
HAL Id: hal-00874903
https://hal.science/hal-00874903

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Content Distribution and Communication
Scheduling for Several Restricted Classes of Graphs

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Constrained Content Distribution and Communication
Scheduling for Several Restricted Classes of Graphs. 10th IEEE International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC), Sep 2008, Timisoara, Romania.
pp.129-136, �10.1109/SYNASC.2008.50�. �hal-00874903�

https://hal.science/hal-00874903
https://hal.archives-ouvertes.fr

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

Constrained Content Distribution and Communication Scheduling for Several

Restricted Classes of Graphs

Mugurel Ionu� Andreica, Nicolae ��pu�

Computer Science and Engineering Department

Politehnica University of Bucharest

Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract—In this paper we address several problems regarding content distribution (broadcast) and communication optimization

and scheduling for some restricted classes of graphs (trees, intersecting cliques). For the broadcast problem in trees we introduce

some new extensions and present some new algorithmic results for determining optimal offline broadcast strategies. The

communication scheduling problems are also addressed from an offline algorithmic perspective, considering mutual exclusion

constraints or geometric aspects.

Keywords-broadcast strategy; tree network; intersecting cliques; mutual exclusion; communication scheduling

I. INTRODUCTION

Efficient communication is very important in many domains, like scientific computing, Grid file transfers and
computations, distributed web and Grid services, wireless networks and many others. However, with the world-wide
development and deployment of many distributed services, applications and systems, achieving efficient communication is
becoming more difficult, due to communication bottlenecks or inefficient usage of the available network resources (because of
the lack of information or of intelligent techniques). In this paper we consider several offline optimization problems which are
of general interest, like optimal broadcast strategies in tree networks under several models and considering several types of
restrictions and communication scheduling techniques on some restricted classes of graphs (either communication graphs,
mutual exclusion graphs or time graphs). Although in order to be of practical use, the techniques should be online, we believe
that efficient offline algorithms are of a huge importance, in order to provide insight into the optimal solution of a problem and
in order to facilitate a reliable performance evaluation of the online algorithms.

The rest of this paper is structured as follows. In Sections II, III and IV we study several variations of the constrained
single-port tree broadcast problem. In Section V we discuss several communication optimization problems, for which we
present efficient algorithmic solutions. In Section VI we consider the file transfer scheduling problem with a mutual exclusion
graph consisting of intersecting cliques. In Section VII we present some communication scheduling problems which are
modeled using some geometric aspects. In Section VIII we present related work and in Section IX we conclude.

II. MINIMUM TIME BROADCAST IN TREES WITH SENDING CONSTRAINTS

We consider a tree network with n vertices (numbered from 1 to n). A source node src needs to distribute a piece of content
to all the other vertices of the tree. In order to do this, it will use a broadcast strategy. At each moment t, the vertices can be
partitioned into two sets At and Bt. The vertices in the set At have already received the piece of content, while those in Bt did
not. Each vertex in the set At can send the piece of content to at most one neighboring vertex belonging to the set Bt.
Transmitting the content takes one time unit. Assuming that the vertices receiving the content sent at time t form the set Rt, at
time moment t+1, we have: At+1=At ∪ Rt and Bt+1=Bt\Rt. Initially (at t=0), A0={src} and B0={1,2,…,n}\{src}. The first time

moment T when AT={1,2,…,n} and BT=φ is equal to the duration after which every vertex of the tree receives the piece of

content (the broadcast time). Obviously, T depends on the sets Rt (t=0,1,…,T-1), chosen by the broadcast strategy. We are
interested in finding a broadcast strategy with a minimum broadcast time. When there are no other constraints, this problem is
well-known and an optimal algorithm was provided many years ago [1]. We will briefly present this algorithm. The tree is
rooted at the source node src, thus defining parent-son relationships. We compute the values Tmin(i) in a bottom-up fashion, for
each vertex i, where Tmin(i)=the minimum broadcast time for sending the piece of content from vertex i to all the vertices in its
subtree. For a leaf i, Tmin(i)=0. The optimal broadcast strategy of a vertex i having ns(i)�1 sons consists of sending the piece of
content to a different son during each of the first ns(i) time moments. Assuming that the sons are s(i,1), s(i,2), …, s(i,ns(i)), in
the order in which vertex i sends the content to them, the broadcast time is max{1+Tmin(s(i,1)), 2+Tmin(s(i,2)), …,
ns(i)+Tmin(s(i,ns(i)))}. The ordering of the sons which minimizes the broadcast time has the following property: Tmin(s(i,1)) �
Tmin(s(i,2)) � … � Tmin(s(i,ns(i))). A straight-forward implementation of this algorithm takes O(n·log(n)) time (because of the
step where the sons need to be sorted). In this section we consider the following extension of the problem. We are given a time

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

duration TM and for each vertex i and each time moment t in {0, 1, …, TM-1}, we are given a binary value sendb(i,t). If
sendb(i,t)=1, then the vertex i is blocked at time moment t, i.e. it cannot send anything to any neighboring vertex; if
sendb(i,t)=0, then vertex i is not blocked and can send the piece of content to a neighboring vertex at time t (if vertex i belongs
to the set At). We consider two cases: (i) at any time moment t�TM, no vertex is blocked (we have sendb(i,t)=0 for t�TM); (ii)
sendb(i,t)=sendb(i,t-TM), t�TM (the constraints are periodical). The motivation for this extension is given by several factors.
The vertices of the tree may be represented by computers which undergo some specific maintenance procedures which
temporarily disrupt the functionality of the sending interface. When the vertices have asymmetric upload and download
bandwidths, it is possible that at certain time moments, the entire upload bandwidth is used by another application, while
enough download bandwidth is still available for receiving the content. We will present exact, efficient algorithms for this
problem, using dynamic programming and greedy techniques.

A. A Dynamic Programming Algorithm

We will root the tree at the source vertex src and we will compute a table Tmin(i,t)=the minimum time moment when every
vertex in vertex i’s subtree has received the content, considering that vertex i received the piece of content at time moment t.
Tmin(src,0) will represent the minimum time duration after which every vertex of the tree receives the content (i.e. the
minimum duration of the broadcast strategy). We algorithmically compute the table for t<TM. In case (i), for t=TM we can
compute Tmin(i,TM) using the standard greedy algorithm we described (because there are no constraints) and
Tmin(i,t>TM)=Tmin(i,TM)+t-TM. In case (ii), Tmin(i,t�TM)=Tmin(i,t mod TM)+(t div TM)·TM, where we denote by (A div B) the
integer part of the division of A by B and by (A mod B) the remainder of the division. Based on these values, the optimal
broadcast strategy can be easily obtained. We will traverse the tree in a bottom-up fashion (from the leaves towards the root)
and compute all the required values for a vertex i. If i is a leaf, then Tmin(i,t)=t. Otherwise, let’s consider s(i,1), s(i,2), …,
s(i,ns(i)), the ns(i) sons of vertex i. Since there are no receiving constraints, the optimal broadcast strategy requires that vertex
i sends the content to its sons at the first ns(i) time moments when its sending capabilities are not blocked. Assuming that
vertex i receives the message at time moment t (and we want to compute Tmin(i,t)), we will determine the time moments
t�ts(i,t,1)<ts(i,t,2)<…<ts(i,t,ns(i)), such that sendb(i,ts(i,t, j))=0 and sendb(i,t’)=1, for ts(i,t,j)<t’<ts(i,t,j+1), 0�j�ns(i)-1
(with ts(i,t,0)=t-1). We can easily determine these time moments in O(TM+ns(i)) time: by inspecting all the time moments
t’’, starting from t and ending when ns(i) time moments with sendb(i,t’’)=0 were found, or when t’’�TM (and ns’(i)<ns(i)
moments were found) - in case (i), we add the moments TM, …, TM +ns(i)-ns’(i)-1; in case (ii), we can obtain P·ns’(i) extra
moments for any P�1, by shifting the first ns’(i) moments by a multiple of TM. Once the time moments are decided, all we
need to do is establish the order in which the sons will receive the content from vertex i. We will solve the following problem
first: we will choose an upper limit Tmax for the value of Tmin(i,t) and verify whether a valid ordering of the sons exists, such
that Tmin(i,t)�Tmax. It is obvious that the Tmin(v,*) values of a vertex v are non-decreasing, i.e. Tmin(v,t’)�Tmin(v,t’+1). We will
compute for each son s(i,j) of the vertex i the largest time moment tl(s(i,j),Tmax), such that Tmin(s(i,j),tl(s(i,j), Tmax)+1)�Tmax,
i.e. tl(s(i,j),Tmax) is the largest time moment at which vertex i can send the content to the son s(i,j), such that every vertex in
vertex s(i,j)’s subtree is still able to receive the piece of content by the time moment Tmax (or 0 if such an index does not
exist). We can compute tl(s(i,j) ,Tmax) for a son s(i,j) in O(log(TBOUND)) time, using a binary search and the afore-
mentioned property of the Tmin(v,*) values: (i) TBOUND=n+TM-1 ; (ii) TBOUND=n·TM-1. We then sort all the sons s(i,j) in
non-decreasing order of the tl(s(i,j),Tmax) values, i.e. we will have tl(s(i,1),Tmax)�tl(s(i,2), Tmax)�…�tl(s(i,ns(i)),Tmax). The
order in which the sons will receive the content from vertex i will be exactly this order of the tl(s(i,j),Tmax) values. This
ordering is valid if tl(s(i,j), Tmax)�ts(i,t,j), for all the values of j (1�j�ns(i)). If we first initialize Tmin(i,t) to +� and then binary
search the smallest value of Tmax such that there exists a valid ordering for the sons of the vertex i, we have already obtained
an algorithm which solves our problem, but its time complexity is too high. We will successively improve this algorithm.
First, we will improve the part where the values ts(i,t,j) are computed for a vertex i and a receiving time moment t. For t=0,
we will use the presented approach. As we move from the time moment t to t+1, we have the following situations:

• t<ts(i,t,1): in this case, ts(i,t+1,j)=ts(i,t,j) (1�j�ns(i)) and we do not need to perform other computations.

• t=ts(i,t,1): in this case, ts(i,t+1,j)=ts(i,t,j+1) (1�j�ns(i)-1) and we just need to search for the value ts(i,t+1,ns(i)) – we
will inspect all the time moments starting from ts(i,t,ns(i))+1, until we find the first time moment t’ such that
sendb(i,t’)=0 (we test at most the next TM moments).

It is easy to notice that we inspect O(TBOUND) time moments overall, for all the values of t. Thus, we obtain all the
values ts(i,t,j) in O(TBOUND/TM) amortized time for each pair (i,t). The time complexity is now O(n·
TBOUND)+n·TM·log(TBOUND)·(log(TBOUND)+log(n))).

The following changes constitute improvements only in some cases. We will replace the binary search for the values of
Tmin(i,t) with a linear search. When computing Tmin(i,0), we will start from Tmax=0 and increase it by 1, until we find a valid
ordering. For t>0, we will start the linear search from Tmax=Tmin(i,t-1) and increase Tmax until we find a valid ordering. We
notice that we only perform O(TBOUND) tests for all the O(TM) values of t (and a fixed vertex i). This way, we perform an
O(TBOUND/TM) amortized number of tests for each pair (i,t). The time complexity becomes O(n·
TBOUND·(log(TBOUND)+log(n))). Once we replaced the binary search for Tmax with a linear search, we can replace the
binary search for determining the value tl(s(i,j),Tmax) of each son with a linear search, as well. When we move from a candidate
value Tmax to the next candidate value Tmax+1, we linearly search for the values tl(s(i,j),Tmax+1) starting from tl(s(i,j),Tmax).

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

Using the same arguments as before, we obtain an O(1) amortized complexity for computing tl(s(i,j),Tmax) for each tuple
(i,j,Tmax), thus reaching a complexity of O(n·TBOUND·log(n)). We will now sort the sons s(i,j) of a vertex i according to their
tl(s(i,j),Tmax) values using a variation of countsort. The values tl(s(i,j),Tmax) belong to the interval [0,TBOUND]. We could use
a linked-list LL(i,t’) for each time moment t’ and insert a son s(i,j) into LL(i, tl(s(i,j), Tmax)). Then, by traversing the linked-lists
of all the time moments between t and TBOUND (when computing Tmin(i,t)), we can sort the sons linearly in the number of
time moments. However, this does not really constitute an improvement, because we might need to traverse many time
moments. Instead, we will compute a list of the time moments in [0,TBOUND] at which vertex i can send messages:
0�tcs(i,1)<tcs(i,2)<…<tcs(i,ntcs(i)), where ntcs(i) is the total number of such moments (we can compute and store only
ntcs’(i)=O(TM) values of tcs(i), where ntcs’(i)= the number of time moments in [0,TM-1] when i can send the content: (i)
tcs(i,j>ntcs’(i))=TM+(j-1-ntcs’(i)); (ii) tcs(i,j>ncts’(i))=tcs(i,1+((j-1) mod ntcs’(i))+((j-1) div ntcs’(i))·TM). We will redefine
the values ts(i,t,j) and the values tl(s(i,j),Tmax) as indices into the tcs(i) list. Thus, ts(i,t,j) is an index to the time moment
tcs(i,ts(i,t,j)) in the list tcs(i) (thus, we can find ts(i,t+1,ns(i)) in O(1) time when moving from t to t+1 and t=ts(i,t,1), as
ts(i,t,ns(i))+1). Similarly, tl(s(i,j), Tmax) will be the index of the largest time moment in the list tcs(i) such that Tmin(s(i,j), tcs(i,
tl(s(i,j), Tmax))+1)�Tmax (or 0 if such an index does not exist). We will use a linked-list LL(i, tidx) for each index tidx in the list
tcs(i) (plus the index 0) and insert a son s(i,j) into LL(i, tl(s(i,j),Tmax)). Then, we will traverse all the linked-lists LL(i,tidx), with
tidx=ts(i,t,j) (1�j�ns(i)) (ts(i,t,j) are consecutive indices in the list tcs(i)). There are ns(i) such linked-lists, so we will sort the
ns(i) sons in O(ns(i)) time. If some sons were inserted in LL(i,tidx>ts(i,t,ns(i))), they will be placed in any order at the end of
the list of sorted sons. If some sons were inserted in LL(i,tidx<ts(i,t,1)) or the obtained ordering of the sons is not valid, then
we need to test a larger value of Tmax. The final complexity is O(n· TBOUND). If we use the linear son sorting method, we
binary search Tmax and tl(s(i,*),Tmax) in the tcs(i) list, and find in O(1) time the values ts(i,t+1, ns(i)), we get an
O((n+n·TM)·log

2
(TBOUND)) algorithm.

B. A Greedy Algorithm

A greedy algorithm also exists for this problem. We will binary search for the minimum duration of broadcasting the
piece of content from the source vertex src to all the other vertices. Let’s assume that we chose a value Tmax. We now need to
perform a feasibility test. If Tmax is feasible, we will choose a smaller value in the binary search; otherwise, we will choose a
larger value. The feasibility test consists of computing the following values for each vertex: Tlatest(i)=the latest time moment
at which vertex i can receive the piece of content such that all the vertices in vertex i’s subtree can receive the content by time
Tmax. We will traverse the tree bottom-up, from the leaves towards the root. For a leaf vertex i, we have Tlatest(i)=Tmax. For a
non-leaf vertex i, let’s consider its ns(i) sons s(i,1), s(i,2), …, s(i,ns(i)), sorted such that: Tlatest(s(i,1))�Tlatest(s(i,2))�…
�Tlatest(s(i,ns(i))). The son s(i,1) will be the last one to receive the content from vertex i, the son s(i,2) will be the one before
the last and so on. We will consider all the time moments from Tlatest(s(i,1))-1 down to 0 and, for each son s(i,j), we will find
the latest time moment tsend(i,j) at which vertex i can send the content to the son s(i,j). If we cannot find such a time moment
for every son, then the feasibility test will fail (Tmax is not a feasible value). Otherwise, Tlatest(i)=tsend(i,ns(i)).

GreedyFeasibilityTest(i, Tmax):
if (ns(i)=0) then { Tlatest(i)=Tmax ; return “passed” } else

 for j=1 to ns(i) do

 ret=GreedyFeasibilityTest(s(i,j), Tmax)

 if (ret=”failed”) then return “failed”

 sort the sons s.t. Tlatest(s(i,1))�…� Tlatest(s(i,ns(i)))

 nextson=1

 for t=Tlatest(s(i,1))-1 downto 0 do

 if ((sendb(i,t)=0) and (t<Tlatest(s(i,nextson)))) then

 tsend(i,nextson)=t ; nextson=nextson+1

 if (nextson>ns(i)) then break

 if (nextson�ns(i)) then return “failed” else

 Tlatest(i)=tsend(i,ns(i))

 return “passed”

The time complexity of the feasibility test is O(n·Tmax), where Tmax is binary searched between 0 and TBOUND. If we
compute the list tcs(i) of time moments at which vertex i can send messages (we also used this list in the dynamic
programming algorithm), then we can improve the feasibility test. For each son s(i,j) of a vertex i, we can binary search the
moment tsend(i,j) in the list tcs(i). We will define a function index(i,t) which returns the index k of the largest time moment in
the list tcs(i), such that tcs(i,k)�t (the function uses binary search). For s(i,1), tsend(i,1)=tcs(i, index(i, Tlatest(s(i,1))-1)). For j>1,
tsend(i,j)=tcs(i,index(i, min{Tlatest(s(i,j)),tsend(i,j-1)}-1)) (if some call of index(*,*) does not find any appropriate time
moment, the feasibility test fails). The time complexity of the test is now O(n·log(TBOUND)). A further improvement consists
of computing a function tprev(i,t)=the largest time moment t’ such that t’�t and sendb(i,t’)=0 (for t�TM, we have: (i)
tprev(i,t)=t; (ii) tprev(i,t)=max{tprev(i,TM-1) + ((t div TM)-1)·TM, tprev(i,t mod TM)+(t div TM)·TM}). We can tabulate
tprev(*,-1�t<TM) in O(n·TM) time: tprev(i,-1)=-�; tprev(i, 0�t’<TM)=(if (sendb(i,t’)=0) then t’ else tprev(i,t’-1)). The

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

complexity of the feasibility test becomes O(n), because tsend(i,j)=(if (j=1) then tprev(i, Tlatest(s(i,1))-1) else tprev(i,
min{Tlatest(s(i,j)),tsend(i,j-1)}-1). All the algorithms require O(n+n·TM) preprocessing time or O(n·TM) storage.

III. MINIMUM TIME BROADCAST IN TREES WITH SENDING AND RECEIVING CONSTRAINTS

In this section we extend the problems discussed in the previous section, by adding receiving constraints, i.e. we have a
function recvb(i,t), which is 0 if vertex i can receive a message at time moment t and 1 if it cannot (i.e. the receiving interface
is blocked). We consider the same two cases ((i) and (ii)). We first present a dynamic programming algorithm similar to the
one in the previous section. We will compute the values Tmin(i,t)=the minimum time moment at which all the vertices in vertex
i’s subtree can receive the content, if vertex i receives the content at time t. We traverse the tree bottom-up and, if vertex i is a
leaf, then we have Tmin(i,t)=(if (recvb(i,t)=1) then +� else t). For a non-leaf vertex i, we will determine the list of time
moments tcs(i,t), such that t�tcs(i,t,1)<tcs(i,t,2)<…<tcs(i,t,ntcs(i,t)) and sendb(i, tcs(i,t,j))=0 (1�j�ntcs(i,t)�TBOUND). As
before, when moving from a time moment t to the next time moment t+1, we can update this list in O(1) time (if (t<tcs(i,t,1))
then tcs(i,t+1)=tcs(i,t); otherwise, tcs(i,t+1,j)=tcs(i,t,j+1), i.e. we remove the first time moment from tcs(i,t) and keep all the
other time moments in tcs(i,t+1)). We construct a bipartite graph, containing the sons s(i,1), …, s(i,ns(i)) of vertex i on one side
and the time moments in tcs(i,t) on the other side. There exists an edge between a son s(i,j) and a time moment tcs(i,t,k) if
recvb(s(i,j), tcs(i,t,k)+1)=0; the edge will have a weight equal to Tmin(s(i,j), tcs(i,t,k)+1). We need to find a maximum matching
in which the maximum weight of an edge is minimum. This weight will be the value of Tmin(i,t). We can find such a matching
by binary searching the maximum weight W of an edge in the matching (and performing a feasibility test for each candidate
value). The feasibility test consists of removing all the edges with weights larger than W and computing a maximum matching
in the bipartite graph using only the remaining edges. If the cardinality of this matching is ns(i), then the feasibility test is
passed and we can test a smaller value of W; otherwise, we need to test a larger value of W. The time complexity of the
feasibility test is O(log(TBOUND)·ns(i)·TBOUND·sqrt(ns(i) +TBOUND)) (if we use the O(E·sqrt(V)) Hopcroft-Karp [6]
matching algorithm, where E is the number of edges and V is the number of vertices of the graph). The overall time complexity
is obtained by multiplying the complexity of the feasibility test by O(n·TM). We can use the binary search greedy approach,
too. We define tprecv(i,t)=(if (t�TM) then { (i) t ; (ii) max{tprecv(i,TM-1)+((t div TM)-1)·TM, tprecv(i,t mod TM)+(t div
TM)·TM}} else if (t<0) then -� else if (recvb(i,t)=0) then t else tprecv(i,t-1)) (we tabulate the values tprecv(i,t), 0�t<TM). For
a leaf i, Tlatest(i)=tprecv(i, Tmax); for a non-leaf vertex i, we binary search Tlatest(i) with a candidate value Tcand; we build the
same bipartite graph as in the case of Tmin(i,Tcand) (with i’s sons and the time moments Tcand, …, Tmax), from which we remove
the edge weights and the edges (s(i,j),t), with t�Tlatest(s(i,j)). The feasibility test checks if the maximum matching has
cardinality ns(i).

IV. MAXIMUM WEIGHT CONTENT DISTRIBUTION STRATEGY IN TREES SUBJECT TO TIME LIMITS

We consider here another variation of the restricted tree content distribution problem. Like before, a source vertex src
needs to send a piece of content to all the other vertices of the tree. Every vertex i has a weight w(i)�0. We are given a time
limit T and we want to distribute the piece of content during the time interval [0,T] to a subset S of vertices having a
maximum total weight (a vertex i belongs to the subset S if it receives the content at a time t�T). The content is not sent
further at time moments t�T and the vertices which did not receive the content until time T will remain uninformed. This
problem has applications to critical information dissemination, in which there is very limited time for distributing very
important information (regarding, for instance, a natural disaster or an enemy attack) and we want to maximize the weight
(importance) of those who receive the information before a critical deadline.

We will compute the values Wmax(i,t)=the maximum weight of the informed vertices in vertex i’s subtree, if vertex i
receives the content at time t (0�t�T). The value Wmax(src, 0) will represent the solution to our problem. Using the Wmax(*,*)
values, the optimal content distribution strategy can be easily obtained. We will compute these values bottom-up. If i is a leaf
vertex, then Wmax(i,t)=w(i). For each pair (i,t) (with i being a non-leaf vertex), we will build a bipartite graph containing the
sons s(i,1), …, s(i,ns(i)) of vertex i on one side and the time moments t, t+1, …, T-1 on the other side. We have an edge
between every son s(i,j) and every time moment t’ such that sendb(i,t’)=0 and recvb(s(i,j),t’+1)=0; the weight of this edge is
Wmax(s(i,j),t’+1). We are interested in finding a maximum weight matching (where the weight of a matching is equal to the
sum of the weights of the edges composing the matching). For a bipartite graph with V vertices and E edges, we can compute
such a matching in O(V

2
·E) time. In our case, the time complexity will be O((ns(i)+T-t)

2
· ns(i)·(T-t)) for each pair (i,t). The

overall time complexity is O(n·T
4
+n

2
·T

3
+n

3
·T

2
).

V. SOME COMMUNICATION OPTIMIZATION PROBLEMS

In the first four problems in this section we are given an undirected weighted tree with n vertices, where every edge (u,v)
(vertex v) has a weight we(u,v) (wv(v)).

A. Maximum Weight Path in a Tree

The weight of a path v(1), …, v(k) (where (v(i),v(i+1)) is an edge in the tree, 1�i�k-1) is the sum of all the values in the
multiset {we(v(p),v(p+1))|1�p�k-1} ∪ {wv(v(p))|1�p �k}. In order to compute the maximum weight path in the tree, we will

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

use dynamic programming. We root the tree at an arbitrary vertex r, thus defining parent-son relationships. We compute the
values: lmax(i,1)=the largest weight of a path in T(i) (vertex i’s subtree) which ends at vertex i and lmax(i,2)=the largest
weight of a path in T(i) which passes through vertex i. For a leaf l, we have lmax(l,1)=lmax(l,2)= wv(l). For a non-leaf vertex
i, we first compute the index p1, such that we(i,s(i,p1))+lmax(s(i,p1),1)=max{we(i,s(i,j))+ lmax(s(i,j),1)|1�j�ns(i)}. We have
lmax(i,1)=wv(i)+max{ we(i,s(i,p1))+lmax(s(i,p1),1), 0}. If ns(i)=1, lmax(i,2)= lmax(i,1). Otherwise, if ns(i)>1, we compute
the index p2 such that we(i,s(i,p2))+lmax(s(i,p2),1)=max{we(i,s(i,j))+ lmax(s(i,j),1)|1�j�ns(i), j�p1}. Then,
lmax(i,2)=lmax(i,1)+ max{we(i,s(i,p2))+lmax(s(i,p2),1),0}. The largest weight of a path is
max{max{lmax(i,1),lmax(i,2)|1�i�n},0}. Finding the actual path can be performed easily, by (re)computing at each vertex of
the path the index p1 (and, possibly, the index p2) and then tracing the path in T(p1) (and, possibly, T(p2)).

B. Maximum Weight Path Cover in Trees

A path cover of a graph is a set of vertex disjoint paths, such that every vertex of the graph belongs to exactly one path. A
classical problem in graph theory is to compute a path cover consisting of a minimum number of paths [9]. We want to
compute a path cover for which the sum of the weights of the edges composing the paths is maximum. We will use dynamic
programming. We root the tree at an arbitrary vertex r and compute the values WA(i) and WB(i) for each vertex i: WA(i) is the
largest total weight of a path cover of T(i) such that i is an endpoint of some path in the path cover. WB(i) is the same as
WA(i), except that i is an inner node of some path of the path cover. For a leaf vertex l we have WA(l)=0 and WB(l)=-�. For
a non-leaf vertex i we perform the following actions. For each son s(i,j) (1�j� ns(i)) we compute
Wdif(s(i,j))=WA(s(i,j))+we(i,s(i,j))-max{WA(s(i,j)),WB(s(i,j))} and we let Wdif,max(i)=max{ Wdif(s(i,j))|1�j�ns(i)}. We also
compute WABsum(i)=the sum of the values in the multiset {max{WA(s(i,j)),WB(s(i,j))}|1�j �ns(i)}. If Wdif,max(i)>0, then we
have WA(i)=WABsum(i)+ Wdif,max(i) (we connect vertex i to its son s(i,j) with the maximum value Wdif(s(i,j))); otherwise,
WA(i)=WABsum(i) (we construct a path composed only of vertex i). If ns(i)=1, then WB(i)=-�. If ns(i)�2, then we choose the
two distinct sons s(i,a) and s(i,b) for which Wdif(s(i,a)) and Wdif(s(i,b)) are the two largest values (among all the ns(i) sons).
We have WB(i) = WABsum(i) + Wdif(s(i,a)) + Wdif(s(i,b)). The optimal total weight of the path cover is max{WA(r),WB(r)}.
The time complexity is O(n).

We can use the same technique for computing the minimum delay path cover consisting of a minimum number of paths.
Let's assume that each edge (u,v) of the tree has a delay d(u,v)�0. We set its weight w(u,v) to -d(u,v)+C, where C is a large
constant (for instance, C>n·max{d(u,v)|(u,v) is an edge in the tree}). Using the algorithm described above on this set of
weights will maximize the number of edges which belong to the path cover (this is equivalent to minimizing the number of
paths). It will also maximize the sum of the negated delays (i.e. minimize the sum of the delays) of the edges composing the
paths of the path cover.

C. Maximum Weight Matching in Trees

A maximum weight matching is a matching for which the sum of the weights of the edges in the matching is maximum.
Such a matching can be computed in linear time, using a bottom-up approach. We compute for each vertex i the values WA(i)
(WB(i)), representing the maximum weight of a matching in T(i) which contains (does not contain) an edge adjacent to i. For
a leaf vertex l, WA(l)=-� and WB(l)=0. For a non-leaf vertex i, we have WB(i)=the sum of the values in the multiset
{max{WA(s(i,j)), WB(s(i,j))}|1� j�ns(i)}. In order to compute WA(i), we will use the same approach as in the case of the
optimal path cover problem. We compute for each son the value Wdif(s(i,j))=WB(s(i,j))+ we(i,s(i,j))-
max{WA(s(i,j)),WB(s(i,j))}. Then, we compute Wdif,max(i) and WABsum(i) as before, and set WA(i) to WABsum(i)+Wdif,max(i).

D. A Peeling Algorithm for the Center of a Tree with Non-Uniform Edge Lengths

The center of a tree is one of the vertices v for which max(dist(v,x)) is minimum, with x ranging over all the tree vertices
and dist(v,x) representing the distance between the vertices v and x (the sum of edge weights of the unique path between v and
x). Computing the center of a tree has important applications in generating optimal broadcast strategies in the multiple-port
model. If a vertex may send a piece of content to any number of neighbors at the same time and the edge lengths represent the
durations of transmitting the content along the edges, then the tree center is a vertex for which a minimum time broadcast
strategy can be achieved. When all the edges have equal length, a well-known linear algorithm for computing the center (or
bi-center) of a tree is the peeling algorithm: remove all the leaves of the tree T, thus obtaining a smaller tree T1; remove all
the leaves of T1, thus obtaining a smaller tree T2 and so on, until we obtain a tree with only one or two vertices. We can
implement this algorithm by computing the leaf layer number layer(i) of every vertex i. We insert all the leaves of the initial
tree in a queue Q and set their layer number to 1; then, for each element x of Q, we decrease the degree (number of vertices)
of its only (remaining) neighbor y; if vertex y’s degree becomes 1, then we insert y into Q and set layer(y)=layer(x)+1. The
vertex (vertices) with the largest layer number(s) is (are) the tree center(s). In the case of edge weights we insert all the leaves
into a priority queue Q. We will maintain a value d(i) for each vertex i of the tree, which is initialized to 0 for all the vertices.
d(i) represents the maximum distance from vertex i to a leaf of the tree, passing only through vertices which were previously
inserted in Q. After a vertex x decreases the degree of its only neighbor y, if y’s degree is �1, we adjust d(y), by setting
d(y)=max{d(y), d(x)+we(x,y)} (if y’s degree becomes 1, we insert y into Q). We will always extract the vertex x with the

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

minimum value of d(x) from Q. The vertex (vertices) i with the largest value(s) d(i) is (are) the tree center(s). The time
complexity of this algorithm is O(n·log(n)), if we implement Q as a (binary) heap.

Although our algorithm is interesting from a theoretical point of view, a more efficient O(n) algorithm exists [7]. This
algorithm roots the tree at a vertex r and then computes, in a first traversal of the tree, the values d1(i), representing the
maximum distance from a vertex i to a leaf in its subtree and d2(i) representing the second maximum distance from a vertex i to
a leaf in its subtree. We have d1(i)=d2(i)=0 for a leaf vertex i and d1(i)=max{we(i,j)+d1(j)} for a non-leaf vertex i, where j
ranges over all the sons of i. Let’s assume that d1(i) is obtained by going through a son f1(i). Then, d2(i)=max{0, we(i,k)+d1(k)},
where k ranges over all the sons of i, except f1(i). In a second traversal, the algorithm computes dmax(i)=the maximum distance
from a vertex i to any other vertex in the tree. For the root r, dmax(r)=d1(r). For the other vertices i, dmax(i)=max{d1(i),
we(i,parent(i)) + (if (f1(parent(i))=i) then d2(parent(i)) else d1(parent(i)))}.

E. Finding Edge Weights from the Shortest Path Matrix

We are given an arbitrary undirected graph with n vertices and m edges, together with its shortest path matrix D, where
D(i,j)>0 (for i�j) is the length of the shortest path between the vertices i and j. We want to assign a (non-negative) weight
we(u,v) to every graph edge (u,v), such that the length of the shortest path between u and v (using the assigned weights) is
equal to we(u,v). We present here two solutions. For the first one, we sort all the O(n

2
) distances in increasing (non-decreasing)

order and we will initialize a matrix E with E(i,j)=+� (for every ordered pair (i,j), i�j) and E(i,i)=0. We will now traverse the
sequence of distances (in sorted order). At any moment, E(i,j) will be the shortest distance between i and j, considering only
the distances traversed so far. Let’s assume that we reached the distance D(i,j) between the vertices i and j. If (E(i,j)<D(i,j)) or
(E(i,j)>D(i,j) and there is no edge (i,j) in the graph), then no feasible edge weight assignment exists. If E(i,j)�D(i,j) and the
edge (i,j) exists in the graph, then we set we(i,j)=we(j,i)=D(i,j). We will now update all the entries in the matrix E which are
modified by the new edge weight assignment. We consider every (ordered) pair of vertices (a,b) and set E(a,b) to min{E(a,b),
E(a,i)+we(i,j)+E(j,b), E(a,j)+we(j,i)+E(i,b)}. If no contradiction was encountered, then we were able to find a feasible edge
assignment. The time complexity of this algorithm is O(n

2
·log(n)+n

4
).

A much easier O(n
3
) time algorithm is the following. We assign to each edge (i,j) of the graph the weight we(i,j)=D(i,j).

Then, we compute the shortest paths between every pair of vertices (e.g. using the Floyd-Warshall algorithm). We denote the
length of the shortest path between vertices i and j (using the weights we(i,j)) by E(i,j). If E(i,j)=D(i,j) for every (ordered) pair
(i,j), then the assignment was feasible. Otherwise, no feasible assignment exists. In this case, we can have D(i,j)=0 (i�j).

VI. SCHEDULING FILE TRANSFERS WITH A MUTUAL EXCLUSION GRAPH – M INTERSECTING CLIQUES

We are given n file transfer requests. Each of them has a pre-assigned source, destination(s) and network path (multicast
tree) on which the transfer must be performed. For each request i, the transfer duration di and profit pi are also known. The
transfers must be scheduled non-preemptively, i.e. during a continuous time interval, without interruptions. Because the
network paths (trees) of some pairs of transfers may cross, the two transfers must not be scheduled during overlapping time
intervals. We define the mutual exclusion graph as a graph containing the file transfer requests as vertices and there is an edge
between two vertices i and j if the corresponding requests are in conflict. Given a deadline T, we want to schedule a subset of
requests whose total profit is maximum, such that no two conflicting requests are scheduled at the same time. The mutual
exclusion scheduling is an NP-hard problem and polynomial time algorithms are known only for some particular situations of
the mutual exclusion graph. In this section we consider the case when the mutual exclusion graph consists of M�2 intersecting
cliques (complete subgraphs) and the durations are integer numbers. Any pair of cliques (Ca,Cb) has the same common
intersection CI. We define Xj=Cj\CI. When |CI| is bounded by a constant ct, we present a pseudo-polynomial dynamic
programming algorithm, using ideas borrowed from the well-known knapsack problem. Let’s assume that |CI|=k and that a
vertex i in CI also has an associated earliest start time ES(i) and latest finish time LF(i), i.e. the file transfer corresponding to
request i cannot start before ES(i) and cannot finish after LF(i). This problem is equivalent to a multiple knapsack problem.
The states S of the problem are defined by a sequence of non-decreasing 2·k numbers: S=(t1, t2, …, t2·k). These numbers
represent k time intervals: [t1,t2], [t3,t4], …, [t2·k-1,t2·k]; the meaning of these intervals is that no request has been scheduled
within any of the intervals. We will compute PMj(i,S)=the maximum profit of a subset of the first i requests from the set Xj
(considering some arbitrary order Xj(1), Xj(2), …, Xj(i), …), scheduled outside the time intervals defined by the state S. By
excluding the k intervals defined by a state S from the interval [0,T], we obtain (k+1) intervals into which a request from Xj can
be scheduled. We will consider the request to be scheduled either to the left of t1, t3, t5, … t2·k-1 or to the right of t2, t4, …, t2·k.
Initially, we have PMj(0,S)=0, for all the states S. For i>0, we have:

�
�
�
�

�

��
�
�

�

�

�
�
�
�

�

��
�
�

�

�

≤++−+

≥−−−+

≤++−+

≥−−−+

−

=

⋅⋅⋅

⋅⋅⋅⋅

⋅

⋅

⋅

⋅

T)d(t if),dt,t,...,t,t1,(iPMp

)td(t if),t,dt,...,t,t1,(iPMp

...

)td(t if),t,...,dt,t1,(iPMp

0)d(t if),t,...,t,dt1,(iPMp

)t,...,t,t1,(iPM

max

)t,...,t,t(i,PM

(i)Xk2(i)Xk21-k221j(i)X

2-k2(i)X1-k2k2(i)X1-k221j(i)X

3(i)X2k2(i)X21j(i)X

(i)X1k22(i)X1j(i)X

k221j

k221j

jjj

jjj

jjj

jjj

. (1)

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

After computing the tables PMj (1�j�M), we will consider every subset SCI of CI and for all the vertices in SCI, we will
consider all of their permutations. For each permutation pe with q elements (pe(1), pe(2), …, pe(q)), we consider every subset
Spe of q elements of the set {1, 2, …, k} and denote its elements by Spe(1), …, Spe(q), such that Spe(1)<Spe(2)<…<Spe(q).
For each such permutation pe and subset Spe, we will consider every state S=(t1, t2, …, t2·k). A state S is consistent with a
(permutation pe, subset Spe) pair if every vertex pe(i) can be scheduled within the interval [t2·Spe(i)-1, t2·Spe(i)]. The profit of this
subset-permutation-subset-state tuple is equal to PM1(|X1|, S) + PM2(|X2|, S) + … + PMM(|XM|, S) + ppe(1) + ppe(2) + … + ppe(q).
The maximum profit scheduling corresponds to the maximum subset-permutation-subset-state tuple. The time complexity of
this method is very large and can only be used for cliques whose intersection contains a very small number of vertices. We
implemented the method for |CI|=k=1, for which the time complexity becomes O(n·T

2
), which is quite reasonable.

VII. GEOMETRIC SCHEDULING PROBLEMS

In this section we discuss three communication scheduling problems with relevance to middleware scheduling
applications (i.e. those applications that receive requests from a higher layer and use the services of a lower layer), for which
we use geometric models.

A. K-Interval Cover

An application receives n communication requests represented by n request intervals [ts(i), tf(i)], meaning that the i
th

request asks for communication services between the time moments ts(i) and tf(i). For now, we shall assume that all the
intervals are pair-wise disjoint. The scheduling application knows all the requests in advance. In order to offer
communication services to the higher layer, it needs to use the services of the lower layers. In our problem, we assume that
the lower layer services offer functions like: begin the communication and end the communication. Between one begin call
and one end call, the scheduling application has exclusive access to the communication line. In order to fulfill all the n
requests, the scheduling application needs to have exclusive access to the communication line during each interval. This can
easily be achieved by performing a begin call at the smallest left endpoint of an interval and an end call at the largest right
endpoint. However, this is inefficient, as the scheduling application may block other applications using the communication
line. Another solution consists of calling begin at the beginning of each interval and calling end at the end of each interval.
This is also inefficient, because performing a begin and an end call implies some non-negligible overhead. The compromise
solution we consider in this section is to allow the scheduling application to perform (at most) k begin and k end calls (1�k�n)
in such a way that the total duration during which the scheduling application has exclusive access to the communication line
is minimized (but it has exclusive access during the n given time intervals).

We will solve this problem by first sorting the intervals according to their left endpoint (because the intervals are disjoint,
they are also sorted according to their right endpoint): ts(1)�ts(2)�…�ts(n). The k reserved time intervals during which the
scheduling application is allowed to get exclusive access to the communication line must include the n time intervals of the
requests. Furthermore, each of the k reserved intervals will start at the left endpoint of a request interval and end at a right
endpoint of a request interval. The k reserved intervals are separated by k-1 free time intervals during which the
communication line is not occupied by the scheduling application. Since the endpoint of the first reserved interval is ts(1) and
the right endpoint of the last reserved interval is tf(n), the problem actually translates into maximizing the sum Sfree of the free
intervals (because the length of the k reserved intervals will be tf(n)-ts(1)-Sfree. Moreover, the k-1 free intervals are a subset of
the n-1 intervals located in between two consecutive request intervals. Thus, by choosing the k-1 largest such intervals, we
can solve our problem. We will build an array d, where d(i)=ts(i+1)-tf(i) (1�i�n-1); after computing the values of the array d,
we sort them, such that d(o(1))�d(o(2))�… �d(o(n)). The k-1 free intervals will have lengths: d(o(n)), d(o(n-1)), …, d(o(n-
k+2)).

If the n request intervals are not disjoint, we can find a minimum length set of disjoint intervals which include all the
request intervals. In order to do this, we sort the left and right endpoints of the intervals (obtaining 2·n sorted points). Then, we
traverse these points from left to right and maintain a counter nopen, representing the number of open intervals. Whenever we
encounter a left endpoint, we increase the counter and when we encounter a right endpoint we decrease a counter. If, after a left
endpoint, we have nopen=1, we store the value of the left endpoint into a variable x. If, after a right endpoint, we have
nopen=0, we store the value of the right endpoint into a variable y and add the interval [x,y] to the set of disjoint intervals we
are constructing (x was previously assigned the value of a left endpoint). This set of disjoint intervals represents, in fact, the
union of the n request intervals. Now we can use the algorithm we presented for the set of disjoint intervals that we computed.

B. Piercing Intervals with a Given Number of Points

An application has n time intervals [a(i),b(i)] (1�i�n) during which it can receive data from a remote application (a(i) and
b(i) are time slot indices). For each time interval i (1�i�n), we need to choose (at least) c(i) time slots during which the
communication line is reserved exclusively for the application. The total number of time slots during which the
communication line is reserved should be minimum. In geometric terms, we want to compute a set S of points located at
integer coordinates (we consider a discrete model), such that the intersection of S with every interval [a(i),b(i)] consists of at
least c(i) points and the cardinality of S is minimum. The case c(i)=1 is well-known: We sort the right end-points of the
intervals in ascending order. We maintain a variable xp (initialized to -�), the x-coordinate of the rightmost point added so

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

far to S. We traverse the intervals in the sorted order. Whenever xp<a(i), we add a new point at b(i) (and, thus, we set xp to
b(i)). When the c(i) values are bounded by a small value U, we can easily extend the approach presented previously. We
maintain the rightmost m�U selected points. Then, while traversing the sorted intervals, we linearly (in O(U) time) compute
the number x(i) of selected points which are located inside the current interval. Then, we select the remaining extra(i)=
max{0,c(i)-x(i)} points as close as possible to b(i) (we consider every integer coordinate from b(i) towards a(i) and select the
first extra(i) integer coordinates which were not already selected). Then, we update the set of rightmost U selected point. This
approach takes O(n·log(n)+n·U) time.

In the general case, we will maintain the set S as a stack of sorted maximal intervals [p(1),q(1)], …, [p(k),q(k)], where k
is the total number of intervals and q(i)+1<p(i+1) (1�i�k-1). We will also maintain a stack np, where np(i) is the sum of the
lengths of the intervals [p(j),q(j)] (1�j�i) (we will consider np(0)=0). We will sort the intervals just as in the c(i)=1 case, in
ascending (non-decreasing) order of their right endpoints. We then initialize S to the empty set and traverse the intervals
according to the sorted order. Let’s assume that we arrived at an interval i. We first need to compute how many points of S
are already placed inside [a(i),b(i)]. If S is empty, we place the c(i) points at coordinates b(i)-c(i)+1, …, b(i). Thus, we have
[p(1)=b(i)-c(i)+1,q(1)=b(i)] and np(1)=c(i). If a(i)>q(k), then, again, we need to place c(i) points at the same coordinates,
and then add the interval [b(i)-c(i)+1,b(i)] at the top of the stack; we increment k and set np(k)=np(k-1)+c(i). If we now have
p(k)=q(k-1)+1, we need to combine the two topmost intervals, decrement k and set np(k) accordingly. In the other cases, we
will binary search the smallest index j (1�j�k), such that a(i)�q(j). The number of points located inside the interval i is
x(i)=np(k)-np(j)+(q(j)-max{a(i), p(j)}+1). If c(i)>x(i), then we still need to add extra(i)=c(i)-x(i) points to S, which are
strictly located inside [a(i),b(i)]. We will try to add these points as close as possible to b(i). The pseudocode below describes
this part.

AddExtraPoints(i):
if (b(i)=q(k)) then {xleft=p(k)-1; S.pop(); k=k-1} else xleft=b(i)
while (extra(i)>0) do

if (S.isEmpty() or (q(k)+1<xleft-extra(i)+1)) then
 S.push([p(k+1)=xleft-extra(i)+1,q(k+1)=b(i)])
 np(k+1)=np(k)+(b(i)-xleft+extra(i)); k=k+1; extra(i)=0

else
 extra(i)=extra(i)-(xleft-q(k))

 xleft=p(k)-1; S.pop(); k=k-1

The overall time complexity of the algorithm is O(n·log(n)), because of the sorting stage and because of the binary search

performed for each left endpoint of each interval. Let’s consider now a variation of the problem we just discussed. We have

the same problem parameters, except that the intervals are open on the left side, i.e. (a(i),b(i)]) and we can place points

anywhere, not only at integer coordinates. This simplifies the problem solution considerably. We sort all the 2·n left and right

endpoints a(i) and b(i) of the intervals, maintaining their type (left or right) and the index of their interval (i). If several

endpoints are located at the same coordinate, we place the right endpoints before the left endpoints at that coordinate. We

then traverse the endpoints in the sorted order, maintaining a counter np representing the number of points we placed. When

we encounter the left endpoint of an interval i, we store the current value of np in npc(i). Then, when reaching the right

endpoint of an interval i, we compute extra(i)=c(i)-(np-npc(i)). If extra(i)>0, we place extra(i) points infinitesimally close to

b(i) (strictly inside the interval (pb(i),b(i)], where pb(i) is the largest previous coordinate strictly smaller than b(i)).

C. Piercing d-dimensional Identical Hyper-Rectangles with Exactly One Point per Hyper-Rectangle

We are given n requests for d linearly ordered resources (e.g. time, frequency). Each request i is specified by an equally-
sized d-dimensional acceptability range [xr(i,1), xr(i,1)+L(1)] x … x [xr(i,d),xr(i,d)+L(d)]. We need to find a subset of points
S in the d-dimensional resource space, such that there is exactly one point in every acceptability range.

In geometric terms, we are given n d-dimensional identical hyper-rectangles, of side lengths L(j) (1�j�d) (L(j) is the side
length in dimension j). Hyper-rectangle i has its “lower” corner at coordinates (xr(i,1), …, xr(i,d)) (thus, its upper corner is at
(xr(i,1)+L(1), …, xr(i,d)+L(d))). We want to select a subset of points S such that every hyper-rectangle is pierced by exactly
one point. We are not interested in minimizing the cardinality of S. It turns out that this problem is, in fact, quite easy. We
will sort the 2·n coordinates of the hyper-rectangles in every dimension and compute �, the minimum difference between two
consecutive distinct coordinates in any dimension. Then, we consider a d-dimensional orthogonal grid G, whose origin is at
(o1,…,od), with oj=min{xr(*,j)}+�/2 (1�j�d) and the distance between two grid points is L(j) in dimension j (1�j�d). Then,
every hyper-rectangle i contains exactly one grid point p(i) of G inside itself. The coordinates of p(i) in G are
xp(i,j)=(xr(i,j)+L(j)-oj) div L(j) (1�j�d). The coordinates of p(i) in the original system of coordinates are
xop(i,j)=oj+L(j)·xp(i,j) (1�j�d).

VIII. RELATED WORK

Optimal broadcast strategies in trees in the single-port model have been studied in [1,8]. In [2], the problem was enhanced
with non uniform edge transmission times and an O(n·log(n)) algorithm was proposed. A dynamic programming algorithm was

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��BA�B�E��E��BA�����C��E��

���C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��FE���D��B����A���D��DEAE��D�����C�
 DB!��E�D��AB� DB!C��

presented in [3] for the minimum time broadcast in directed trees, under the single port line model. Efficient algorithms for the
maximum reliability k-hop multicast strategy in directed trees, as well as exact, exponential algorithms for minimum time
multicast in directed graphs have been presented in [4]. File transfer scheduling problems considering tree and clique mutual
exclusion graphs were studied in [5].

IX. CONCLUSIONS

In this paper we studied several extensions of the single port model broadcast in trees. The extensions are motivated by
practical applications and we presented efficient algorithms for computing optimal broadcast strategies. We also considered
communication optimization and scheduling problems on several graphs (trees, intersecting cliques, time graphs), for which
we presented exact algorithms which are quite efficient in certain situations.

REFERENCES

[1] P.J. Slater, E.J. Cockayne, and S.T. Hedetniemi, “Information Dissemination in Trees,” SIAM J. on Computing, vol. 10, 1981, pp. 692-701.

[2] J. Koh and D. Tcha, “Information Dissemination in Trees with Nonuniform Edge Transmission Times,” IEEE Trans. on Computers, vol. 40 (10), 1991,
pp. 1174-1177.

[3] B. D. Birchler, A.-H. Esfahanian, and E. K. Torng, “Information Dissemination in Restricted Routing Networks,” Proc. of the Intl. Symposium on
Combinatorics and Applications, 1996, pp. 33-44.

[4] M. I. Andreica and N. ��pu�, “Maximum Reliability K-Hop Multicast Strategy in Tree Networks,” Proc. of the IEEE International Symp. on
Consumer Electronics, 2008.

[5] M. I. Andreica and N. ��pu�, “High Multiplicity Scheduling of File Transfers with Divisible Sizes on Multiple Classes of Paths,” Proc. of the IEEE
International Symp. on Consumer Electronics, 2008.

[6] J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs,” SIAM J. on Computing, vol. 2 (4), 1973, pp. 225-
231.

[7] A. Rosenthal and J. A. Pino, “A generalized algorithm for centrality problems on trees,” J. of the ACM, vol. 36 (2), 1989, pp. 349-361.

[8] J. Cohen, P. Fraginaud, and M. Mitjana, “Polynomial-Time Algorithms for Minimum-Time Broadcast in Trees,” Theory Comput. Syst., vol. 35 (6),
2002, pp. 641-665.

[9] D. S. Franzblau, “Optimal Hamiltonian Completions and Path Covers for Trees, and a Reduction to Maximum Flow,” ANZIAM Journal, vol. 44, 2002,
pp. 193-204.

