Graph-Based Approaches to Clustering Network-Constrained Trajectory Data

Abstract : Clustering trajectory data attracted considerable attention in the last few years. Most of prior work assumed that moving objects can move freely in an euclidean space and did not consider the eventual presence of an underlying road network and its influence on evaluating the similarity between trajectories. In this paper, we present an approach to clustering such network-constrained trajectory data. More precisely we aim at discovering groups of road segments that are often travelled by the same trajectories. To achieve this end, we model the interactions between segments w.r.t. their similarity as a weighted graph to which we apply a community detection algorithm to discover meaningful clusters. We showcase our proposition through experimental results obtained on synthetic datasets.
Type de document :
Chapitre d'ouvrage
Appice, Annalisa and Ceci, Michelangelo and Loglisci, Corrado and Manco, Giuseppe and Masciari, Elio and Ras, Zbigniew. New Frontiers in Mining Complex Patterns, Springer Berlin Heidelberg, pp.124-137, 2013, Lecture Notes in Computer Science, 978-3-642-37381-7. <10.1007/978-3-642-37382-4_9>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00874886
Contributeur : Fabrice Rossi <>
Soumis le : vendredi 18 octobre 2013 - 17:58:23
Dernière modification le : jeudi 9 février 2017 - 15:02:34
Document(s) archivé(s) le : vendredi 7 avril 2017 - 13:24:54

Fichiers

nfmcp2012extended.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mohamed Khalil El Mahrsi, Fabrice Rossi. Graph-Based Approaches to Clustering Network-Constrained Trajectory Data. Appice, Annalisa and Ceci, Michelangelo and Loglisci, Corrado and Manco, Giuseppe and Masciari, Elio and Ras, Zbigniew. New Frontiers in Mining Complex Patterns, Springer Berlin Heidelberg, pp.124-137, 2013, Lecture Notes in Computer Science, 978-3-642-37381-7. <10.1007/978-3-642-37382-4_9>. <hal-00874886>

Partager

Métriques

Consultations de
la notice

316

Téléchargements du document

155