{\delta_1}^+ \psi_{\delta_2}^+, \hat{S}_{k,m}) \) as test functions in (4.2). From (5.17), we can write
\[A_1 + A_2 - A_3 + A_4 + A_5 + A_6 = 0, \]
where
\[A_1 = -\int_Q (\psi_{\delta_1}^+ \psi_{\delta_2}^+)_t \hat{S}_{k,m}(v_n), \quad A_2 = \int_Q (k - T_k(v_n)) H_m(v_n) A(x, t, \nabla u_n) \nabla (\psi_{\delta_1}^+ \psi_{\delta_2}^+), \]
\[A_3 = \int_Q \psi_{\delta_1}^+ \psi_{\delta_2}^+ A(x, t, \nabla u_n) \nabla T_k(v_n), \quad A_4 = \frac{2k}{m} \int_{-2m < v_n \leq -m} \psi_{\delta_1}^+ \psi_{\delta_2}^+ A(x, t, \nabla u_n) \nabla v_n, \]
\[A_5 = -\int_Q (k - T_k(v_n)) H_m(v_n) \psi_{\delta_1}^+ \psi_{\delta_2}^+ d\lambda_{n,0}, \quad A_6 = \int_Q (k - T_k(v_n)) H_m(v_n) \psi_{\delta_1}^+ \psi_{\delta_2}^+ d(\eta_{n,0} - \rho_{n,0}); \]
and we estimate \(A_3 \). As in [49, p.585], since \(\{ \hat{S}_{k,m}(v_n) \} \) converges to \(\hat{S}_{k,m}(v) \) weakly in \(X \), and \(\hat{S}_{k,m}(v) \in L^\infty(Q) \), and from (5.1), there holds
\[A_1 = -\int_Q (\psi_{\delta_1}^+)_t \psi_{\delta_2}^+ \hat{S}_{k,m}(v) - \int_Q \psi_{\delta_1}^+ (\psi_{\delta_2}^+)_t \hat{S}_{k,m}(v) + \omega(n) = \omega(n, \delta_1). \]
Next consider \(A_2 \). Notice that \(v_n = T_{2m}(v_n) \) on \(\text{supp}(H_m(v_n)) \). From Proposition 4.10, (iv), the sequence \(\{ A(x, t, \nabla (T_{2m}(v_n) + h_n)) \nabla (\psi_{\delta_1}^+ \psi_{\delta_2}^+) \} \) converges to \(F_{2m}.\nabla (\psi_{\delta_1}^+ \psi_{\delta_2}^+) \) weakly in \(L^1(Q) \).
Thanks to Remark 5.2 and the convergence of \(\psi_{\delta_1}^+ \psi_{\delta_2}^+ \) in \(X \) to 0 as \(\delta_1 \) tends to 0, we find
\[A_2 = \int_Q (k - T_k(v)) H_m(v) F_{2m}.\nabla (\psi_{\delta_1}^+ \psi_{\delta_2}^+) + \omega(n) = \omega(n, \delta_1). \]
Then consider \(A_4 \). Then for some \(C = C(p, c_2), \)
\[|A_4| \leq C \frac{2k}{m} \int_{-2m < v_n \leq -m} \left(|\nabla u_n|^p + |\nabla v_n|^p + |a|^p \right) \psi_{\delta_1}^+ \psi_{\delta_2}^+. \]
Since \(\psi_{\delta_1}^+ \) takes its values in \([0, 1]\), from Lemma 5.3, we get in particular \(A_4 = \omega(n, \delta_1, m, \delta_2) \).
Now estimate A_5. The sequence $\{(k - T_k(v_n))H_m(v_n)\psi_{\delta_1}^+\psi_{\delta_2}^+\}$ converges weakly in X to $(k - T_k(v))H_m(v)\psi_{\delta_1}^+\psi_{\delta_2}^+$, and $\{(k - T_k(v_n))H_m(v_n)\}$ converges $*$-weakly in $L^\infty(Q)$ and a.e. in Q to $(k - T_k(v))H_m(v)$. Otherwise $\{f_n\}$ converges to f weakly in $L^1(Q)$ and $\{g_n\}$ converges to g strongly in $(L^p(Q))^N$. Thanks to Remark 5.2 and the convergence of $\psi_{\delta_1}^+\psi_{\delta_2}^+$ to 0 in X and a.e. in Q as $\delta_1 \to 0$, we deduce that

$$A_5 = -\int_Q (k - T_k(v_n))H_m(v)\psi_{\delta_1}^+\psi_{\delta_2}^+ d\nu_0 + \omega(n) = \omega(n, \delta_1),$$

where $\nu_0 = f - \text{div} g$.

Finally $A_6 \leq 2k \int_Q \psi_{\delta_1}^+\psi_{\delta_2}^+ d\nu_0$; using (5.2) we also find $A_6 \leq \omega(n, \delta_1, m, \delta_2)$. By addition, since A_3 does not depend on m, we obtain

$$A_3 = \int_Q \psi_{\delta_1}^+\psi_{\delta_2}^+ A(x, t, \nabla u_n) \nabla T_k(v_n) \leq \omega(n, \delta_1, \delta_2).$$

Reasoning as before with $(\psi_{\delta_1}^+\psi_{\delta_2}^+\hat{S}_{k,m})$ as test function in (4.2), where $\hat{S}_{k,m}(r) = -\hat{S}_{k,m}(-r)$, we get in the same way

$$\int_Q \psi_{\delta_1}^+\psi_{\delta_2}^+ A(x, t, \nabla u_n) \nabla T_k(v_n) \leq \omega(n, \delta_1, \delta_2).$$

Then, (5.18) holds.

Next we look at the behaviour far from E.

Lemma 5.5. Estimate (5.8) holds.

Proof. Here we estimate I_2: we can write

$$I_2 = \int_{\{|v_n| \leq k\}} (1 - \Phi_{\delta_1, \delta_2}) A(x, t, \nabla u_n) \nabla (T_k(v_n) - (T_k(v))_\nu).$$

Following the ideas of [51], used also in [49], we define, for any $r \in \mathbb{R}$ and $\ell > 2k > 0$,

$$R_{n,\nu,\ell} = T_{\ell+k} (v_n - (T_k(v))_\nu) - T_{\ell-k} (v_n - T_k(v_n)).$$

Recall that $\|\langle T_k(v)\rangle\|_{\infty, Q} \leq k$, and observe that

$$R_{n,\nu,\ell} = 2k \text{sign}(v_n) \text{ in } \{|v_n| \geq \ell + 2k\}, \quad |R_{n,\nu,\ell}| \leq 4k, \quad R_{n,\nu,\ell} = \omega(n, \nu, \ell) \text{ a.e. in } Q, \quad (5.19)$$

$$\lim_{n \to \infty} R_{n,\nu,\ell} = T_{\ell+k} (v - (T_k(v))_\nu) - T_{\ell-k} (v - T_k(v)), \quad \text{a.e. in } Q, \text{ and weakly in } X. \quad (5.20)$$

Next consider $\xi_{1,n_1} \in C_c^\infty((0, T)), \xi_{2,n_2} \in C_c^\infty((0, T)]$ with values in $[0, 1]$, such that $(\xi_{1,n_1})_t \leq 0$ and $(\xi_{2,n_2})_t \geq 0$; and $\{\xi_{1,n_1}(t)\}$ (resp. $\{\xi_{1,n_2}(t)\}$) converges to 1, for any $t \in [0, T)$ (resp. $t \in (0, T]$);
and moreover, for any $a \in C([0, T]; L^1(\Omega))$, \(\left\{ \int_\Omega a(\xi_{1,n})_t \right\}\) and \(\int_\Omega a(\xi_{2,n_2})_t\) converge respectively to \(-\int a(T, \cdot)\) and \(\int a(0, \cdot)\). We set

\[
\varphi = \varphi_{n_1,n_2,l_1,l_2}\xi_{1,n_1}(1-\Phi_{\delta_1,\delta_2})[T_{l+k}(v_n-(T_k(v))_\nu)]_{l_1} - \xi_{2,n_2}(1-\Phi_{\delta_1,\delta_2})[T_{l-k}(v_n-T_k(v))]|_{l_2}.
\]

We can see that

\[
\varphi - (1-\Phi_{\delta_1,\delta_2})R_{n_\nu,l} = \omega(l_1,l_2,n_1,n_2).
\]

We can choose \((\varphi, S) = (\varphi_{n_1,n_2,l_1,l_2}, \Phi_{\nu,m})\) as test functions in (4.7) for \(u_n\), where \(\Phi_{\nu,m}\) is defined at (4.14), with \(m > \ell + 2k\). We obtain

\[
A_1 + A_2 + A_3 + A_4 + A_5 = A_6 + A_7,
\]

with

\[
A_1 = \int_\Omega \varphi(T)\Phi_{\nu,m}(v_n(T)) dx,
\]

\[
A_2 = -\int_\Omega \varphi(0)\Phi_{\nu,m}(u_0,n) dx,
\]

\[
A_3 = -\int_\Omega \varphi\Phi_{\nu,m}(v_n),
\]

\[
A_4 = \int_\Omega H_m(v_n)A(x,t,\nabla u_n)\nabla \varphi,
\]

\[
A_5 = \int_\Omega \varphi H'_m(v_n)A(x,t,\nabla u_n)\nabla v_n,
\]

\[
A_6 = \int_\Omega H_m(v_n)\varphi d\lambda_{n,0},
\]

\[
A_7 = \int_\Omega H_m(v_n)\varphi d(\rho_{n,0} - \eta_{n,0}).
\]

Estimate of \(A_4\). This term allows to study \(I_2\). Indeed, \(\{H_m(v_n)\}\) converges to 1, \(a.e.\) in \(Q\); thanks to (5.21), (5.19) (5.20), we have

\[
A_4 = \int_\Omega (1-\Phi_{\delta_1,\delta_2})A(x,t,\nabla u_n)\nabla R_{n_\nu,\ell} - \int_\Omega R_{n_\nu,\ell}A(x,t,\nabla u_n)\nabla \Phi_{\delta_1,\delta_2} + \omega(l_1,l_2,n_1,n_2,m)
\]

\[
= \int_\Omega (1-\Phi_{\delta_1,\delta_2})A(x,t,\nabla u_n)\nabla R_{n_\nu,\ell} + \omega(l_1,l_2,n_1,n_2,m,n,n,\ell)
\]

\[
= I_2 + \int_{\{|v_n| > k\}} (1-\Phi_{\delta_1,\delta_2})A(x,t,\nabla u_n)\nabla R_{n_\nu,\ell} + \omega(l_1,l_2,n_1,n_2,m,n,\ell)
\]

\[
= I_2 + B_1 + B_2 + \omega(l_1,l_2,n_1,n_2,m,n,\ell),
\]

where

\[
B_1 = \int_{\{|v_n| > k\}} (1-\Phi_{\delta_1,\delta_2})A(x,t,\nabla u_n)\nabla v_n,
\]

\[
B_2 = -\int_{\{|v_n| > k\}} (1-\Phi_{\delta_1,\delta_2})A(x,t,\nabla u_n)\nabla (T_k(v))_\nu.
\]
Now \{A(x, t, \nabla (T_{\ell+2k}(v_n) + h_n)), \nabla (T_k(v))_\nu\} converges to \(F_{\ell+2k} \nabla (T_k(v))_\nu\), weakly in \(L^1(Q)\). Otherwise \(\chi_{|v_n| > k} \chi_{|v-n-(T_k(v))_\nu| \leq \ell+2k}\) converges to \(\chi_{|v| > k} \chi_{|v-(T_k(v))_\nu| \leq \ell+2k}\), a.e. in \(Q\). And \{\(T_k(v)\)_\nu\} converges to \(T_k(v)\) strongly in \(X\). Thanks to Remark 5.2 we get

\[
B_2 = - \int_Q (1 - \Phi_{\delta_1, \delta_2}) \chi_{|v| > k} \chi_{|v-(T_k(v))_\nu| \leq \ell+2k} F_{\ell+2k} \cdot \nabla (T_k(v))_\nu + \omega(n)
\]

\[
= - \int_Q (1 - \Phi_{\delta_1, \delta_2}) \chi_{|v| > k} \chi_{|v-T_k(v)| \leq \ell+2k} F_{\ell+2k} \cdot \nabla T_k(v) + \omega(n, \nu) = \omega(n, \nu),
\]

since \(\nabla T_k(v) \chi_{|v| > k} = 0\). Besides, we see that, for some \(C = C(p, c_2)\),

\[
|B_1| \leq C \int_{\{\ell-2k \leq |v_n| < \ell+2k\}} (1 - \Phi_{\delta_1, \delta_2}) \left(|\nabla u_n|^p + |\nabla v_n|^p + |\alpha'| \right).
\]

Using (5.3) and (5.4) and applying (5.15) and (5.16) to \(1 - \Phi_{\delta_1, \delta_2}\), we obtain, for \(k > 0\)

\[
\int_{\{m \leq |v_n| < m+4k\}} (|\nabla u_n|^p + |\nabla v_n|^p)(1 - \Phi_{\delta_1, \delta_2}) = \omega(n, m, \delta_1, \delta_2).
\]

Thus, \(B_1 = \omega(n, \nu, \ell, \delta_1, \delta_2)\), hence \(B_1 + B_2 = \omega(n, \nu, \ell, \delta_1, \delta_2)\). Then

\[
A_4 = I_2 + \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell, \delta_1, \delta_2).
\]

Estimate of \(A_5\). For \(m > \ell + 2k\), since \(|\phi| \leq 2\ell\), and (5.21) holds, we get, from the dominated convergence Theorem,

\[
A_5 = \int_Q (1 - \Phi_{\delta_1, \delta_2}) R_{n, \nu, \ell} H_m'(v_n) A(x, t, \nabla u_n) \cdot \nabla v_n + \omega(l_1, l_2, n_1, n_2)
\]

\[
= \frac{-2k}{m} \int_{\{m \leq |v_n| < 2m\}} (1 - \Phi_{\delta_1, \delta_2}) A(x, t, \nabla u_n) \cdot \nabla v_n + \omega(l_1, l_2, n_1, n_2);
\]

here, the final equality followed from the relation, since \(m > \ell + 2k\),

\[
R_{n, \nu, \ell} H_m'(v_n) = \frac{-2k}{m} \chi_{m \leq |v_n| \leq 2m}, \ a.e. \ in \ Q.
\]

Next we go to the limit in \(m\), by using (4.3), (4.4) for \(u_n\), with \(\phi = (1 - \Phi_{\delta_1, \delta_2})\). There holds

\[
A_5 = -2k \int_Q (1 - \Phi_{\delta_1, \delta_2}) d \left((\rho_{n, s} - \eta_{n, s})^+ + (\rho_{n, s} - \eta_{n, s})^- \right) + \omega(l_1, l_2, n_1, n_2, m).
\]

Then, from (5.3) and (5.4), we get \(A_5 = \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell, \delta_1, \delta_2)\).
Estimate of \(A_6 \). Again, from (5.21),
\[
A_6 = \int_Q H_m(v_n) \phi f_n + \int_Q g_n \nabla (H_m(v_n)) \phi
\]
\[
= \int_Q H_m(v_n)(1 - \Phi_{\delta_1, \delta_2}) R_{n,\nu,\ell} f_n + \int_Q g_n \nabla (H_m(v_n)(1 - \Phi_{\delta_1, \delta_2}) R_{n,\nu,\ell}) + \omega(l_1, l_2, n_1, n_2).
\]
Thus we can write \(A_6 = D_1 + D_2 + D_3 + D_4 + \omega(l_1, l_2, n_1, n_2) \), where
\[
D_1 = \int_Q H_m(v_n)(1 - \Phi_{\delta_1, \delta_2}) R_{n,\nu,\ell} f_n, \quad D_2 = \int_Q (1 - \Phi_{\delta_1, \delta_2}) R_{n,\nu,\ell} H'_m(v_n) g_n \nabla v_n,
\]
\[
D_3 = \int_Q H_m(v_n)(1 - \Phi_{\delta_1, \delta_2}) g_n \nabla R_{n,\nu,\ell}, \quad D_4 = - \int_Q H_m(v_n) R_{n,\nu,\ell} g_n \nabla \Phi_{\delta_1, \delta_2}.
\]
Since \(\{f_n\} \) converges to \(f \) weakly in \(L^1(Q) \), and (5.19)-(5.20) hold, we get from Remark 5.2,
\[
D_1 = \int_Q (1 - \Phi_{\delta_1, \delta_2}) (T_{\ell+k} (v - \langle T_k(v) \rangle_\nu) - T_{\ell-k} (v - T_k(v))) f + \omega(m, n) = \omega(m, n, \nu, \ell).
\]
We deduce from (4.10) that \(D_2 = \omega(m) \). Next consider \(D_3 \). Note that \(H_m(v_n) = 1 + \omega(m) \), and (5.20) holds, and \(\{g_n\} \) converges to \(g \) strongly in \((L^p(Q))^N \), and \(\langle T_k(v) \rangle_\nu \) converges to \(T_k(v) \) strongly in \(X \). Then we obtain successively that
\[
D_3 = \int_Q (1 - \Phi_{\delta_1, \delta_2}) g_n \nabla (T_{\ell+k} (v - \langle T_k(v) \rangle_\nu) - T_{\ell-k} (v - T_k(v))) + \omega(m, n)
\]
\[
= \int_Q (1 - \Phi_{\delta_1, \delta_2}) g_n \nabla (T_{\ell+k} (v - T_k(v)) - T_{\ell-k} (v - T_k(v))) + \omega(m, n, \nu)
\]
\[
= \omega(m, \nu, \ell).
\]
Similarly we also get \(D_4 = \omega(m, \nu, \ell) \). Thus \(A_6 = \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell, \delta_1, \delta_2) \).

Estimate of \(A_7 \). We have
\[
|A_7| = \left| \int_Q S'_m(v_n) (1 - \Phi_{\delta_1, \delta_2}) R_{n,\nu,\ell} d (\rho_{n,0} - \eta_{n,0}) \right| + \omega(l_1, l_2, n_1, n_2)
\]
\[
\leq 4k \int_Q (1 - \Phi_{\delta_1, \delta_2}) d (\rho_n + \eta_n) + \omega(l_1, l_2, n_1, n_2).
\]
From (5.3) and (5.4) we get \(A_7 = \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell, \delta_1, \delta_2) \).

Estimate of \(A_1 + A_2 + A_3 \). We set
\[
J(r) = T_{\ell-k} (r - T_k(r)), \quad \forall r \in \mathbb{R},
\]
27
and use the notations \(J \) and \(J \) of (4.11). From the definitions of \(\xi_{1,n_1}, \xi_{1,n_2} \), we can see that

\[
A_1 + A_2 = -\int_{\Omega} J(v_n(T))H_m(v_n(T)) - \int_{\Omega} T_{\ell+k}(u_{0,n} - z_{\nu})H_m(u_{0,n}) + \omega(l_1, l_2, n_1, n_2)
\]

\[
= -\int_{\Omega} J(v_n(T))v_n(T) - \int_{\Omega} T_{\ell+k}(u_{0,n} - z_{\nu})u_{0,n} + \omega(l_1, l_2, n_1, n_2, m),
\]

(5.25)

where \(z_{\nu} = \langle T_k(v) \rangle_{\nu}(0) \). We can write \(A_3 = F_1 + F_2 \), where

\[
F_1 = -\int_{Q} \left(\xi_{n_1} (1 - \Phi_{\delta_1, \delta_2})[T_{\ell-k} (v_n - \langle T_k(v) \rangle_{\nu})]_{l_1}\right) H_m(v_n),
\]

\[
F_2 = \int_{Q} \left(\xi_{n_2} (1 - \Phi_{\delta_1, \delta_2})[T_{\ell-k} (v_n - T_k(v_n))]_{l_2}\right) H_m(v_n).
\]

Estimate of \(F_2 \). We write \(F_2 = G_1 + G_2 + G_3 \), with

\[
G_1 = -\int_{Q} (\Phi_{\delta_1, \delta_2})_{l_1} J(v_n)v_n + \omega(l_1, l_2, n_1, n_2, m),
\]

\[
G_2 = \int_{Q} (1 - \Phi_{\delta_1, \delta_2})(\xi_{n_2})_{l_2} J(v_n)H_m(v_n) + \omega(l_1, l_2) = \int_{\Omega} J(u_{0,n})u_{0,n} + \omega(l_1, l_2, n_1, n_2, m).
\]

Next consider \(G_3 \). Setting \(b = H_m(v_n) \), there holds from (4.13) and (4.12),

\[
(([J(b)]_{-l_2}, b)(\cdot, t) = \frac{b(\cdot, t)}{l_2}(J(b)(\cdot, t) - J(b)(\cdot, t - l_2)).
\]

Hence

\[
([T_{\ell-k} (v_n - T_k(v_n))]_{-l_2}) H_m(v_n) \geq \left([J(H_m(v_n))]_{-l_2}\right) = ([J(v_n)]_{-l_2}).
\]
since J is constant in $\{|r| \geq m + \ell + 2k\}$. Integrating by parts in G_3, we find

$$G_3 \geq \int_Q \xi_{2,n_2}(1 - \Phi_{\delta_1,\delta_2}) (|J(v_n)|)_{l_2}$$

$$= -\int_Q (\xi_{2,n_2}(1 - \Phi_{\delta_1,\delta_2})) [J(v_n)]_{l_2} + \int_{\Omega} \xi_{2,n_2}(T) [J(v_n)]_{l_2}(T)$$

$$= -\int_Q (\xi_{2,n_2})_t (1 - \Phi_{\delta_1,\delta_2}) J(v_n)$$

$$+ \int_Q \xi_{2,n_2}(\Phi_{\delta_1,\delta_2})_t J(v_n) + \int_{\Omega} \xi_{2,n_2}(T) J(v_n(T)) + \omega(l_1, l_2)$$

$$= -\int_{\Omega} J(u_0,n) + \int_Q (\Phi_{\delta_1,\delta_2})_t J(v_n) + \int_{\Omega} J(v_n(T)) + \omega(l_1, l_2, n_1, n_2).$$

Therefore, since $J(v_n) - J(v_n)v_n = -J(v_n)$ and $J(u_0,n) = J(u_0,n)u_0,n - J(u_0,n)$, we obtain

$$F_2 \geq \int_{\Omega} J(u_0,n) - \int_Q (\Phi_{\delta_1,\delta_2})_t J(v_n) + \int_{\Omega} J(v_n(T)) + \omega(l_1, l_2, n_1, n_2, m). \quad (5.26)$$

Estimate of F_1. Since $m > \ell + 2k$, there holds $T_{\ell+k}(v_n - (T_k(v))) = T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))$ on $\text{supp} \overline{H_m}(v_n)$. Hence we can write $F_1 = L_1 + L_2$, with

$$L_1 = -\int_Q \left[\xi_{1,n_1}(1 - \Phi_{\delta_1,\delta_2}) [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu \right.$$

$$L_2 = -\int_Q \left[\xi_{1,n_1}(1 - \Phi_{\delta_1,\delta_2}) [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (T_k(\overline{H_m}(v)))_\nu \right.$$

Integrating by parts we have, by definition of the Landes-time approximation,

$$L_2 = \int_Q \xi_{1,n_1}(1 - \Phi_{\delta_1,\delta_2}) [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (T_k(\overline{H_m}(v)))_\nu$$

$$+ \int_{\Omega} \xi_{1,n_1}(0) [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (0) (T_k(\overline{H_m}(v)))_\nu(0)$$

$$= \nu \int_Q (1 - \Phi_{\delta_1,\delta_2}) T_{\ell+k}(v_n - (T_k(v)))_\nu (T_k(v) - (T_k(v)))_\nu + \int_{\Omega} T_{\ell+k}(u_0,n - z_\nu) z_\nu + \omega(l_1, l_2, n_1, n_2).$$

$$\quad (5.27)$$

We decompose L_1 into $L_1 = K_1 + K_2 + K_3$, where

$$K_1 = -\int_Q (\xi_{1,n_1})_t (1 - \Phi_{\delta_1,\delta_2}) [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu$$

$$K_2 = -\int_Q \xi_{1,n_1}(\Phi_{\delta_1,\delta_2})_t [T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu$$

$$K_3 = -\int_Q \xi_{1,n_1}(1 - \Phi_{\delta_1,\delta_2}) (T_{\ell+k}(\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu)]_{l_1} (\overline{H_m}(v_n) - (T_k(\overline{H_m}(v)))_\nu).$$
Then we check easily that

\[K_1 = \int_{\Omega} T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu) (T) (v_n - \langle T_k(v) \rangle_\nu) (T) dx + \omega(l_1, l_2, n_1, n_2, m), \]

\[K_2 = \int_{Q} (\Phi_{\xi_1, \xi_2}) T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu) (v_n - \langle T_k(v) \rangle_\nu) + \omega(l_1, l_2, n_1, n_2, m). \]

Next consider \(K_3 \). Here we use the function \(T_k \) defined at (4.13). We set \(b = \overline{H_m}(v_n) - \langle T_k(\overline{H_m}(v)) \rangle_\nu \). Hence from (4.12),

\[(([T_{\ell+k}(b)]_{l_1})_t)b(\cdot, t) = \frac{b(\cdot, t)}{l_1} (T_{\ell+k}(b)(\cdot, t + l_1) - T_{\ell+k}(b)(\cdot, t)) \]

\[\leq \frac{1}{l_1} (T_{\ell+k}(b)(\cdot, t + l_1)) - T_{\ell+k}(b)(\cdot, t) = ([T_{\ell+k}(b)]_{l_1})_t. \]

Thus

\[\left([T_{\ell+k}(\overline{H_m}(v_n) - \langle T_k(\overline{H_m}(v)) \rangle_\nu)]_{l_1} \right)_t (\overline{H_m}(v_n) - \langle T_k(\overline{H_m}(v)) \rangle_\nu) \leq \left([T_{\ell+k}(\overline{H_m}(v_n) - \langle T_k(\overline{H_m}(v)) \rangle_\nu)]_{l_1} \right)_t = (\overline{H_m}(v_n) - \langle T_k(v) \rangle_\nu). \]

Then

\[K_3 \geq - \int_{Q} \xi_{1, n_1} (1 - \Phi_{\xi_1, \xi_2}) (\overline{T}_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu))_{l_1} \bigg|_{t} \]

\[= \int_{Q} (\xi_{1, n_1})_{l_1} (1 - \Phi_{\xi_1, \xi_2}) [T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu)]_{l_1} - \int_{Q} \xi_{1, n_1} (\Phi_{\xi_1, \xi_2})_{l_1} [T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu)]_{l_1} \]

\[+ \int_{\Omega} \xi_{1, n_1}(0) [T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu)]_{l_1}(0) \]

\[= - \int_{\Omega} T_{\ell+k} (v_n(T) - \langle T_k(v) \rangle_\nu(T)) - \int_{Q} (\Phi_{\xi_1, \xi_2})_{l_1} T_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu) \]

\[+ \int_{\Omega} T_{\ell+k} (u_{n, n} - z) + \omega(l_1, l_2, n_1, n_2). \]

We find by addition, since \(T_{\ell+k}(r) - T_{\ell+k}(r) = \overline{T}_{\ell+k}(r) \) for any \(r \in \mathbb{R} \),

\[L_1 \geq \int_{\Omega} T_{\ell+k} (u_{n, n} - z) + \int_{\Omega} \overline{T}_{\ell+k} (v_n(T) - \langle T_k(v) \rangle_\nu(T)) \]

\[+ \int_{Q} (\Phi_{\xi_1, \xi_2})_{l_1} \overline{T}_{\ell+k} (v_n - \langle T_k(v) \rangle_\nu) + \omega(l_1, l_2, n_1, n_2, m). \] (5.28)
We deduce from (5.28), (5.27), (5.26),
\[
A_3 \geq \int_{\Omega} J(u_{0,n}) + \int_{\Omega} T_{\ell+k} (u_{0,n} - z_{\nu}) + \int_{\Omega} T_{\ell+k} (u_{0,n} - z_{\nu}) z_{\nu} \\
+ \int_{\Omega} T_{\ell+k} (v_n(T) - \langle T_k(v) \rangle_{\nu}(T)) + \int_{\Omega} J(v_n(T)) + \int_Q (\Phi_{\delta_1, \delta_2})_t (T_{\ell+k} (v_n - \langle T_k(v) \rangle_{\nu}) - \overline{T}(v_n)) \\
+ \nu \int_Q (1 - \Phi_{\delta_1, \delta_2})T_{\ell+k} (v_n - \langle T_k(v) \rangle_{\nu}) \nu T_k(v) - \langle T_k(v) \rangle_{\nu}) + \omega(l_1, l_2, n_1, n_2, m).
\] (5.29)

Next we add (5.25) and (5.29). Note that \(J(v_n(T)) - J(v_n(T))v_n(T) = -\overline{T}(v_n(T)) \), and also \(T_{\ell+k} (u_{0,n} - z_{\nu}) - T_{\ell+k} (u_{0,n} - z_{\nu})(z_{\nu} - u_{0,n}) = -T_{\ell+k} (u_{0,n} - z_{\nu}) \). Then we find
\[
A_1 + A_2 + A_3 \geq \int_{\Omega} (J(u_{0,n}) - T_{\ell+k} (u_{0,n} - z_{\nu})) + \int_{\Omega} (T_{\ell+k} (v_n(T) - \langle T_k(v) \rangle_{\nu}(T)) - \overline{T}(v_n(T))) \\
+ \int_Q (\Phi_{\delta_1, \delta_2})_t (T_{\ell+k} (v_n - \langle T_k(v) \rangle_{\nu}) - \overline{T}(v_n)) \\
+ \nu \int_Q (1 - \Phi_{\delta_1, \delta_2})T_{\ell+k} (v_n - \langle T_k(v) \rangle_{\nu}) \nu T_k(v) - \langle T_k(v) \rangle_{\nu}) + \omega(l_1, l_2, n_1, n_2, m).
\]

Notice that \(T_{\ell+k}(r-s) - \overline{T}(r) \geq 0 \) for any \(r, s \in \mathbb{R} \) such that \(|s| \leq k \); thus
\[
\int_{\Omega} (T_{\ell+k} (v_n(T) - \langle T_k(v) \rangle_{\nu}(T)) - \overline{T}(v_n(T))) \geq 0.
\]

And \(\{u_{0,n}\} \) converges to \(u_0 \) in \(L^1(\Omega) \) and \(\{v_n\} \) converges to \(v \) in \(L^1(Q) \) from Proposition 4.10. Thus we obtain
\[
A_1 + A_2 + A_3 \geq \int_{\Omega} (J(u_{0}) - T_{\ell+k} (u_{0} - z_{\nu})) + \int_Q (\Phi_{\delta_1, \delta_2})_t (T_{\ell+k} (v - \langle T_k(v) \rangle_{\nu}) - \overline{T}(v)) \\
+ \nu \int_Q (1 - \Phi_{\delta_1, \delta_2})T_{\ell+k} (v - \langle T_k(v) \rangle_{\nu}) \nu T_k(v) - \langle T_k(v) \rangle_{\nu}) + \omega(l_1, l_2, n_1, n_2, m, n).
\]

Moreover \(T_{\ell+k}(r-s) (T_k(r) - s) \geq 0 \) for any \(r, s \in \mathbb{R} \) such that \(|s| \leq k \), hence
\[
A_1 + A_2 + A_3 \geq \int_{\Omega} (J(u_{0}) - T_{\ell+k} (u_{0} - z_{\nu})) + \int_Q (\Phi_{\delta_1, \delta_2})_t (T_{\ell+k} (v - \langle T_k(v) \rangle_{\nu}) - \overline{T}(v)) \\
+ \omega(l_1, l_2, n_1, n_2, m, n).
\]

As \(\nu \to \infty \), \(\{z_{\nu}\} \) converges to \(T_k(u_0) \), a.e. in \(\Omega \), thus we get
\[
A_1 + A_2 + A_3 \geq \int_{\Omega} (J(u_{0}) - T_{\ell+k} (u_{0} - T_k(u_0))) + \int_Q (\Phi_{\delta_1, \delta_2})_t (T_{\ell+k} (v - T_k(v)) - \overline{T}(v)) \\
+ \omega(l_1, l_2, n_1, n_2, m, n, \nu).
\]

31
Finally $|\mathcal{T}_{\ell+k}(r-T_k(r)) - \mathcal{T}(r)| \leq 2k |r| \chi_{\{|r| \geq \ell\}}$ for any $r \in \mathbb{R}$, thus
\[A_1 + A_2 + A_3 \geq \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell). \]
Combining all the estimates, we obtain $I_2 \leq \omega(l_1, l_2, n_1, n_2, m, n, \nu, \ell, \delta_1, \delta_2)$ which implies (5.8), since I_2 does not depend on $l_1, l_2, n_1, n_2, m, \ell$.

Next we conclude the proof of Theorem 2.1:

Lemma 5.6 The function u is a R-solution of (1.1).

Proof. (i) First show that u satisfies (4.2). Here we proceed as in [49]. Let $\varphi \in X \cap L^\infty(Q)$ such $\varphi \in X' + L^1(Q)$, $\varphi(., T) = 0$, and $S \in W^{2, \infty}(\mathbb{R})$, such that S' has compact support on \mathbb{R}, $S(0) = 0$. Let $M > 0$ such that $\text{supp} S' \subset [-M, M]$. Taking successively (φ, S) and $(\varphi \psi_\delta^\pm, S)$ as test functions in (4.2) applied to u_n, we can write
\[A_1 + A_2 + A_3 + A_4 = A_5 + A_6 + A_7, \quad A_2, \delta, \pm + A_3, \delta, \pm + A_4, \delta, \pm = A_5, \delta, \pm + A_6, \delta, \pm + A_7, \delta, \pm, \]
where
\[A_1 = -\int_{\Omega} \varphi(0)S(u_{0,n}), \quad A_2 = -\int_{Q} \varphi_S(v_n), \quad A_2, \delta, \pm = -\int_{Q} (\varphi \psi_\delta^\pm)_S S(v_n), \]
\[A_3 = \int_{Q} S'(v_n)A(x, t, \nabla u_n).\nabla \varphi, \quad A_3, \delta, \pm = \int_{Q} S'(v_n)A(x, t, \nabla u_n).\nabla (\varphi \psi_\delta^\pm), \]
\[A_4 = \int_{Q} S'^\prime(v_n)\varphi A(x, t, \nabla u_n).\nabla v_n, \quad A_4, \delta, \pm = \int_{Q} S'^\prime(v_n)\varphi \psi_\delta^\pm A(x, t, \nabla u_n).\nabla v_n, \]
\[A_5 = \int_{Q} S'(v_n)\varphi d\tilde{\lambda}_{n,0}, \quad A_6 = \int_{Q} S'(v_n)\varphi d\rho_{n,0}, \quad A_7 = -\int_{Q} S'(v_n)\varphi d\eta_{n,0}, \]
\[A_5, \delta, \pm = \int_{Q} S'(v_n)\varphi \psi_\delta^\pm d\tilde{\lambda}_{n,0}, \quad A_6, \delta, \pm = \int_{Q} S'(v_n)\varphi \psi_\delta^\pm d\rho_{n,0}, \quad A_7, \delta, \pm = -\int_{Q} S'(v_n)\varphi \psi_\delta^\pm d\eta_{n,0}. \]

Since $\{u_{0,n}\}$ converges to u_0 in $L^1(\Omega)$, and $\{S(v_n)\}$ converges to $S(v)$ strongly in X and weak* in $L^\infty(Q)$, there holds, from (5.2),
\[A_1 = -\int_{\Omega} \varphi(0)S(u_0) + \omega(n), \quad A_2 = -\int_{Q} \varphi_S(v) + \omega(n), \quad A_2, \delta, \psi_\delta^\pm = \omega(n, \delta). \]

Moreover $T_M(v_n)$ converges to $T_M(v)$, then $T_M(v_n) + h_n$ converges to $T_k(v) + h$ strongly in X, thus
\[A_3 = \int_{Q} S'(v_n)A(x, t, \nabla (T_M(v_n) + h_n)).\nabla \varphi \]
\[= \int_{Q} S'(v)A(x, t, \nabla (T_M(v) + h)).\nabla \varphi + \omega(n) \]
\[= \int_{Q} S'(v)A(x, t, \nabla u).\nabla \varphi + \omega(n); \]
and

\[A_4 = \int_Q S''(v_n) \varphi A(x,t,\nabla (T_M (v_n) + h_n)).\nabla T_M (v_n) \]
\[= \int_Q S''(v) \varphi A(x,t,\nabla (T_M (v) + h)).\nabla T_M (v) + \omega(n) \]
\[= \int_Q S''(v) \varphi A(x,t,\nabla u).\nabla v + \omega(n). \]

In the same way, since \(\psi_\delta^\pm \) converges to 0 in \(X \),

\[A_{3,\delta,\pm} = \int_Q S'(v)A(x,t,\nabla u).\nabla (\varphi \psi_\delta^\pm) + \omega(n) = \omega(n, \delta), \]
\[A_{4,\delta,\pm} = \int_Q S''(v)\varphi \psi_\delta^\pm A(x,t,\nabla u).\nabla v + \omega(n) = \omega(n, \delta). \]

And \(\{g_n\} \) converges strongly in \((L^p'(\Omega))^N \), thus

\[A_5 = \int_Q S'(v_n)\varphi f_n + \int_Q S'(v_n)g_n.\nabla \varphi + \int_Q S''(v_n)\varphi g_n.\nabla T_M (v_n) \]
\[= \int_Q S'(v)\varphi f + \int_Q S'(v)g.\nabla \varphi + \int_Q S''(v)\varphi g.\nabla T_M (v) + \omega(n) \]
\[= \int_Q S'(v)\varphi d\mu_0 + \omega(n). \]

and \(A_{5,\delta,\pm} = \int_Q S'(v)\varphi \psi_\delta^\pm d\lambda_{n,0} + \omega(n) = \omega(n, \delta) \). Then \(A_{6,\delta,\pm} + A_{7,\delta,\pm} = \omega(n, \delta) \). From (5.2) we verify that \(A_{7,\delta,=} = \omega(n, \delta) \) and \(A_{6,\delta,\pm} = \omega(n, \delta) \). Moreover, from (5.6) and (5.2), we find

\[|A_6 - A_{6,\delta,\pm}| \leq \int_Q |S'(v_n)\varphi| (1 - \psi_\delta^\pm)d\rho_n,0 \leq ||S||_{L^2(\mathbb{R})}||\varphi||_{L^\infty(Q)} \int_Q (1 - \psi_\delta^\pm)d\rho_n = \omega(n, \delta). \]

Similarly we also have \(|A_7 - A_{7,\delta,\pm}| \leq \omega(n, \delta) \). Hence \(A_6 = \omega(n) \) and \(A_7 = \omega(n) \). Therefore, we finally obtain (4.2):

\[- \int_\Omega \varphi(0) S(u_0) - \int_Q \varphi_t S(v) + \int_Q S'(v)A(x,t,\nabla u).\nabla \varphi + \int_Q S''(v)\varphi A(x,t,\nabla u).\nabla v = \int_Q S'(v)\varphi d\mu_0. \]

(5.30)
Clearly, in (5.32), we go to the limit as functions in (5.30), with \(H_m \) as in (4.14). We can write \(D_{1,m} + D_{2,m} = D_{3,m} + D_{4,m} + D_{5,m} \), where

\[
\begin{align*}
D_{1,m} &= -\int_Q ((1 - \psi_\delta) \varphi)_{\delta} H_m(v), \\
D_{2,m} &= \int_Q H_m(v) A(x, t, \nabla u) \cdot \nabla ((1 - \psi_\delta) \varphi), \\
D_{3,m} &= \int_Q H_m(v) (1 - \psi_\delta) \varphi d\mu_0, \\
D_{4,m} &= \frac{1}{m} \int_{m \leq v \leq 2m} (1 - \psi_\delta) \varphi A(x, t, \nabla u). \nabla v, \\
D_{5,m} &= -\frac{1}{m} \int_{-2m \leq v \leq -m} (1 - \psi_\delta) \varphi A(x, t, \nabla u) \cdot \nabla v.
\end{align*}
\]

(5.31)

Taking the same test functions in (4.2) applied to \(u_n \), there holds \(D^n_{1,m} + D^n_{2,m} = D^n_{3,m} + D^n_{4,m} + D^n_{5,m} \), where

\[
\begin{align*}
D^n_{1,m} &= -\int_Q ((1 - \psi_\delta) \varphi)_{\delta} H_m(v_n), \\
D^n_{2,m} &= \int_Q H_m(v_n) A(x, t, \nabla u_n) \cdot \nabla ((1 - \psi_\delta) \varphi), \\
D^n_{3,m} &= \int_Q H_m(v_n) (1 - \psi_\delta) \varphi d\lambda_{n,0} + \rho_{n,0} - \eta_{n,0}, \\
D^n_{4,m} &= \frac{1}{m} \int_{m \leq v \leq 2m} (1 - \psi_\delta) \varphi A(x, t, \nabla u_n). \nabla v_n, \\
D^n_{5,m} &= -\frac{1}{m} \int_{-2m \leq v_n \leq -m} (1 - \psi_\delta) \varphi A(x, t, \nabla u_n) \cdot \nabla v_n.
\end{align*}
\]

(5.32)

In (5.32), we go to the limit as \(m \to \infty \). Since \(\{ H_m(v_n) \} \) converges to \(v_n \) and \(\{ H_m(v_n) \} \) converges to 1, a.e. in \(Q \), and \(\{ \nabla H_m(v_n) \} \) converges to 0, weakly in \((L^p(Q))^N \), we obtain the relation

\[
D^n_1 + D^n_2 = D^n_3 + D^n_4 + D^n_5,
\]

where

\[
\begin{align*}
D^n_1 &= -\int_Q ((1 - \psi_\delta) \varphi)_{\delta} v_n, \\
D^n_2 &= \int_Q A(x, t, \nabla u_n) \cdot \nabla ((1 - \psi_\delta) \varphi), \\
D^n_3 &= \int_Q (1 - \psi_\delta) \varphi d\lambda_{n,0} \\
D^n_4 &= \int_Q (1 - \psi_\delta) \varphi d(\rho_{n,0} - \eta_{n,0}) + \int_Q (1 - \psi_\delta) \varphi d(\rho_{n,s} - \eta_{n,s}) - (\rho_{n,s} - \eta_{n,s}) \}
\]

Clearly, \(D_{i,m} - D^n_i = \omega(n, m) \) for \(i = 1, 2, 3 \). From Lemma (5.3) and (5.2)-(5.4), we obtain \(D_{5,m} = \omega(n, m, \delta) \), and

\[
\begin{align*}
\frac{1}{m} \int_{\{ m \leq v < 2m \}} \psi_\delta \varphi A(x, t, \nabla u). \nabla v &= \omega(n, m, \delta),
\end{align*}
\]

thus,

\[
\begin{align*}
D_{4,m} = \frac{1}{m} \int_{\{ m \leq v < 2m \}} \varphi A(x, t, \nabla u). \nabla v + \omega(n, m, \delta).
\end{align*}
\]
Since \(|\int_Q (1 - \psi_\delta^\pm) \varphi \, d\eta_n| \leq \|\varphi\|_{L^\infty} \int_Q (1 - \psi_\delta^\pm) \, d\eta_n \), it follows that \(\int_Q (1 - \psi_\delta^\pm) \varphi \, d\eta_n = \omega(n, m, \delta) \) from (5.4). And \(|\int_Q \psi_\delta^\pm \varphi \, d\rho_n| \leq \|\varphi\|_{L^\infty} \int_Q \psi_\delta^\pm \, d\rho_n \), thus, from (5.2), \(\int_Q (1 - \psi_\delta^\pm) \varphi \, d\rho_n = \int_Q \varphi \, d\mu_\delta^\pm + \omega(n, m, \delta) \). Then \(D = \int_Q \varphi \, d\mu_\delta^\pm + \omega(n, m, \delta) \). Therefore by substraction, we get

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \varphi A(x, t, \nabla u) \cdot \nabla v = \int_Q \varphi \, d\mu_\delta^\pm + \omega(n, m, \delta),
\]

hence

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \varphi A(x, t, \nabla u) \cdot \nabla v = \int_Q \varphi \, d\mu_\delta^\pm,
\]

which proves (4.3) when \(\varphi \in C_\infty^\infty(Q) \). Next assume only \(\varphi \in C^\infty(\overline{Q}) \). Then

\[
\lim_{m \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \varphi A(x, t, \nabla u) \cdot \nabla v = \int_Q \varphi \, d\mu_\delta^\pm + D,
\]

where,

\[
D = \int_Q \varphi (1 - \psi_\delta^\pm) \, d\mu_\delta^\pm + \lim_{n \to \infty} \frac{1}{m} \int_{\{m \leq v < 2m\}} \varphi (1 - \psi_\delta^\pm) A(x, t, \nabla u) \cdot \nabla v = \omega(\delta).
\]

Therefore, (5.33) still holds for \(\varphi \in C_\infty^\infty(\overline{Q}) \), and we deduce (4.3) by density, and similarly, (4.4). This completes the proof of Theorem 2.1.

As a consequence of Theorem 2.1, we get the following:

Corollary 5.7 Let \(u_0 \in L^1(\Omega) \) and \(\mu \in M_b(\Omega) \). Then there exists a R-solution \(u \) to the problem 1.1 with data \((\mu, u_0)\). Furthermore, if \(v_0 \in L^1(\Omega) \) and \(\omega \in M_b(\Omega) \) such that \(u_0 \leq v_0 \) and \(\mu \leq \omega \), then one can find R-solution \(v \) to the problem 1.1 with data \((\omega, v_0)\) such that \(u \leq v \).

In particular, if \(a \equiv 0 \) in (1.2), then \(u \) satisfies (4.21) and \(\|v\|_{L^\infty((0,T);L^1(\Omega))} \leq M \) with \(M = \|u_0\|_{L^1(\Omega)} + \|\mu\|_{L^1(\Omega)} \).

6 Equations with perturbation terms

Let \(A : Q \times \mathbb{R}^N \to \mathbb{R}^N \) satisfying (1.2), (1.3) with \(a \equiv 0 \). Let \(G : \Omega \times (0,T) \times \mathbb{R} \to \mathbb{R} \) be a Caratheodory function. If \(U \) is a function defined in \(Q \) we define the function \(G(U) \) in \(Q \) by

\[
G(U)(x,t) = G(x,t,U(x,t)) \quad \text{for a.e. } (x,t) \in Q.
\]
We consider the problem (1.5):
\[
\begin{cases}
 u_t - \text{div}(A(x,t,\nabla u)) + G(u) = \mu & \text{in } Q, \\
 u = 0 & \text{in } \partial\Omega \times (0,T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}
\]
where $\mu \in \mathcal{M}_b(Q)$, $u_0 \in L^1(\Omega)$. We say that u is a R-solution of problem (1.5) if $G(u) \in L^1(Q)$ and u is a R-solution of (1.1) with data $(\mu - G(u), u_0)$.

6.1 Subcritical type results

For proving Theorem 2.2, we begin by an integration Lemma:

Lemma 6.1 Let G satisfying (2.3). If a measurable function V in Q satisfies
\[
\text{meas}\{ |V| \geq t \} \leq Mt^{-p_c}, \quad \forall t \geq 1,
\]
for some $M > 0$, then for any $L > 1$,
\[
\int_{\{|V| \geq L\}} G(|V|) \leq p_cM \int_L^{\infty} G(s) s^{-1-p_c} ds. \tag{6.1}
\]

Proof. Indeed, setting $G_L(s) = \chi_{[L,\infty)}(s)G(s)$, we have
\[
\int_{\{|V| \geq L\}} G(|V|) dxdt = \int_Q G_L(|V|) dxdt \leq \int_0^{\infty} G_L(|V|^*(s)) ds
\]
where $|V|^*$ is and the rearrangement of $|V|$, defined by
\[
|V|^*(s) = \inf \{ a > 0 : \text{meas}\{ |V| > a \} \leq s \}, \quad \forall s \geq 0.
\]
From the assumption, we get $|V|^*(s) \leq \sup \left((Ms^{-1})^{p_c-1}, 1 \right)$. Thus, for any $L > 1$,
\[
\int_{\{|V| \geq L\}} G(|V|) dxdt \leq \int_0^{\infty} G_L \left(\sup \left((Ms^{-1})^{p_c-1}, 1 \right) \right) ds = p_cM \int_L^{\infty} G(s) s^{-1-p_c} ds,
\]
which implies (6.1).

Proof of Theorem 2.2. Proof of (i) Let $\mu = \mu_0 + \mu_s \in \mathcal{M}_b(Q)$, with $\mu_0 \in \mathcal{M}_0(Q), \mu_s \in \mathcal{M}_s(Q)$, and $u_0 \in L^1(\Omega)$. Then μ^+_0, μ^-_0 can be decomposed as $\mu^+_0 = (f_1, g_1, h_1), \mu^-_0 = (f_2, g_2, h_2)$. Let $\mu_{s,i} \in C_c^\infty(Q), \mu_{s,i} \geq 0$, converging respectively to μ^+_s, μ^-_s in the narrow topology. By Lemma 3.1, we can find $f_{n,i}, g_{n,i}, h_{n,i} \in C_c^\infty(Q)$ which strongly converge to f_i, g_i, h_i in $L^1(Q)$, $\left(L^p(Q) \right)^N$ and
Let \(u_n = \mu_{n,0,1} + \mu_{n,0,2} + \mu_{n,s,1} + \mu_{n,s,2} \), then \(|\mu_n|(|Q|) \leq |\mu|(Q) \). Consider a sequence \(\{u_{0,n}\} \subset C_c^\infty(\Omega) \) which strongly converges to \(u_0 \) in \(L^1(\Omega) \) and satisfies \(||u_{0,n}||_{1,\Omega} \leq ||u_0||_{1,\Omega} \).

Let \(u_n \) be a solution of

\[
\begin{cases}
(u_n)_t - \text{div}(A(x,t,\nabla u_n)) + G(u_n) = \mu_n & \text{in } Q, \\
u_n = 0 & \text{on } \partial \Omega \times (0,T), \\
u_n(0) = u_{0,n} & \text{in } \Omega.
\end{cases}
\]

We can choose \(\varphi = \varepsilon^{-1}T_\varepsilon(u_n) \) as test function of above problem. Then we find

\[
\int_Q (\varepsilon^{-1}T_\varepsilon(u_n))_t + \int_Q \varepsilon^{-1}A(x,t,\nabla T_\varepsilon(u_n)) \cdot \nabla T_\varepsilon(u_n) + \int_Q G(x,t,u_n)\varepsilon^{-1}T_\varepsilon(u_n) = \int_Q \varepsilon^{-1}T_\varepsilon(u_n)d\mu_n.
\]

Since

\[
\int_Q (\varepsilon^{-1}T_\varepsilon(u_n))_t = \int_\Omega \varepsilon^{-1}T_\varepsilon(u_n(T))dx - \int_\Omega \varepsilon^{-1}T_\varepsilon(u_{0,n})dx \geq -||u_{0,n}||_{L^1(\Omega)},
\]

there holds

\[
\int_Q G(x,t,u_n)\varepsilon^{-1}T_\varepsilon(u_n) \leq |\mu_n|(Q) + ||u_{0,n}||_{L^1(\Omega)} \leq |\mu|(Q) + ||u_0||_{1,\Omega}.
\]

Letting \(\varepsilon \to 0 \), we obtain

\[
\int_Q |G(x,t,u_n)| \leq |\mu|(Q) + ||u_0||_{1,\Omega}.
\]

Next apply Proposition 4.8 and Remark 4.9 to \(u_n \) with initial data \(u_{0,n} \) and measure data \(\mu_n - G(u_n) \in L^1(\Omega) \), we get

\[
\text{meas} \{|u_n| \geq s\} \leq C(|\mu|(Q) + ||u_0||_{L^1(\Omega)}) \frac{\varepsilon^{\frac{n}{s}}}{s^{-p_c}}, \quad \forall s > 0, \forall n \in \mathbb{N},
\]

for some \(C = C(N,p,c_1,c_2) \). Since \(|G(x,t,u_n)| \leq G(|u_n|) \), we deduce from (6.1) that \(\{G(u_n)\} \) is equi-integrable. Then, thanks to Proposition 4.10, up to a subsequence, \(\{u_{n}\} \) converges to some function \(u \), a.e. in \(Q \), and \(\{G(u_n)\} \) converges to \(G(u) \) in \(L^1(Q) \). Therefore, by Theorem 2.1, \(u \) is a R-solution of (2.4).

Proof of (ii). Let \(\{u_n\}_{n \geq 1} \) be defined by induction as nonnegative R-solutions of

\[
\begin{cases}
(u_1)_t - \text{div}(A(x,t,\nabla u_1)) = \mu & \text{in } Q, \\
u_1 = 0 & \text{on } \partial \Omega \times (0,T), \\
u_1(0) = u_0 & \text{in } \Omega,
\end{cases}
\]

\[
\begin{cases}
(u_{n+1})_t - \text{div}(A(x,t,\nabla u_{n+1})) = \mu - \lambda G(u_n) & \text{in } Q, \\
u_{n+1} = 0 & \text{on } \partial \Omega \times (0,T), \\
u_{n+1}(0) = u_n & \text{in } \Omega,
\end{cases}
\]

The proof is similar to that of (i) and is omitted here.

37
Thanks to Corollary 5.7 we can assume that \{u_n\} is nondecreasing and satisfies for any \(s > 0 \) and \(n \in \mathbb{N} \)

\[
\text{meas}\{ |u_n| \geq s \} \leq C_1 K_n s^{-p_c}, \tag{6.3}
\]

where \(C_1 \) does not depend on \(s,n, \) and

\[
K_1 = (||u_0||_{L^1(\Omega)} + ||\mu||_{L^1(\Omega)})^{\frac{p_c}{p_c - N}},
\]

\[
K_{n+1} = (||u_0||_{L^1(\Omega)} + ||\mu||_{L^1(\Omega)} + \lambda ||\mathcal{G}(u_n)||_{L^1(\Omega)})^{\frac{p_c}{p_c - N}},
\]

for any \(n \geq 1. \) Take \(\varepsilon = \lambda + ||\mu||_{L^1(\Omega)} \leq 1. \) Denoting by \(C_i \) some constants independent on \(n, \varepsilon, \) there holds

\[
K_{n+1} \leq C_3 \varepsilon (||\mathcal{G}(u_n)||_{L^1(\Omega)}^{1+p_c} + 1).
\]

From (6.1) and (6.3), we find

\[
||\mathcal{G}(u_n)||_{L^1(Q)} \leq |Q| G(2) + \int_{\{u_n \geq 2\}} G(|u_n|) \, dx \, dt \leq |Q| G(2) + C_4 K_n \int_2^\infty G(s) s^{-1-p_c} \, ds.
\]

Thus, \(K_{n+1} \leq C_5 \varepsilon (K_n^{1+p_c} + 1). \) Therefore, if \(\varepsilon \) is small enough, \(\{K_n\} \) is bounded. Then, again from (6.1) and the relation \(|\mathcal{G}(x,t,u_n)| \leq G(|u_n|) \) we verify that \(\{\mathcal{G}(u_n)\} \) converges. Then by Theorem 2.1, up to a subsequence, \(\{u_n\} \) converges to a R-solution \(u \) of (2.5).

\[\square\]

6.2 General case with absorption terms

In the sequel we assume that \(A : \Omega \times \mathbb{R}^N \mapsto \mathbb{R}^N \) does not depend on \(t. \) We recall a result obtained in [53],[17] in the elliptic case:

Theorem 6.2 Let \(\Omega \) be a bounded domain of \(\mathbb{R}^N. \) Let \(A : \Omega \times \mathbb{R}^N \mapsto \mathbb{R}^N \) satisfying (1.6),(1.7). Then there exists a constant \(\kappa \) depending on \(N,p,c_3,c_4 \) such that, if \(\omega \in M_b(\Omega) \) and \(u \) is a R-solution of problem

\[
\begin{cases}
- \text{div}(A(x,\nabla u)) = \omega & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

there holds

\[
-\kappa W^{2\text{diam}(\Omega)}_{1,p}[\omega^-] \leq u \leq \kappa W^{2\text{diam}(\Omega)}_{1,p}[\omega^+]. \tag{6.4}
\]

Next we give a general result in case of absorption terms:

Theorem 6.3 Let \(p < N, \) \(A : \Omega \times \mathbb{R}^N \mapsto \mathbb{R}^N \) satisfying (1.6),(1.7), and \(\mathcal{G} : Q \times \mathbb{R} \mapsto \mathbb{R} \) be a Caratheodory function such that the map \(s \mapsto \mathcal{G}(x,t,s) \) is nondecreasing and odd, for a.e. \((x,t) \) in \(Q. \)
Let $\mu_1, \mu_2 \in M^+_b(Q)$ such that there exist $\omega_n \in M^+_b(\Omega)$ and nondecreasing sequences $\{\mu_{1,n}\}, \{\mu_{2,n}\}$ in $M^+_b(Q)$ with compact support in Q, converging to μ_1, μ_2, respectively in the narrow topology, and
\[
\mu_{1,n}, \mu_{2,n} \leq \omega_n \otimes \chi(0,T), \quad G((n + \kappa W^{2diam(\Omega)}_{1,p}[\omega_n])) \in L^1(Q),
\]
where the constant c is given at Theorem 6.2. Let $u_0 \in L^1(\Omega)$, and $\mu = \mu_1 - \mu_2$. Then there exists a R-solution u of problem (1.5).

Moreover if $u_0 \in L^\infty(\Omega)$, and $\omega_n \leq \gamma$ for any $n \in \mathbb{N}$, for some $\gamma \in M^+_b(\Omega)$, then a.e. in Q,
\[
|u(x,t)| \leq \kappa W^{2diam\Omega}_{1,p}\gamma(x) + ||u_0||_{\infty,\Omega}. \quad (6.5)
\]

For proving this result, we need two Lemmas:

Lemma 6.4 Let G satisfy the assumptions of Theorem 6.3 and $G \in L^\infty(\Omega \times \mathbb{R})$. For $i = 1, 2$, let $u_{0,i} \in L^\infty(\Omega)$ be nonnegative, and $\lambda_i = \lambda_{i,0} + \lambda_{i,s} \in M^+_b(Q)$ with compact support in Q, $\gamma \in M^+_b(\Omega)$ with compact support in Ω such that $\lambda_i \leq \gamma \otimes \chi(0,T)$. Let $\lambda_{i,0} = (f_i, g_i, h_i)$ be a decomposition of $\lambda_{i,0}$ into functions with compact support in Q. Then, there exist R-solutions $u, u_{1,2}$, to problems
\[
u_i - \text{div}(A(x,\nabla u_i)) + G(u_i) = \lambda_i - \lambda_2 \quad \text{in } Q, \quad u = 0 \quad \text{on } \partial\Omega \times (0,T), \quad u(0) = u_{0,1} - u_{0,2},
\]
\[
(u_i)_t - \text{div}(A(x,\nabla u_i)) + G(u_i) = \lambda_i \quad \text{in } Q, \quad u_i = 0 \quad \text{on } \partial\Omega \times (0,T), \quad u_i(0) = u_{0,i},
\]
relative to decompositions $(f_{1,n} - f_{2,n} - G(u_n), g_{1,n} - g_{2,n}, h_{1,n} - h_{2,n})$, $(f_{i,n} - G(u_{i,n}), g_{i,n}, h_{i,n})$, such that a.e. in Q,
\[
-||u_{0,2}||_{\infty,\Omega} - \kappa W^{2diam\Omega}_{1,p}\gamma(x) \leq -u_2(x,t) \leq u(x,t) \leq u_1(x,t) \leq \kappa W^{2diam\Omega}_{1,p}\gamma(x) + ||u_{0,1}||_{\infty,\Omega},
\]
and
\[
\int_Q |G(u)| \leq \sum_{i=1,2} (\lambda_i(Q) + ||u_{0,i}||_{L^1(\Omega)}), \quad \text{and} \quad \int_Q G(u_i) \leq \lambda_i(Q) + ||u_{0,i}||_{1,\Omega}, \quad i = 1, 2. \quad (6.9)
\]
Furthermore, assume that \mathcal{H}, \mathcal{K} have the same properties as G, and $\mathcal{H}(x,t,s) \leq G(x,t,s) \leq \mathcal{K}(x,t,s)$ for any $s \in (0,\infty)$ and a.e. in Q. Then, one can find solutions $u_i(\mathcal{H}), u_i(\mathcal{K})$, corresponding to \mathcal{H}, \mathcal{K} with data λ_i, such that $u_i(\mathcal{H}) \geq u_i(\mathcal{K}), i = 1, 2$.

Assume that ω_i, θ_i have the same properties as λ_i and $\omega_i \leq \lambda_i \leq \theta_i$, $u_{0,1,1}, u_{0,1,2} \in L^\infty(\Omega)$, $u_{0,1,2} \leq u_{0,1} \leq u_{0,1,1}$. Then one can find solutions $u_i(\omega_i), u_i(\theta_i)$, corresponding to $(\omega_i, u_{0,1,2}),(\theta_i, u_{0,1,1})$, such that $u_i(\omega_i, u_{0,1,2}) \leq u_i \leq u_i(\theta_i, u_{0,1,1})$.

Proof. Let $\{\varphi_{1,n}\}, \{\varphi_{2,n}\}$ be sequences of mollifiers in \mathbb{R} and \mathbb{R}^N, and $\varphi_n = \varphi_{1,n} \varphi_{2,n}$. Set $\gamma_n = \varphi_{2,n} * \gamma$, and for $i = 1, 2$, $u_{0,1,2} = \varphi_{2,n} * u_{0,i}$,
\[
\lambda_{i,n} = \varphi_n * \lambda_i = f_{i,n} - \text{div}(g_{i,n}) + (h_{i,n})_t + \lambda_{i,s,n},
\]
where $f_{i,n} = \varphi_n * f_i, g_{i,n} = \varphi_n * g_i, h_{i,n} = \varphi_n * h_i, \lambda_{i,s,n} = \varphi_n * \lambda_{i,s}$, and
\[
\lambda_n = \lambda_{1,n} - \lambda_{2,n} = f_n - \text{div}(g_n) + (h_n)_t + \lambda_{s,n},
\]

39
where \(f_n = f_{1,n} - f_{2,n} \), \(g_n = g_{1,n} - g_{2,n} \), \(h_n = h_{1,n} - h_{2,n} \), \(\lambda_{s,n} = \lambda_{1,s,n} - \lambda_{2,s,n} \). Then for \(n \) large enough, \(\lambda_{1,n}, \lambda_{2,n}, \lambda_n \in C_c^\infty(Q) \), \(\gamma_n \in C_c^\infty(\Omega) \). Thus there exist unique solutions \(u_n, u_{i,n}, v_{i,n} \), \(i = 1, 2 \), of problems

\[
(u_n) - \text{div}(A(x, \nabla u_n)) + G(u_n) = \lambda_{1,n} - \lambda_{2,n} \quad \text{in } Q, \quad u_n = 0 \quad \text{on } \partial \Omega \times (0, T), \quad u_n(0) = u_{0,1,n} - u_{0,2,n} \quad \text{in } \Omega, \\
(u_{i,n}) - \text{div}(A(x, \nabla u_{i,n})) + G(u_{i,n}) = \lambda_n \quad \text{in } Q, \quad u_{i,n} = 0 \quad \text{on } \partial \Omega \times (0, T), \quad u_{i,n}(0) = u_{0,i,n} \quad \text{in } \Omega, \\
- \text{div}(A(x, \nabla w_n)) = \gamma_n \quad \text{in } \Omega, \quad w_n = 0 \quad \text{on } \partial \Omega,
\]

such that

\[-||u_{0,2}||_{\infty, \Omega} - w_n(x) \leq -u_{2,n}(x, t) \leq u_{1,n}(x, t) \leq w_n(x) + ||u_{0,1}||_{\infty, \Omega}, \quad a.e. \text{ in } Q.\]

Moreover, as in the Proof of Theorem 2.2, (i), there holds

\[
\int_Q |G(u_n)| \leq \sum_{i=1,2} (\lambda_i(Q) + ||u_{0,i,n}||_{1, \Omega}), \quad \text{and} \quad \int_Q G(u_{i,n}) \leq \lambda_i(Q) + ||u_{0,i,n}||_{1, \Omega}, \quad i = 1, 2.
\]

By Proposition 4.10, up to a common subsequence, \(\{u_n, u_{1,n}, u_{2,n}\} \) converge to some \((u, u_1, u_2) \), \(a.e. \) in \(Q \). Since \(G \) is bounded, in particular, \(\{G(u_n)\} \) converges to \(G(u) \) and \(\{G(u_{i,n})\} \) converges to \(G(u_i) \) in \(L^1(\Omega) \). Thus, (6.9) is satisfied. Moreover \(\{\lambda_{i,n} - G(u_{i,n}), f_{i,n} - G(u_{i,n}), g_{i,n}, h_{i,n}, \lambda_{i,s,n}, u_{0,i,n}\} \) and \(\{\lambda_n - G(u_n), f_n - G(u_n), g_n, h_n, \lambda_{s,n}, u_{0,1,n} - u_{0,2,n}\} \) are approximations of \((\lambda_i - G(u_i), f_i - G(u_i), g_i, h_i, \lambda_i, u_{0,i}) \) and \((\lambda - G(u), f - G(u), g, h, \lambda, u_{0,1} - u_{0,2}) \), in the sense of Theorem 2.1. Thus, we can find (different) subsequences converging \(a.e. \) to \(u, u_1, u_2 \), \(R \)-solutions of (6.6) and (6.7). Furthermore, from [47, Corollary 3.4], up to a subsequence, \(\{w_n\} \) converges \(a.e. \) in \(Q \) to a \(R \)-solution

\[-\text{div}(A(x, \nabla w)) = \gamma \quad \text{in } \Omega, \quad w = 0 \quad \text{on } \partial \Omega,
\]

such that \(w \leq cW_{1,p}^{2diam(\Omega)}, \gamma \) \(a.e. \) in \(\Omega \). Hence, we get the inequality (6.8). The other conclusions follow in the same way. \(\blacksquare \)

Lemma 6.5 Let \(G \) satisfy the assumptions of Theorem 6.3. For \(i = 1, 2 \), let \(u_{0,i} \in L^\infty(\Omega) \) be nonnegative, \(\lambda_i \in M_b^+(Q) \) with compact support in \(Q \), and \(\gamma \in M_b^+(\Omega) \) with compact support in \(\Omega \), such that

\[
\lambda_i \leq \gamma \otimes \chi_{(0,T)}, \quad G(||u_{0,i}||_{\infty, \Omega} + nW_{1,p}^{2diam(\Omega), \gamma}) \in L^1(\Omega). \tag{6.10}
\]

Then, there exist \(R \)-solutions \(u, u_1, u_2 \) of the problems (6.6) and (6.7), respectively relative to the decompositions \((f_1 - f_2 - G(u), g_1 - g_2, h_1 - h_2), (f_i - G(u_i), g_i, h_i) \), satisfying (6.8) and (6.9).

Moreover, assume that \(\omega_i, \theta_i \) have the same properties as \(\lambda_i \) and \(\omega_i \leq \lambda_i \leq \theta_i \), \(u_{0,i,1}, u_{0,i,2} \in L^\infty(\Omega) \), \(u_{0,i,2} \leq u_{0,i} \leq u_{0,i,1} \). Then, one can find solutions \(u_i(\omega_i, u_{0,i,2}), u_i(\theta_i, u_{0,i,1}), \) corresponding with \((\omega_i, u_{0,i,2}), (\theta_i, u_{0,i,1}) \), such that \(u_i(\omega_i, u_{0,i,2}) \leq u_i \leq u_i(\theta_i, u_{0,i,1}) \).
Proof. From Lemma 6.4 there exist R-solutions \(u_n, u_{i,n} \) to problems

\begin{align*}
(u_n)_t &- \text{div}(A(x, \nabla u_n)) + T_n(\mathcal{G}(u_n)) = \lambda_1 - \lambda_2 \quad \text{in } Q, \quad u_n(0) = 0 \quad \text{on } \partial \Omega \times (0,T), \quad u_n(0) = u_{0,1} - u_{0,2}
\end{align*}

\begin{align*}
(u_{i,n})_t &- \text{div}(A(x, \nabla u_{i,n})) + T_n(\mathcal{G}(u_{i,n})) = \lambda_i \quad \text{in } Q, \quad u_{i,n}(0) = 0 \quad \text{on } \partial \Omega \times (0,T), \quad u_{i,n}(0) = u_{0,i},
\end{align*}

relative to the decompositions \((f_1 - f_2 - T_n(\mathcal{G}(u_n), g_1 - g_2, h_1 - h_2), (f_1 - T_n(\mathcal{G}(u_{i,n}), g_i, h_i))\); and they satisfy

\begin{equation}
\int_Q |T_n(\mathcal{G}(u_n))| \leq \sum_{i=1,2} \left| (\lambda_i(Q) + \| u_{0,i} \|_{1,\Omega}) \right|, \quad \text{and} \quad \int_Q T_n(\mathcal{G}(u_{i,n})) \leq \lambda_i(Q) + \| u_{0,i} \|_{1,\Omega}.
\end{equation}

As in Lemma 6.4, up to a common subsequence, \(\{u_n, u_{1,n}, u_{2,n}\} \) converges a.e. in \(Q \) to \(\{u, u_1, u_2\} \) for which (6.8) is satisfied a.e. in \(Q \). From (6.10), (6.11) and the dominated convergence Theorem, we deduce that \(\{T_n(\mathcal{G}(u_n))\} \) converges to \(\mathcal{G}(u) \) and \(\{T_n(\mathcal{G}(u_{i,n}))\} \) converges to \(\mathcal{G}(u_i) \) in \(L^1(\Omega) \).

Thus, from Theorem 2.1, \(u \) and \(u_i \) are respective R-solutions of (6.6) and (6.7) relative to the decompositions \((f_1 - f_2 - \mathcal{G}(u), g_1 - g_2, h_1 - h_2), (f_i - \mathcal{G}(u_i), g_i, h_i)\), and (6.8) and (6.9 hold. The last statement follows from the same assertion in Lemma 6.4.

Proof of Theorem 6.3. By Proposition 3.2, for \(i = 1, 2 \), there exist \(f_{i,n}, f_i \in L^1(\Omega), g_{i,n}, g_i \in (L^p(\Omega))^N \) and \(h_{i,n}, h_i \in X, \mu_{i,n,s}, \mu_{i,s} \in \mathcal{M}_+^1(\Omega) \) such that

\begin{align*}
\mu_i &= f_i - \text{div} g_i + (h_i)_t + \mu_{i,s}, \quad \mu_{i,n} = f_{i,n} - \text{div} g_{i,n} + (h_{i,n})_t + \mu_{i,n,s},
\end{align*}

and \(\{f_{i,n}\}, \{g_{i,n}\}, \{h_{i,n}\} \) strongly converge to \(f_i, g_i, h_i \) in \(L^1(\Omega), (L^p(\Omega))^N \) and \(X \) respectively, and \(\{\mu_{i,n}\}, \{\mu_{i,s}\} \) converge to \(\mu_i, \mu_{i,s} \) (strongly) in \(\mathcal{M}_b(\Omega) \), and

\begin{equation}
\| f_{i,n} \|_{1,\Omega} + \| g_{i,n} \|_{p',Q} + \| h_{i,n} \|_X + \mu_{i,n,s}(\Omega) \leq 2\mu(Q).
\end{equation}

By Lemma 6.5, there exist R-solutions \(u_n, u_{i,n} \) to problems

\begin{align*}
(u_n)_t &- \text{div}(A(x, \nabla u_n)) + \mathcal{G}(u_n) = \mu_{1,n} - \mu_{2,n} \quad \text{in } Q, \quad u_n(0) = 0 \quad \text{on } \partial \Omega \times (0,T), \quad u_n(0) = T_n(u_0)
\end{align*}

\begin{align*}
(u_{i,n})_t &- \text{div}(A(x, \nabla u_{i,n})) + \mathcal{G}(u_{i,n}) = \mu_{i,n} \quad \text{in } Q, \quad u_{i,n}(0) = 0 \quad \text{on } \partial \Omega \times (0,T), \quad u_{i,n}(0) = T_n(u_{0,i}),
\end{align*}

for \(i = 1, 2 \), relative to the decompositions \((f_{1,n} - f_{2,n} - \mathcal{G}(u_n), g_{1,n} - g_{2,n}, h_{1,n} - h_{2,n}), (f_{i,n} - \mathcal{G}(u_{i,n}), g_{i,n}, h_{i,n})\), such that \(\{u_{i,n}\} \) is nondecreasing and nondecreasing, and \(-u_{2,n} \leq u_n \leq u_{1,n} \); and

\begin{equation}
\int_Q |\mathcal{G}(u_n)| \leq \mu_1(Q) + \mu_2(Q) + \| u_0 \|_{1,\Omega} \quad \text{and} \quad \int_Q \mathcal{G}(u_{i,n}) \leq \mu_i(Q) + \| u_0 \|_{1,\Omega}, \quad i = 1, 2.
\end{equation}

As in the proof of Lemma 6.5, up to a common subsequence \(\{u_n, u_{1,n}, u_{2,n}\} \) converge a.e. in \(Q \) to \(\{u, u_1, u_2\} \). Since \(\{\mathcal{G}(u_{i,n})\} \) is nondecreasing and nonnegative, from the monotone convergence
Theorem and (6.14), we obtain that \(\{\mathcal{G}(u_{i,n})\} \) converges to \(\mathcal{G}(u) \) in \(L^1(Q) \), \(i = 1, 2 \). Finally, \(\{\mathcal{G}(u_n)\} \) converges to \(\mathcal{G}(u) \) in \(L^1(Q) \), since \(|\mathcal{G}(u_n)| \leq \mathcal{G}(u_{1,n}) + \mathcal{G}(u_{2,n}) \). Thus, we can see that

\[
\{\mu_{1,n} - \mu_{2,n} - \mathcal{G}(u_n), f_{1,n} - f_{2,n} - \mathcal{G}(u_n), g_{1,n} - g_{2,n}, h_{1,n} - h_{2,n}, \mu_{1,s,n} - \mu_{2,s,n}, T_n(u_n^+) - T_n(u_n^-)\}
\]
is an approximation of \((\mu_1 - \mu_2 - \mathcal{G}(u), f_1 - f_2 - \mathcal{G}(u), g_1 - g_2, h_1 - h_2, \mu_{1,s} - \mu_{2,s}, u_0)\), in the sense of Theorem 2.1; and

\[
\{\mu_{i,n} - \mathcal{G}(u_{i,n}), f_{i,n} - \mathcal{G}(u_{i,n}), g_{i,n}, h_{i,n}, \mu_{i,s,n}, T_n(u_{i,n}^+)\}
\]
is an approximation of \((\mu_i - \mathcal{G}(u_i), f_i - \mathcal{G}(u_i), g_i, h_i, \mu_{i,s}, u_0^+)\). Therefore, \(u \) is a R-solution of (1.5), and (6.5) holds if \(u_0 \in L^\infty(\Omega) \) and \(\omega_n \leq \gamma \) for any \(n \in \mathbb{N} \) and some \(\gamma \in \mathcal{M}_b(\Omega) \).

As a consequence we prove Theorem 2.3. We use the following result of [17]:

Proposition 6.6 (see [17]) Let \(q > p - 1, \alpha \in \left(0, \frac{N(p+1)}{pq}\right) \), \(r > 0 \) and \(\nu \in \mathcal{M}_b^+(\Omega) \). If \(\nu \) does not charge the sets of \(C_{\alpha p, p+1-r} \)-capacity zero, there exists a nondecreasing sequence \(\{\nu_n\} \subset \mathcal{M}_b^+(\Omega) \) with compact support in \(\Omega \) which converges to \(\nu \) strongly in \(\mathcal{M}_b(\Omega) \) and such that \(W_{\alpha, p}^r[\nu_n] \in L^q(\mathbb{R}^N) \), for any \(n \in \mathbb{N} \).

Proof of Theorem 2.3. Let \(f \in L^1(Q), u_0 \in L^1(\Omega) \), and \(\mu \in \mathcal{M}_b(\Omega) \) such that \(|\mu| \leq \omega \otimes F \), where \(F \in L^1((0,T)) \) and \(\omega \) does not charge the sets of \(C_{p, p+1-r} \)-capacity zero. From Proposition 6.6, there exists a nondecreasing sequence \(\{\omega_n\} \subset \mathcal{M}_b^+(\Omega) \) with compact support in \(\Omega \) which converges to \(\omega \), strongly in \(\mathcal{M}_b(\Omega) \), such that \(W_{1,p}^{2\text{diam} \Omega}[\omega_n] \in L^q(\mathbb{R}^N) \). We can write

\[
f + \mu = \mu_1 - \mu_2, \quad \mu_1 = f^+ + \mu^+, \quad \mu_2 = f^- + \mu^-;
\]
and \(\mu^+, \mu^- \leq \omega \otimes F \). We set

\[
Q_n = \{(x,t) \in \Omega \times \left(0, \frac{1}{n}, T - \frac{1}{n}\right) : d(x, \partial \Omega) > \frac{1}{n}\}, \quad F_n = T_n(\chi_{\left(\frac{1}{n}, T - \frac{1}{n}\right)} F),
\]

\[
\mu_{1,n} = T_n(\chi_{Q_n} f^+) + \inf\{\mu^+, \omega_n \otimes F_n\}, \quad \mu_{2,n} = T_n(\chi_{Q_n} f^-) + \inf\{\mu^-, \omega_n \otimes F_n\}.
\]

Then \(\{\mu_{1,n}\}, \{\mu_{2,n}\} \) are nondecreasing sequences with compact support in \(Q \), and \(\mu_{1,n}, \mu_{2,n} \leq \tilde{\omega}_n \otimes \chi_{(0,T)}, \) with \(\tilde{\omega}_n = n(\chi_{\Omega} + \omega_n) \) and \((n + \kappa W_{1,p}^{2\text{diam} \Omega}[\omega_n])^q \in L^1(Q) \). Besides, \(\omega_n \otimes F_n \) converges to \(\omega \otimes F \) strongly in \(\mathcal{M}_b(Q) \), indeed we easily check that

\[
||\omega_n \otimes F_n - \omega \otimes F||_{\mathcal{M}_b(Q)} \leq ||F_n||_{L^1((0,T))} ||\omega_n - \omega||_{\mathcal{M}_b(\Omega)} + ||\omega||_{\mathcal{M}_b(\Omega)} ||F_n - F||_{L^1((0,T))}.
\]

Observe that for any measures \(\nu, \theta, \eta \in \mathcal{M}_b(Q) \), there holds

\[
||\inf\{\nu, \theta\} ||_{\mathcal{M}_b(Q)} - ||\inf\{\nu, \eta\} ||_{\mathcal{M}_b(Q)} \leq ||\theta - \eta||_{\mathcal{M}_b(Q)};
\]

hence \(\{\mu_{1,n}\}, \{\mu_{2,n}\} \) converge to \(\mu_1, \mu_2 \) respectively in \(\mathcal{M}_b(Q) \). Therefore, the result follows from Theorem 6.3. \(\blacksquare \)
Remark 6.7 Our result improves the existence results of [50], where \(\mu \in \mathcal{M}_0(Q) \). Indeed, let \(p_c = N(p - 1)/(N - p) \) be the critical exponent for the elliptic problem

\[
-\Delta_p w + |w|^{q-1} w = \omega \quad \text{in } \Omega, \quad w = 0 \quad \text{on } \partial \Omega.
\]

Notice that \(p_c < p_c, \) since \(p > p_1 \). If \(q \geq p_c, \) there exist measures \(\omega \in \mathcal{M}_0^+(\Omega) \) which do not charge the sets of \(C_{p,q+1}^{-1} \)-capacity zero, such that \(\omega \notin \mathcal{M}_{0,c}(\Omega) \). Then for any \(F \in L^1((0,T)) \), \(F \geq 0, F \neq 0, \) we have \(\omega \otimes F \notin \mathcal{M}_0(Q) \).

Remark 6.8 Let \(A : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) satisfying (1.6), (1.7). Let \(G : Q \times \mathbb{R} \rightarrow \mathbb{R} \) be a Caratheodory function such that the map \(s \mapsto G(x,t,s) \) is nondecreasing and odd, for a.e. \((x,t) \in Q\). Assume that \(\omega \in \mathcal{M}_{0,c}(\Omega) \). Thus, we have \(\omega\{x : W^{2}\text{diam}(\Omega)[\omega](x) = \infty}\} = 0 \). As in the proof of Theorem 2.3 with \(\eta_n = \chi_{W^{2}\text{diam}(\Omega)[\omega] \leq n} \), we get that (1.5) has a R-solution.

Remark 6.9 As in [17], from Theorem 6.3, we can extend Theorem 2.3 given for \(G(u) = |u|^{q-1} u \), to the case of a function \(G(x,t,.) \), odd for a.e. \((x,t) \in Q\), such that

\[
|G(x,t,u)| \leq G(|u|), \quad \int_1^{\infty} G(s)s^{-q-1}ds < \infty,
\]

where \(G \) is a nondecreasing continuous, under the condition that \(\omega \) does not charge the sets of zero \(C_{p,q+1}^{-1} \)-capacity, where for any Borel set \(E \subset \mathbb{R}^N \),

\[
C_{p,q+1}^{-1}(E) = \inf\{|\varphi|_{L^{\frac{q}{q-p+1}}(\mathbb{R}^N)} : \varphi \in L^{\frac{q}{q-p+1}}(\mathbb{R}^N), \quad G_p * \varphi \geq \chi_E\}
\]

where \(L^{\frac{q}{q-p+1}}(\mathbb{R}^N) \) is the Lorentz space of order \((q/(q-p+1),1)\).

In case \(G \) is of exponential type, we introduce the notion of maximal fractional operator, defined for any \(\eta \geq 0, \) \(R > 0, \) \(x_0 \in \mathbb{R}^N \) by

\[
M_{p,R}^{\omega}[\omega](x_0) = \sup_{t \in (0,R)} \frac{\omega(B(x_0,t))}{t^{N-p}h_{\eta}(t)}, \quad \text{where } h_{\eta}(t) = \inf((\ln t)^{-\eta},(\ln 2)^{-\eta}).
\]

We obtain the following:

Theorem 6.10 Let \(A : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) satisfying (1.6), (1.7). Let \(p < N \) and \(\tau > 0, \beta > 1, \mu \in \mathcal{M}_b(Q) \) and \(u_0 \in L^1(\Omega) \). Assume that \(|\mu| \leq \omega \otimes F, \) with \(\omega \in \mathcal{M}_b^{+}(\Omega) \), \(F \in L^1((0,T)) \) be nonnegative. Assume that one of the following assumptions is satisfied:

(i) \(||F||_{L^\omega((0,T))} \leq 1 \) and for some \(M_0 = M_0(N,p,\beta,\tau,c_3,c_4,\text{diam}\Omega) \),

\[
||M_{p,2\text{diam}(\Omega)}^{\frac{p-1}{p}}[\omega]||_{L^\infty(\mathbb{R}^N)} < M_0,
\]

(ii) there exists \(\beta_0 > \beta \) such that \(M_{p,2\text{diam}(\Omega)}^{\frac{p}{p}}[\omega] \in L^\infty(\mathbb{R}^N) \).
Thus, from Proposition 6.11 we get
\[
\exp(\varepsilon) = \exp(\varepsilon (1 + \varepsilon))
\]
Suppose Proposition 6.11 (see [17], Theorem 2.4) and conclude from Theorem 6.3.

Case 2: Assume that there exists \(\mu \) in \(\Omega \). Thus, \(\varepsilon > 0 \)
\[
\int_\Omega \exp \left(\frac{\delta}{\|M_{p,2 \text{diam}\Omega}[\nu]\|_{L^{\infty}(\mathbb{R}^N)}} \right) \leq \frac{C}{\delta_0 - \delta}.
\]

Proof of Theorem 6.10. Let \(Q_n \) be defined at (6.16), and \(\omega_n = \omega \chi_{\Omega_n} \), where \(\Omega_n = \{ x \in \Omega : d(x, \partial \Omega) > 1/n \} \). We still consider \(\mu_1, \mu_2, F_n, \mu_{1,n}, \mu_{2,n} \) as in (6.15), (6.17).

Case 1: Assume that \(|F|_{L^\infty((0,T))} \leq 1 \) and (6.18) holds. We have \(\mu_{1,n}, \mu_{2,n} \leq n \chi_{\Omega} + \omega \). For any \(\varepsilon > 0 \), there exists \(c_\varepsilon = c_\varepsilon(\varepsilon, N, p, \beta, \kappa, \text{diam}\Omega) > 0 \) such that
\[
(n + \kappa W_{1,p}^{2 \text{diam}\Omega}[n \chi_{\Omega} + \omega])^\beta \leq c_\varepsilon n^{\frac{\beta p}{p-1}} + (1 + \varepsilon)\kappa^\beta (W_{1,p}^{2 \text{diam}\Omega}[\omega])^\beta
\]
a.e. in \(\Omega \). Thus,
\[
\exp \left(\tau(n + \kappa W_{1,p}^{2 \text{diam}\Omega}[n \chi_{\Omega} + \omega])^\beta \right) \leq \exp \left(\tau c_\varepsilon n^{\frac{\beta p}{p-1}} \right) \exp \left(\tau(1 + \varepsilon)\kappa^\beta (W_{1,p}^{2 \text{diam}\Omega}[\omega])^\beta \right)
\]
If (6.18) holds with \(M_0 = (\delta_0/\tau\kappa^\beta)^{(p-1)/\beta} \) then we can chose \(\varepsilon \) such that
\[
\tau(1 + \varepsilon)\kappa^\beta \|M_{p,2 \text{diam}\Omega}[\nu]\|_{L^\infty(\mathbb{R}^N)} < \delta_0.
\]

From Proposition 6.11, we get \(\exp(\tau(1 + \varepsilon)\kappa^\beta W_{1,p}^{2 \text{diam}\Omega}[\omega])^\beta) \in L^1(\Omega) \), which implies \(\exp(\tau(n + \kappa^\beta W_{1,p}^{2 \text{diam}\Omega}[n \chi_{\Omega} + \omega])^\beta) \in L^1(\Omega) \) for all \(n \). We conclude from Theorem 6.3.

Case 2: Assume that there exists \(\varepsilon > 0 \) such that \(M_{p,2 \text{diam}\Omega}^{(p-1)/\beta(\varepsilon + \nu)}[\omega] \in L^\infty(\mathbb{R}^N) \). Now we use the inequality \(\mu_{1,n}, \mu_{2,n} \leq n(\chi_{\Omega} + \omega) \). For any \(\varepsilon > 0 \) and \(n \in \mathbb{N} \) there exists \(c_{\varepsilon,n} > 0 \) such that
\[
(n + \kappa^\beta W_{1,p}^{2 \text{diam}\Omega}[n(\chi_{\Omega} + \omega)])^\beta \leq c_{\varepsilon,n} + \varepsilon(W_{1,p}^{2 \text{diam}\Omega}[\omega])^\beta_0
\]
Thus, from Proposition 6.11 we get \(\exp(\tau(n + \kappa^\beta W_{1,p}^{2 \text{diam}\Omega}[n(\chi_{\Omega} + \omega)])^\beta) \in L^1(\Omega) \) for all \(n \). We conclude from Theorem 6.3.

\[\blacksquare\]
6.3 Equations with source term

As a consequence of Theorem 6.3, we get a first result for problem (1.1):

Corollary 6.12 Let \(A : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}^N \) satisfying (1.6)(1.7). Let \(u_0 \in L^\infty(\Omega) \), and \(\mu \in \mathcal{M}_b(Q) \) such that \(|\mu| \leq \omega \otimes \chi_{(0,T)} \) for some \(\omega \in \mathcal{M}_b^+(\Omega) \). Then there exist a R-solution \(u \) of (1.1), such that

\[
|u(x,t)| \leq \kappa W_{1,p}^{2\text{diam}(\Omega)}[\omega](x) + ||u_0||_{\infty,\Omega}, \quad \text{for a.e.} \ (x,t) \in Q, \tag{6.19}
\]

where \(\kappa \) is defined at Theorem 6.2.

Proof. Let \(\{\phi_n\} \) be a nonnegative, nondecreasing sequence in \(C_c^\infty(Q) \) which converges to 1, a.e. in \(Q \). Since \(\{\phi_n\mu^+\}, \{\phi_n\mu^-\} \) are nondecreasing sequences, the result follows from Theorem 6.3.

Our proof of Theorem 2.4 is based on a property of Wolff potentials:

Theorem 6.13 (see [53]) Let \(q > p - 1, \ 0 < p < N, \ \omega \in \mathcal{M}_b^+(\Omega) \). If for some \(\lambda > 0 \),

\[
\omega(E) \leq \lambda C_{p,\beta}(E) \quad \text{for any compact set} \ E \subset \mathbb{R}^N, \tag{6.20}
\]

then \((W_{1,p}^{2\text{diam}\Omega}[\omega])^q \in L^1(\Omega) \), and there exists \(M = M(N,p,q,\text{diam}(\Omega)) \) such that, a.e. in \(\Omega \),

\[
W_{1,p}^{2\text{diam}\Omega} \left[W_{1,p}^{2\text{diam}\Omega}[\omega] \right]^q \leq M \lambda^{\frac{q-1}{p-1}} W_{1,p}^{2\text{diam}\Omega}[\omega] < \infty. \tag{6.21}
\]

We deduce the following:

Lemma 6.14 Let \(\omega \in \mathcal{M}_b^+(\Omega) \), and \(b \geq 0 \) and \(K > 0 \). Suppose that \(\{u_m\}_{m \geq 1} \) is a sequence of nonnegative functions in \(\Omega \) that satisfies

\[
u_1 \leq K W_{1,p}^{2\text{diam}\Omega}[\omega] + b, \quad u_{m+1} \leq K W_{1,p}^{2\text{diam}\Omega}[u_m + b] \quad \text{for all} \ m \geq 1.
\]

Assume that \(\omega \) satisfies (6.20) for some \(\lambda > 0 \). Then there exist \(\lambda_0 \) and \(b_0 \), depending on \(N, p, q, K \), and \(\text{diam}(\Omega) \), such that, if \(\lambda \leq \lambda_0 \) and \(b \leq b_0 \), then \(W_{1,p}^{2\text{diam}\Omega}[\omega] \in L^q(\Omega) \) and for any \(m \geq 1 \),

\[
u_m \leq 2 \beta_p K W_{1,p}^{2\text{diam}\Omega}[\omega] + 2b, \quad \beta_p = \max(1, \frac{2-p}{p-1}). \tag{6.22}
\]

Proof. Clearly, (6.22) holds for \(m = 1 \). Now, assume that it holds at the order \(m \). Then

\[
u^q_m \leq 2^{q-1}(2\beta_p)^q (W_{1,p}^{2\text{diam}\Omega}[\omega])^q + 2^{q-1}(2b)^q.
\]

Using (6.21) we get

\[
u_{m+1} \leq K W_{1,p}^{2\text{diam}\Omega} \left[2^{q-1}(2\beta_p)^q (W_{1,p}^{2\text{diam}\Omega}[\omega])^q + 2^{q-1}(2b)^q + \omega \right] + b
\]

\[
\leq \beta_p K \left(A_1 W_{1,p}^{2\text{diam}\Omega} \left[(W_{1,p}^{2\text{diam}\Omega}[\omega])^q \right] + W_{1,p}^{2\text{diam}\Omega} [2b]^q \right) + b
\]

\[
\leq \beta_p K \left(A_1 M \lambda^{\frac{q-1}{p-1}} + 1 \right) W_{1,p}^{2\text{diam}\Omega}[\omega] + \beta_p K W_{1,p}^{2\text{diam}\Omega} [(2b)^q] + b
\]

\[
= \beta_p K \left(A_1 M \lambda^{\frac{q-1}{p-1}} + 1 \right) W_{1,p}^{2\text{diam}\Omega}[\omega] + A_2 b^{\frac{q}{p-1}} + b,
\]

45
where M is as in (6.21) and $A_1 = (2^{p-1}(2\beta_p)^{q(p-1)})^{1/(p-1)}$, $A_2 = \beta_p K^{q/(p-1)} B_1^{1/(p-1)} (p')^{-1}(2\text{diam}\Omega)^p$.

Thus, (6.22) holds for $m = n + 1$ if we prove that

$$A_1 M \lambda^{\frac{p-1}{p-1}} \leq 1$$

and $A_2 b^{\frac{n}{q-p+1}} \leq b$,

which is equivalent to

$$\lambda \leq (A_1 M)^{-\frac{(p-1)^2}{q-p+1}}$$

and

$$b \leq A_2^{\frac{n}{q-p+1}}.$$

Therefore, we obtain the result with $\lambda_0 = (A_1 M)^{-\frac{(p-1)^2}{q-p+1}}$ and $b_0 = A_2^{\frac{n}{q-p+1}}$. \hfill \blacksquare

Proof of Theorem 2.4. From Corollary 5.7 and 6.12, we can construct a sequence of nonnegative nondecreasing R-solutions $\{u_m\}_{m \geq 1}$ defined in the following way: u_1 is a R-solution of (1.1), and u_{m+1} is a nonnegative R-solution of

$$\left\{ \begin{array}{l}
(u_{m+1})_t - \text{div}(A(x, \nabla u_{m+1})) = u_m^q + \mu \\
u_{m+1} = 0 \\
u_{m+1}(0) = u_0
\end{array} \right. \quad \text{in } Q,$$

$$u_{m+1} = 0 \quad \text{on } \partial \Omega \times (0,T),$$

$$u_{m+1}(0) = u_0 \quad \text{in } \Omega.$$

Setting $\overline{u}_m = \sup_{t \in (0,T)} u_m(t)$ for all $m \geq 1$, there holds

$$\overline{u}_1 \leq \kappa \mathcal{W}_{1,p}^{2\text{diam}\Omega} \|\omega\| + \|u_0\|_{\infty,\Omega}, \quad \overline{u}_{m+1} \leq \kappa \mathcal{W}_{1,p}^{2\text{diam}\Omega} [\overline{u}_m + \omega] + \|u_0\|_{\infty,\Omega} \quad \forall m \geq 1.$$

From Lemma 6.14, we can find $\lambda_0 = \lambda_0(N, p, q, \text{diam}\Omega)$ and $b_0 = b_0(N, p, q, \text{diam}\Omega)$ such that if (2.7) is satisfied with λ_0 and b_0, then

$$u_m \leq \overline{u}_m \leq 2\beta_p \kappa \mathcal{W}_{1,p}^{2\text{diam}\Omega} \|\omega\| + 2\|u_0\|_{\infty,\Omega} \quad \forall m \geq 1. \quad (6.23)$$

Thus $\{u_m\}$ converges a.e. in Q and in $L^1(Q)$ to some function u, for which (2.9) is satisfied in Ω with $c = 2\beta_p \kappa$. Finally, one can apply Theorem 2.1 to the sequence of measures $\{u_m^q + \mu\}$, and obtain that u is a R-solution of (2.8). \hfill \blacksquare

Next we consider the exponential case.

Theorem 6.15 Let $A : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ satisfying (1.6),(1.7). Let $\tau > 0, l \in \mathbb{N}$ and $\beta \geq 1$ such that $l\beta > p - 1$. Set

$$E(s) = e^s - \sum_{j=0}^{l-1} \frac{s^j}{j!}, \quad \forall s \in \mathbb{R}. \quad (6.24)$$

Let $\mu \in \mathcal{M}_b^+(Q), \omega \in \mathcal{M}_b^+(\Omega)$ such that $\mu \leq \chi_{(0,T)} \otimes \omega$. Then, there exist b_0 and M_0 depending on N, p, β, τ, l and $\text{diam}\Omega$, such that if

$$\|M_{p,2\text{diam}\Omega}^{\beta(p-1)} \omega\|_{L^\infty(\mathbb{R}^N)} \leq M_0, \quad \|u_0\|_{\infty,\Omega} \leq b_0,$$

the problem

$$\left\{ \begin{array}{l}
u_t - \text{div}(A(x, \nabla u)) = E(\tau u^\beta) + \mu \\
u = 0 \\
u(0) = u_0
\end{array} \right. \quad \text{in } Q,$$

$$u = 0 \quad \text{on } \partial \Omega \times (0,T),$$

$$u(0) = u_0 \quad \text{in } \Omega \quad (6.25)$$

46
admits nonnegative R-solution \(u \), which satisfies, a.e. in \(Q \), for some \(c \), depending on \(N, p, c_3, c_4 \)
\[
u(x,t) \leq cW^{2\text{diam}\Omega}_{1,p} (\omega) + 2b_0.
\] (6.26)

For the proof we first recall an approximation property, which is a consequence of \([47, \text{Theorem 2.5}]\):

Theorem 6.16 Let \(\tau > 0, b \geq 0, K > 0, l \in \mathbb{N} \) and \(\beta \geq 1 \) such that \(l\beta > p - 1 \). Let \(\mathcal{E} \) be defined by (6.24). Let \(\{v_m\} \) be a sequence of nonnegative functions in \(\Omega \) such that, for some \(K > 0 \),
\[
v_1 \leq KW^{2\text{diam}\Omega}_{1,p} [\mu] + b, \quad v_{m+1} \leq KW^{2\text{diam}\Omega}_{1,p} [\mathcal{E}(\tau u_1^{\beta} + \mu)] + b, \quad \forall m \geq 1.
\]
Then, there exist \(b_0 \) and \(M_0 \), depending on \(N, p, \beta, \tau, l, K \) and \(\text{diam}\Omega \) such that if \(b \leq b_0 \) and
\[
\|M_{p,2\text{diam}\Omega}^{(p-1)\beta-1} \mu\|_{\infty, \mathbb{R}^N} \leq M_0,
\] (6.27)
then, setting \(c_p = 2\max(1, 2^{\frac{2}{p-1}}) \),
\[
\exp(\tau(Kc_pW^{2\text{diam}\Omega}_{1,p} [\mu] + 2b_0)^\beta) \in L^1(\Omega),
\]
\[
v_m \leq Kc_pW^{2\text{diam}\Omega}_{1,p} [\mu] + 2b_0, \quad \forall m \geq 1.
\] (6.28)

Proof of Theorem 6.15. From Corollary 5.7 and 6.12 we can construct a sequence of nonnegative nondecreasing R-solutions \(\{u_m\}_{m \geq 1} \) defined in the following way: \(u_1 \) is a R-solution of problem (1.1), and by induction, \(u_{m+1} \) is a R-solution of
\[
\begin{cases}
(u_{m+1})_t - \text{div}(A(x, \nabla u_{m+1})) = \mathcal{E}(\tau u_m^{\beta}) + \mu & \text{in } Q, \\
u^m_{m+1} = 0 & \text{on } \partial \Omega \times (0, T), \\
u^m_{m+1}(0) = u_0 & \text{in } \Omega.
\end{cases}
\]
And, setting \(\overline{u}_m = \sup_{t \in (0, T)} u_m(t) \), there holds
\[
\overline{u}_1 \leq \kappa W^{2\text{diam}\Omega}_{1,p} (\omega) + ||u_0||_{\infty, \Omega}, \quad \overline{u}^m_{m+1} \leq \kappa W^{2\text{diam}\Omega}_{1,p} [\mathcal{E}(\tau \overline{u}_m^{\beta}) + \omega] + ||u_0||_{\infty, \Omega}, \quad \forall m \geq 1.
\]
Thus, from Theorem 6.16, there exist \(b_0 \in (0, 1) \) and \(M_0 > 0 \) depending on \(N, p, \beta, \tau, l \) and \(\text{diam}\Omega \) such that, if (6.27) holds, then (6.28) is satisfied with \(v_m = \overline{u}_m \). As a consequence, \(u_m \) is well defined. Thus, \(\{u_m\} \) converges a.e. in \(Q \) to some function \(u \), for which (6.26) is satisfied in \(\Omega \). Furthermore, \(\mathcal{E}(\tau u_m^{\beta}) \) converges to \(\mathcal{E}(\tau u^\beta) \) in \(L^1(Q) \). Finally, one can apply Theorem 2.1 to the sequence of measures \(\mathcal{E}(\tau u_m^{\beta}) + \mu \), and obtain that \(u \) is a R-solution of (6.25). \(\blacksquare \)
Appendix

Proof of Lemma 4.7. Let J be defined by (4.11). Let $\zeta \in C^1_\zeta([0, T])$ with values in $[0, 1]$, such that $\zeta_t \leq 0$, and $\varphi = \zeta \kappa [j(S(v))]^t$. Clearly, $\varphi \in X \cap L^\infty(Q)$; we choose the pair of functions (φ, S) as test function in (4.2). Thanks to convergence properties of Steklov time-averages, we easily will obtain (4.15) if we prove that

$$\lim_{l \to 0, \zeta \to 1} \left(- \int_Q (\zeta \kappa [j(S(v))]^t) \xi S(v) \right) \geq - \int_Q \xi_t J(S(v)).$$

We can write $- \int_Q (\zeta \kappa [j(S(v))]^t) \xi S(v) = F + G$, with

$$F = - \int_Q (\zeta \kappa [j(S(v))]^t) \xi S(v), \quad G = - \int_Q \zeta \kappa [j(S(v))](x, t + l) - j(S(v))(x, t)).$$

Using (4.12) and integrating by parts we have

$$G \geq - \int_Q \zeta \kappa \frac{1}{t} (J(S(v)))(x, t + l) - J(S(v))(x, t))$$

$$= - \int_Q \zeta \kappa \frac{\partial}{\partial t} ([J(S(v))]^t_0) = \int_Q (\zeta \kappa [J(S(v))]^t_0) + \int_\Omega \zeta(0) \xi(0) [J(S(v))]^t(0)$$

$$\geq \int_Q (\zeta \kappa [J(S(v))]^t_0),$$

which achieves the proof.

References

