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have been proposed by Ishaquddin et al. [16]. In this work we

The geometrical transformation (2) defines the more general

Fig. 1. Intrinsic reference axes on the initial geometry of the rod.
adopt a pure displacement B Spline isoparametric formulation of
a space rod model. It is shown that the model can be efficiently
implemented in a numerical code, and that the use of a smooth
geometry improves the convergence rate of the solution. Since
we do not use NURBS, the reference geometry may be affected
by errors, so it is proposed a refinement strategy that improves
both the approximation of the reference geometry and of the con
figuration variables, similarly to what happens in FEM. It will be
shown that, at least for the case examined, there is no appreciable
loss of precision with respect to the NURBS approximation.

We consider a parametrization of the cross section independent
from the Frenet’s triad, similar to the natural frame and curvilinear
angle representation given in [20]. The normal vectors attached to
the centroid curve are mapped by a correction angle, /, that coin
cides with the torsional twist. The geometry of the axis is defined
via a uniform collocation of the control points. The tangent and
normal vectors are defined on the interpolation of the geometry.
In this work we consider only a single patch to represent the entire
geometry of the rod. For the quadrature we adopt the standard
Gauss Lobatto rules, considering p + 1 quadrature’s points for each
non null section in the knots vector, (where p is the polynomial
degree). Alternative strategy of quadrature rules for NURBS inter
polations can be found in [15,3].

In the paper the finite deformation kinematics is derived, and
the full non linear equilibrium equations are stated. However, since
the main goal of the work is to analyze the performance of the
B spline approximation, in the applications we have examined
only the case of infinitesimal deformation. It is consistently
obtained linearizing the finite deformation kinematics for the
space rod. The extension to geometric non linear problems will
be considered in a forthcoming paper.

2. Configuration of the space rod

The rod is treated as a ribbon, defined as a pair A; n̂ where
A �0; L0½ is an open set of R, that is the parametric domain of
the curve pðSÞ : A ! R3 and n̂ðSÞ : A ! R3 is a unit vector field
everywhere orthogonal to that curve. An index ‘0’ denotes the ini
tial undeformed configuration. The normal to the original configu
ration n̂0 is chosen arbitrarily, i.e. it does not coincide with the
Frenet normal. The tangent vector to the reference configuration
of the curve is the unit vector field t̂0 : A ! R3 with t̂0

dp0
dS (a

hat indicates a unit vector). Then there exists a rotation operator
Kðt̂0ð0Þ; t̂0ðSÞÞ that transforms t̂0ð0Þ in t̂0ðSÞ without rotation
around t̂0ð0Þ (its explicit form is given in Eq. (8)). The vector field

n̂[
0ðSÞ Kðt̂0ð0Þ; t̂0ðSÞÞ n̂0ð0Þ ð1Þ

defines the manifold S[0 p0ðSÞ; n̂[
0ðSÞ

� �� �
that is a geodetic ribbon

in the sense of a torsion free ribbon.
The geodetic ribbon is only a particular kind of admissible con

figuration. The more general configuration of the space rod is ob
tained allowing a torsion around the tangent axis, so that the
unit normal to the rod axis is given by the isometric operator

n̂0ðSÞ Rðt̂0ðSÞ;/0ðSÞÞn̂[
0ðSÞ

Rðt̂0ðSÞ;/0ðSÞÞKðt̂0ð0Þ; t̂0ðSÞÞ n̂0ð0Þ: ð2Þ

where the unit operator Rðt̂0ðSÞ;/0ðSÞÞ, represents a rotation /0

around the unit tangent t̂0ðSÞ.
The space rod is thus defined by two fields,

S0 fðp0ðSÞ;/0ðSÞÞ : A ! R3 � S1g; ð3Þ

The unit local triad is completed by the unit vector

m̂0ðSÞ t̂0ðSÞ � n̂0ðSÞ ð4Þ
Lagrangian configuration of a rod, i.e. a rod affected by geometrical
torsion but with directors always orthogonal to the axis (see Fig. 1).

3. Kinematics of the Kirchhoff Love rod

The space rod model has four degrees of freedom while there
are six components of the displacement of the cross section. In Sec
tion 3.1 the relationships between internal and external degrees of
freedom will be derived.

3.1. Internal mapping

Let p0ðSÞ : ½0; L0� ! R3 be the arc length parametrization of the
base curve of the reference configuration, and let
uðSÞ : ½0; L0� ! R3 be the Lagrangian arc length parametrization of
the displacement field of the centroid curve of the rod. The current
centroid curve is indicated by pðSÞ : ½0; L0� ! R3 and is defined as

pðSÞ p0ðSÞ þ uðSÞ: ð5Þ

The Lagrangian arc length parametrization of the current tan
gent vector field is indicated by tðSÞ : ½0; L0� ! R3 and is defined
by tðSÞ dp

dS, so that the current unit tangent vector field
t̂ðSÞ : ½0; L0� ! R3 is

t̂ðSÞ tðSÞ
ktðSÞk

1
ktðSÞk

dp
dS
: ð6Þ

The intrinsic triad is mapped by means of two isometric operators
Kðt̂0ðSÞ; t̂ðSÞÞ, a rotation without drilling rotation around the vector
t̂0ðSÞ, and a second unitary operator Rðt̂ðSÞ;/ðSÞÞ that gives the cor
rection drilling rotation /ðSÞ : ½0; L0� ! R around the vector t̂ðSÞ.

The proposed parametrization of the triad’s rotation differs
from the one originally proposed by Simo and Vu Quoc [24], and
extensively used since, based on Euler angles around the material
or spatial axes. In a Kirchhoff Love model the latter parametriza
tion is not convenient, since only one rotation is independent. Lan
ger and Singer [20] introduced for Kirchhoff Love rods a natural
frame, characterized by having uniformly zero twist (Bishop
frame), defined on the rod axis starting from a frame arbitrarily
introduced in one point of the curve (usually the point S = 0). The
idea was systematically exploited by Bergou et al. [7] for
uncoupling the bending and the torsion energy of inextensible Kir
chhoff Love rods. This parametrization requires, in addition to the
map of the twist angle, the rotation of the frame at S = 0, that may
be not convenient when dealing with rods linked at their end
points. The parametrization of the frame rotation proposed here
is different, in that no initial value of the spatial vectors is required,
and the rotation is always referred to the original configuration.

http://dx.doi.org/10.1016/j.cma.2012.11.017


The frame we obtain is not ‘‘natural’’ in Langer and Singer sense, as 4. Tangent kinematics

it will be shown soon. However, it appears that the proposed
description of the kinematics is simpler and more general, and is
easily extended to the case of extensible rods.

Specifically, the two rotation operators are obtained particular
izing Euler Rodriguez formula

R ê� êþ cos½u�ðI ê� êÞ þ sin½u�ê� I: ð7Þ

The unitary axial vector of the first rotation is ê t̂0�t̂
kt0�tk while

cos½u� t̂0 t̂ and sin½u� kt̂0 � t̂k, therefore the formula (7) gives
the representation

Kðt̂0; t̂Þ ðt̂0 � t̂ÞI þ ½t̂0 � t̂� � I þ 1
1þ t̂0 � t̂

ðt̂0 � t̂Þ � ðt̂0 � t̂Þ: ð8Þ

The axial vector of the second rotation operator is ê t̂. Setting
u = / and using the following property of the double cross
product:

t̂ � ½t̂ � I� I þ t̂ � t̂ ð9Þ

or the equivalent

t̂ � t̂ I þ t̂ � ½t̂ � I�: ð10Þ

the Rodriguez operator (7) assumes the representation

Rðt̂;/Þ I þ sin½/� t̂ � I þ ð1 cos½/�Þ t̂ � ½t̂ � I�: ð11Þ

Introducing the definition

Qðt̂0ðSÞ; t̂ðSÞ;/ðSÞÞ Rðt̂ðSÞ;/ðSÞÞKðt̂0ðSÞ; t̂ðSÞÞ: ð12Þ

the Lagrangian parametrization of the current directors n̂ðSÞ and
m̂ðSÞ are

n̂ðSÞ Qðt̂0; t̂;/Þn̂0ðSÞ Rðt̂;/Þn̂[ðSÞ; n̂[ðSÞ Kðt̂0; t̂Þn̂0ðSÞ;
m̂ðSÞ Qðt̂0; t̂;/Þm̂0ðSÞ Rðt̂;/Þm̂[ðSÞ; m̂[ðSÞ Kðt̂0; t̂Þm̂0ðSÞ:

ð13Þ

We observe that it is also possible to define the Q operator as
Q ðt̂0; t̂;/Þ Kðt̂0; t̂ÞRðt̂0;/Þ that means that the operators K and
R commute.

Remark. The Lagrangian description of the internal state of the
rod is defined by means of the two field {u(S),/(S)}, so that it has
four degrees of freedom.

According to differential geometry the curvature and torsion of
the rod axis are:

vrn
1
Rn

1
ktk

dm̂
dS
� t̂

vrm
1
Rm

1
ktk

dn̂
dS
� t̂

vt
1
s

1
ktk

dn̂
dS
� m̂

ð14Þ

The first two are the (reduced) bending curvatures, and are equal to
the components of the vector 1

ktk t̂ � dt̂
dS, while the third is the tor

sional curvature, or twist. The name ‘‘reduced’’ has been added for
consistency with later definitions. In the initial configuration the
torsional curvature is vt0

dn̂0
dS m̂0

d/0
dS , since the intermediate

frame n̂[
0; m̂

[
0

� �
is geodetic by construction. On the contrary, in the

deformed configuration, the torsional curvature depends both from
d/
dS and from the deformation of the centroid axis, as appears from an
easy calculation,

vt
1
ktkRT dR

dS
n̂[ � m̂[ þ 1

ktkK
T dK

dS
n̂0 � m̂0 þ

1
ktk

dn̂0

dS
� m̂0; ð15Þ

the latter term being the initial twist referred, however, to the de
formed arc length.
In order to obtain the expression of the mechanical power for
the rod, we need to evaluate the velocity of the deformed configu
ration. In this section, first the velocity of the intrinsic triad is de
rived, then we use this result for determining an expression for the
velocity of deformation. Since we use a material description, the
velocity is formally obtained performing the partial time derivative
of the pull back of the relevant objects on the material frame (see
Simo and Fox [23], p. 287).

4.1. Velocity of the intrinsic triad

The evolution of the intrinsic frame can be derived in terms of
the rotation vector x _/t̂ þxnn̂þxmm̂ as
_̂t x� t̂ xmn̂ xnm̂

_̂n x� n̂ xmt̂ þ _/m̂

_̂m x� m̂ xnt̂ _/n̂

ð16Þ

From the previous definition it follows that

_/ _̂n � m̂ _̂m � n̂

xn
_̂t � m̂ _̂m � t̂ 1

ktk
d _u
dS
� m̂

xm
_̂t � n̂ _̂n � t̂ 1

ktk
d _u
dS
� n̂:

ð17Þ

The first component of the velocity of rotation is indeed the velocity
of the twist angle introduced in Eq. (11). As a matter of fact, the re
sults (16) can be equivalently obtained by means of the rotation
operators, i.e.

_̂n _Qn̂0
_QQ 1n̂ _RRT n̂þ R _KKT RT n̂ ð18Þ

It follows that

_̂n � m̂ _RRT n̂ � m̂ þ _KKT n̂[ � m̂[ _/ ð19Þ

It can be proved that the first term is _/, while the second term van
ishes, as can be easily understood recalling the definition of the
intermediate frame ðn̂[; m̂[).

The derivative along the current arc length of the velocity of
rotation x is

_v
1
ktk

dx
dS

_vt t̂ þ _vnn̂þ _vmm̂ ð20Þ

where the torsional ð _vtÞ and bending ð _vn; _vmÞ velocities of curvature
are given by the following expressions

_vt
1
ktk

d _/
dS

xn

Rm
þxm

Rn

_vn

_/
Rm
þ 1
ktk

dxn

dS
xm

s

_vm

_/
Rn
þxn

s
þ 1
ktk

dxm

dS
:

ð21Þ

In the bending velocity of curvature appear the derivatives of
the components of the velocity, that are related to the second
covariant derivative of the displacement vector. The first and the
second covariant line gradients of the vector _u are given by

Gradð _uÞ d _u
dS
� t\

Grad2ð _uÞ d
dS

d _u
dS
� t\

� �
� t\

d
dS

d _u
dS

� �
� t\ � t\ þ d _u

dS
� dt\

dS
� t\

ð22Þ
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having indicated by t\ the contravariant tangent vector, t\ t
ktk2.

Kirchhoff Love hypotheses require that m̂ m̂ n̂ n̂ 1 and

Fig. 2. Transformations from the reference to the current configuration and from
the tangent space to the centroid axes to the tangent space to the generic fibre.
The only significant covariant component is along the S coordi
nate, so that, since t\ t 1; dt\

dS t dt
dS t\, the last expression can

be manipulated as follows:

Grad2ð _uÞ d
dS

d _u
dS

� �
� t\ � t\ þ d _u

dS
dt\

dS
� t

� �
� t\ � t\

d
dS

d _u
dS

� �
d _u
dS

dt
dS
� t\

� �� 	
� t\ � t\

ktk d
dS

1
ktk

d _u
dS

� �
� t\ � t\

d2 _u

dS2 � t\ � t\

ð23Þ

Performing the derivatives indicated in the third line of (23) we
obtain

d2 _u

dS2 � n̂ ktkdxm

dS
þ ktk

2

s
xn þ _t � t 1

Rm

d2 _u

dS2 � m̂ ktk dxn

dS
þ ktk

2

s
xm _t � t 1

Rn
:

ð24Þ

Comparing Eqs. (24) and (21) it is found an alternative expres
sion for the bending velocities of curvature:

_vn
1

ktk2

d2 _u

dS2 � m̂
1

ktk2

_t � t
Rn
þ

_/
Rm

_vrn

ktk2

1

ktk2

_t � t
Rn

_vm
1

ktk2

d2 _u

dS2 � n̂
1

ktk2

_t � t
Rm

_/
Rn

_vrm

ktk2

1

ktk2

_t � t
Rm

:

ð25Þ

where the definition of the reduced velocities of curvature _vr have
been introduced.

4.2. The kinematic tangent operator for a Kirchhoff Love rod model

Introducing the Lagrangian coordinates hn,hm along the axes n̂; m̂
of the cross section, the position vector of a generic point of the rod
in the generic configuration is given by

p
�
ðS; #n; #mÞ pðSÞ þ n pðSÞ þ #nn̂ðSÞ þ #mm̂ðSÞ

n #nn̂ðSÞ þ #mm̂ðSÞ:
ð26Þ

Differentiating Eq. (26) the tangent vectors that span the tan
gent space T

p
�Bt at the point p

�
are

t
�

:
@ p
�

@S
@p
@S
þ #m @m̂

@S
þ #n @n̂

@S
; n

�
:

@ p
�

@#n n̂; m
�

:
@ p
�

@#m m̂

ð27Þ

By means of Eq. (27) it is defined the push forward operator
from the centroid line of the rod to the generic fibre,

z g
�
a � ga; g

�
a ft

�
; n̂; m̂g; ga ft; n̂; m̂g; ga ft\; n̂; m̂g ð28Þ

where the index \ indicates contravariant base vectors defined by
ga gb db

a.
The gradient of deformation from the reference configuration of

the axis to its current configuration is F ga � ga
0

t � t̂0 þ n̂� n̂0 þ m̂ � m̂0 (see Fig. 2).
Denoting with G

�
g
�
a � g

�a
t
�
� t
�\
þn̂� n

�\
þm � m

�\
the metric ten

sor at the generic fibre, its pull back on the centroid axis of the ref
erence configuration is w�ðG

�
Þ FT zT G

�
zF, whose components on

the material frame t̂0; n̂0; m̂0 are

w�ðG
�
Þ

t
�
� t
�

n̂ � t
�

m̂ � t
�

t
�
�n̂ n̂ � n̂ m̂ � n̂

t
�
�m̂ n̂ � m̂ m̂ � m̂

0
BB@

1
CCA ð29Þ
m̂ n̂ 0, then the metric tensor (29) becomes

w�ðG
�
Þ

t
�
� t
�

n̂ � t
�

m̂ � t
�

t
�
�n̂ 1 0

t
�
�m̂ 0 1

0
BB@

1
CCA ð30Þ

The Green Lagrange deformation tensor is thus obtained as

E
1
2

w�ðG
�
Þ zT

0G
�

0z0

� �

1
2

t
�
� t
�

t
�

0 � t
�

0 n̂ � t
�

n̂0 � t
�

0 m̂ � t
�

m̂0 � t
�

0

t
�
�n̂ n̂0 � t

�
0 0 0

t
�
�m̂ m̂0 � t

�
0 0 0

0
BBB@

1
CCCA

ð31Þ

According to the results of Section 3 and disregarding terms of order
higher than 1 in #n,#m we find

EttðS;#n;#mÞ 1
2

t
�
�t
�

t
�

0 � t
�

0

� �
1
2

t � t t0 � t0ð Þþ#n dn̂
dS
� t dn̂0

dS
� t̂0

� �

þ#m dm̂
dS
� t dm̂0

dS
� t̂0

� �
þhigher order terms

1
2
ðt � t t0 � t0Þ #n ktk

2

Rm

1
Rm0

 !
þ#m ktk

2

Rn

1
Rn0

 !

ð32Þ
the first term is the extensional deformation of the axis. Analo
gously we have

Etn
1
2

n̂ � t
�

n̂0 � t
�

0
1
2
#m ktk

s
1
s0

� �

Etm
1
2
m̂ � t

�
m̂0 � t

�
0

1
2
#n ktk

s
1
s0

� �
:

ð33Þ

The velocity of deformation tensor at the generic quota is:

d
�

sym _zFðzFÞ 1

 �

; ð34Þ

its pull back on the centroid axis of the current configuration is

d zT d
�

z; ð35Þ
and the pull back on the centroid axis of the reference configuration
is

D _E sym ðzFÞT _zF

 �

Dabga
0 � gb

0: ð36Þ

The components of the last tensor on the material frame are

_E
1
2

2
_
t
�
� t
� _̂n � t

�
þn̂ �

_
t
� _

t
�
� m̂ þ t

�
� _̂m

_̂n � t
�
þn̂ �

_
t
�

0 0
_
t
�
� m̂ þ t

�
� _̂m 0 0

0
BBB@

1
CCCA ð37Þ
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The following sections concern the derivation of the compo
t � dx� n̂þ t �x� dn̂þ _t � dn̂ dx � m̂ktk þ ktkt̂ �x � dn̂
nents of the velocity of deformation.

4.2.1. Shear deformation velocity _c
The components of the shear deformation velocity are given by

the off diagonal terms of tensor (37)

_c
n̂ t
� _̂n � t

�
þn̂ �

_
t
�

_c
m̂ t
�

_
t
�
� m̂ þ t

�
� _̂m ð38Þ

Using Eqs. (27) and (16) we have

_c
n̂ t
� ð _t � n̂þ t � _̂nÞ þ #n d _̂n

dS
� n̂þ dn̂

dS
� _̂n

 !
þ #m d _̂m

dS
� n̂þ dm̂

dS
� _̂n

 !

_c
m̂ t
� _t � m̂ þ t � _̂m


 �
þ #n d _̂n

dS
� m̂ þ dn̂

dS
� _̂m

 !
þ #m d _̂m

dS
� m̂ þ dm̂

dS
� _̂m

 !
:

ð39Þ

The time derivative of Kirchhoff Love’s constraints
t n̂ 0; t m̂ 0, and the equalities dn̂

dS n̂ 0; dm̂
dS m̂ ; n̂ m̂ 0,

reduce (39) to

_c
n̂ t
� #m _c _c

m̂ t
� #n _c

_c
d _̂n
dS
� m̂ þ dn̂

dS
� _̂m

 !
:

ð40Þ

Using the expressions for the velocities of rotation of the refer
ence frame it is readily found

_c
d
dS
ðx� n̂Þ � m̂ þ dn̂

dS
� x� m̂ð Þ

n̂� m̂ � dx
dS
þ m̂ �x � dn̂

dS
þ dn̂

dS
� ðx� m̂Þ

dx
dS
� t̂ ktk _vt

ð41Þ

The result (21), definitions (17) and the identity

t̂ � dt̂
dS

ktk n̂
Rn
þ m̂

Rm

� �
ð42Þ

allow to get a representation of _c in terms of the Lagrangian gener
alized velocity vector _q f _u; _/g:

_c
1
ktk t̂ � dt̂

dS

 !
� d

_u
dS
þ d _/

dS
: ð43Þ
4.2.2. Membrane and curvature velocities of deformation

5. The equilibrium equation of the Kirchhoff-Love rod
The axial velocity of deformation, using (27), is given by

_
t
�
� t
�

_t � t þ #m d _̂m
dS
� t þ dm̂

dS
� _t

 !
þ #n d _̂n

dS
� t þ dn̂

dS
� _t

 !

þ ð#mÞ2 d _̂m
dS
� dm̂

dS
þ #m#n d _̂m

dS
� dn̂

dS
þ dm̂

dS
� d

_̂n
dS

 !
þ ð#nÞ2 d _̂n

dS
� dn̂

dS
: ð44Þ

Proceeding as above, we have:

_
t
�
� t
�

_t � t þ #n t � d
dS
ðx� n̂Þ þ _t � dn̂

dS

� �

þ #m t � d
dS
ðx� m̂Þ þ _t � dm̂

dS

� �

þ #n#m dn̂
dS
� d
dS
ðx� m̂Þ þ dm̂

dS
� d
dS
ðx� n̂Þ

� �

þ #nð Þ2 dn̂
dS
� d
dS
ðx� n̂Þ

� �
þ ð#mÞ2 dm̂

dS
� d
dS
ðx� m̂Þ

� �
ð45Þ

The term in the first parenthesis can be treated as follows:
dS dS dS dS dS

þ ktk _̂t � dn̂
dS
þ _ktkt̂ � dn̂

dS
dx
dS
� m̂ktk _t � t 1

Rm
ð46Þ

Analogous transformations lead to
_
t
�
� t
�

_t � t þ #n dx
dS
� m̂ktk _t � t 1

Rm

� �
þ #m dx

dS
� n̂ktk þ _t � t 1

Rn

� �

þ #n#m � dx
dS

m̂ � dn̂
dS
þ n̂� dm̂

dS

� �� �
þ ð#nÞ2 dx

dS
� n̂� dn̂

dS

� �

þ ð#mÞ2 dx
dS
� m̂ � dm̂

dS

� �
ð47Þ

Accounting for the equalities

m̂ � dn̂
dS
þ n̂� dm̂

dS
n̂
ktk
Rm

m̂
ktk
Rn

ð48Þ

1
ktk

dt̂
dS

n̂
Rm

m̂
Rn

ð49Þ

the result (47) can be cast in the form:

_
t
�
� t
� _

e
�
þ _v? � nktk2 ½n� n� _v? � dt̂

dS
þ ð#n2 þ #m2 Þ _vt

ktk
s

ð50Þ

with the notations

_
e
�

_t � t 1
hn

Rm
þ hm

Rn

� �
_t � t 1 n � dt̂

dS
1
ktk

 !
_v? t̂ � _v

n hnn̂þ hmm̂: ð51Þ

In this work we disregard the quadratic terms in the section
coordinates obtaining the linear representation
_
t
�
� t
� _

e
�
þ n � _v?ktk _t � t 1

hn

Rm
þ hm

Rn

� �
þ hnð _vmÞktk2 þ hm _vnktk

2
;

ð52Þ

or, substituting the expressions (21) of the velocities of curvatures,

_
t
�
� t
�

_t � t 1
hn

Rm
þ hm

Rn

� �
þ hnktk2 1

ktk
dxm

dS
þ

_/
Rn

xn

s

 !

þ hmktk2 1
ktk

dxn

dS
þ

_/
Rm

xm

s

 !
ð53Þ

The velocities of curvature can be related directly to the dis
placement degrees of freedom. Using Eq. (25) and the result (42)
the bending curvature vector becomes:

ktk2 _v?
d2 _u

dS2 þ _t � t 1
ktk

dt̂
dS
þ t̂ � dt̂

dS
_/ktk ð54Þ

It is therefore possible to obtain an alternative expression for
the axial velocity of deformation, noting that the second addend

in Eq. (54) cancels out with the second and third terms of
_
e
�
,

_
t
�
� t
�

_eþ n � _vr
?ktk2

_e _t � t

ktk2 _vr
? d2 _u

dS2 þ t̂ � dt
dS

� �
ktk _/

ð55Þ
5.1. The equilibrium operator

The equilibrium operator is obtained from the principle of vir
tual power. The internal power is
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�

dA
� �

ds
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ð56Þ

R Rabga � gb detðzÞz 1 R
�

z T , with ga ft; n̂; m̂g, so that the

Fig. 3. Quintic B-Spline basis functions with open knot vector N = {0,0,0,0,0,0,1/
6,2/6,3/6,4/6,5/6,1,1,1,1,1,1}.
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According to the beam model, we assume R
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R
�mm

R
�nm

0; R
�

is the
Cauchy stress tensor acting at point p

�
. It is more convenient to refer

to its pull back on the tangent space to the centroid curve,
Fig. 4. h-refinements scheme considered, after each knot insertion, (knot inserted
corresponding to the new set of the Greville abscissae, is performed.
internal power is

Pint

Z
L

Z
A

R : d dA
� �

ds ð57Þ

with

detðzÞ 1
#n

Rm
þ #

m

Rn

� �
: ð58Þ

Alternatively, it is possible to use the representation of the
internal power on the reference configuration:

Pint

Z
L0

Z
A

S : _E dA
� �

dS; ð59Þ

with S = Sabg0a � g0b the second Piola Kirchhoff stress tensor, given
by

S detðzFÞðzFÞ 1 R
�
ðzFÞ T ð60Þ

Its components on the reference unitary centroid triads are

S
Stt Stn Stm

Snt 0 0
Smt 0 0

0
B@

1
CA: ð61Þ
with multiplicity one), successively the re-collocation of the control variables,
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The virtual power identity is therefore (for the sake of simplicity we In the Eq. (66) have been introduced the definitions of the effec

do not introduce in this expression a symbol for the virtual veloci
ties, the meaning being apparent from the context)Z

L0

Z
A

S : _E dA
� �

dS
Z

L0

f � _u dSþ Fð0Þ � _uð0Þ þ FðL0Þ

� _uðL0Þ þmð0Þ �xð0Þ þmðL0Þ �xðL0Þ: ð62Þ

Substituting the components of the velocity of deformation in (62),
one has

Pint

Z
L0

Z
A

Sttð _e #n _vrmktk2 þ #m _vrnÞktk2
�

þðSmt#n Snt#mÞ _vtktk dA
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dSZ
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N _eþM � _vrktk2 þMt _vtktk

 �

dS

Z
L0

N
d _u
dS
� t

� �
þMn

d2 _u

dS2 � m̂ þ
ktk2

Rm

_/

 ! !
þ

Mm
d2 _u

dS2 � n̂
ktk2

Rn

_/

 !
þMt

d _/
dS
þ 1
ktk

d _u
dS

t̂ � dt̂
dS

 ! !
dS;

ð63Þ

where the following definitions have been introduced:

N
Z
A

SttdA;

M
Z
A

n� ðStt t̂Þ dA;

Mt

Z
A
ðSmt#n Snt#mÞ dA:

ð64Þ

By integrating by parts the terms of the Eq. (63) the equilibrium
equations are obtained as follows:

d
dS

Nt þ 1
ktk

d
dS
ðktkMÞ Mt

ktk t̂ � dt̂
dS

 !" #
f

dMt

dS
þ ktkM � t̂ � dt̂

dS

 !
mt ð65Þ

The components of the equilibrium Eq. (65) on the updated lo
cal triad current ft̂; n̂; m̂g are not relevant for the present work. The
BC’s of the equilibrium Eq. (65) projected on the local updated triad
are

ktk N þMn

Rn
þMm

Rm

� �
ðL0Þ ktkNrðL0Þ FtðL0Þ

ktk N þMn

Rn
þMm

Rm

� �
ð0Þ ktkNrð0Þ Ftð0Þ

1
ktk
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ðktkMnÞ Mm

ktk
s
þMt

Rm

� �
ðL0Þ TmðL0Þ FmðL0Þ

1
ktk

d
dS
ðktkMnÞ Mm

ktk
s
þMt

Rm

� �
ð0Þ Tmð0Þ Fmð0Þ

1
ktk

d
dS
ðktkMmÞ þMn

ktk
s

Mt

Rn

� �
ðL0Þ TnðL0Þ FnðL0Þ

1
ktk

d
dS
ðktkMmÞ þMn

ktk
s

Mt

Rn

� �
ð0Þ Tnð0Þ Fnð0Þ

ktkMnðL0Þ mnðL0Þ
ktkMnð0Þ mnð0Þ
ktkMmðL0Þ mmðL0Þ
ktkMmð0Þ mmð0Þ
MtðL0Þ mtðL0Þ
Mtð0Þ mtð0Þ:

ð66Þ
tive axial force Nr and effective shear resultants Tn and Tm.

5.2. Constitutive operator of the rod

We assume that the rod remains elastic. The stresses S can be
obtained from an elastic potential, S =rE W(E), that, for isotropic
materials, depends on the invariants IE,IIE,IIIE of the strain tensor.
In this work we employ the approximation that the tangent elastic
coefficients be constant, and according to Simo [22], Kiendl et al.
[19], we use a quadratic form for the elastic potential,

WðIE; IIE; IIIEÞ
1
2

aI2
E bIIE


 �
: ð67Þ

Accounting for Kirchhoff Love constraints, it is
IE Ett; IIE E2

tn E2
tm so that

WðEÞ 1
2

E E2
tt þ 2G E2

tn þ E2
tm


 �
 �
: ð68Þ

where the elastic moduli E and G have been introduced. It follows
therefore

Stt E Ett Stn 2G Etn Stm 2G Etm ð69Þ

The stress resultants defined in (64) are calculated by means of
the expressions

N
Z
A

SttdA E A
2

t � t t0 � t0ð Þ

Mn

Z
A
#mStt dA E In

ktk2

Rn

1
Rn0

 !

Mm

Z
A
#nStt dA E I m

ktk2

Rm

1
Rm0

 !

Mt

Z
A
ðSmt#n Snt#mÞ dA G J ktk

s
1
s

� �
:

ð70Þ

where the deformations are evaluated from the geometry of the up
dated configuration. The equilibrium Eq. (65) are then used for eval
uating the residual of equilibrium in an iterative procedure.

6. Linearization

The equilibrium Eq. (65) are non linear in (u,/), therefore an
iterative procedure has to be used linearizing the equilibrium
equation in the increments of the displacements and rotation.

Since the objective of this work is the application of B spline
approximation to space rods, we consider only the case of small
deformations, linearizing the equilibrium equations in (u,/). In this
way, a linear system is obtained, that coincides with the material
stiffness matrix referred to the undeformed configuration. It will
be obtained from the principle of virtual power (63), using for
the stresses the tangent constitutive equations:

_Stt E ð
_
t
�
� t
�
Þ E _e 1

#n

Rm
þ#

m

Rn

� �
#n _vmktk2þ#m _vnktk2

� 	

E _t � tþ#n d2 _u

dS2 � n̂þktk
2

_/
Rm

 !
þ#m d2 _u

dS2 � m̂ ktk2
_/

Rn

 !" #
_Stn G #m _vtktk
_Stm G #n _vtktk:

ð71Þ

Substituting into the definitions of the sectional stress resul
tants, and assuming, for simplicity, that the normal axes n̂ and m̂
be principal of inertia, one gets the following constitutive relations:
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multiplicity is k = p the B-Spline has C0 continuity at the knot considered.
Mn

Mm

B@ CA E In
Rn

In 0
Im
Rm

0 I m

B@ CA _vnktk2

_vmktk2

B@ CA; ð72Þ

Mt G
Z
A
½ð#nÞ2 þ ð#mÞ2�dA _c GJ _c ð73Þ

with In
R
Að#

mÞ2dA and I m
R
Að#

nÞ2dA.
In the case of infinitesimal deformation, ktk? kt0k and Rn, Rm

become the curvatures of the reference configuration.

7. Numerical formulation

In the equilibrium equations derived in the previous sections
the displacement functions are strongly coupled, involving differ
ent degrees of differentiation. In order to guarantee continuity
along the beam both the displacement functions and the geometric
parameters of the axis curve, it is necessary that the interpolation
be of a sufficiently high degree. In the paper we propose the use of
a B spline bases interpolation, that have several advantages with
respect to the traditional polynomial interpolation over finite
elements.

7.1. B Spline interpolation

A B Spline curve of degree p is defined as

CðkÞ
Xn

i 1

Ni;pðkÞPi ð74Þ

where Pi = {Pix,Piy,Piz} are the cartesian components of n control
points, and Ni,p are the n B Spline basis functions of degree p defined
sequence of m real numbers, the parametric coordinate kj,
j = 1, . . . ,m, with m = n + p + 1,

N a; . . . ; a|fflfflfflffl{zfflfflfflffl}
pþ1

; kpþ2; . . . ; km ðpþ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m 2ðpþ1Þ

; b; . . . ; b|fflfflfflffl{zfflfflfflffl}
pþ1

8><
>:

9>=
>;

The global interval [a,b] is called the patch. The B Spline is said
uniform if the knot vector are equally spaced, and non uniform
otherwise. A knot vector is said open if the first and last knots have
multiplicity p + 1; in this work only non periodic open knot vectors
are considered, with multiplicity equal to 1 for each internal knot,
so that we have Cp 1 parametric continuity at each knot.1

The basis functions Ni,p(k) are computed by means of the Cox
deBoor recursion formula (see Piegl and Tiller [21]).

Starting from p = 0 with

Ni;0ðkÞ
1; if k 2 ½ki; kiþ1½;
0; otherwise:


ð75Þ

for p P 1 we have:

Ni;pðkÞ
k ki

kiþp ki
Ni;p 1ðkÞ þ

kiþpþ1 k

kiþpþ1 kiþ1
Niþ1;p 1ðkÞ; if k 2 ½ki; kiþpþ1½;

0; otherwise:

(

ð76Þ

In the formula (76) the position 0/0 = 0 must be considered. The
generic interval [ki,ki+1[ is called the knot span and can have zero
length; knot spans with length different from zero are called sec
tions. For an open knot vector there are m 2(p + 1) + 1 sections.

1 If a knot has multiplicity k the B-Spline has Cp k continuity at the knot, i.e. if the
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Fig. 6. Clamped torsion-free space arch; (a) initial geometry of the rod; (b) solution for the uz(S) displacement and (c) solution for the correction-angle /(S).
shows an example of B splines bases on the interval [0,1].
If in the knot vector there are not internal knots the basis func

tions reduce to the Bernstein polynomials, so that the B Spline
interpolation is a generalization of the Bezier’s interpolation. An
interesting property of the B Spline interpolation of a curve with
an open knot vector is that the curve is tangent to the control poly
gon at the ends.

7.2. Representation of the geometry: collocation and refinements

In this work we use an isoparametric B Spline representation,
that is, both the reference geometry and the configuration vari
ables are approximated by means of the same B spline bases. In
this manner one of the interesting property of isogeometric analy
sis, the internal high continuity, is preserved. We do not follow the
usual isogeometric approach, that employs NURBS for the approx
imation of the relevant variables.

A NURBS curve is the projection of the four dimensional B
Spline of R4 onto R3, in this sense all the property for B Spline
are transferred to NURBS. In this approach the initial geometry is
described exactly, and it is invariant under refinements. The basis
functions are weighted and non rational and during the mechanical
simulation the weights remain fixed.

In our approach, in order to reduce the error, h or k refine
ments are used on the initial geometry as well as on the configura
tion parameters space, analogously to the refinement strategy of
the standard FEM codes.

Hughes et al. [14] and Cottrell et al. [9] have examined some of
the most common refinement techniques in isogeometric analysis,
the fundamental being the h refinement, the p refinement and the
plicity of the inserted knot is one, the geometry and the internal
continuity are invariants; while under k refinement, or degree ele
vation in the sense of the polynomial and continuity degree, only
the geometry is invariant, but the continuity is increased consis
tently to the polynomial degree.

In this work we use h refinement and k refinement. The
h refinement is described in Fig. 4. A standard knot insertion is per
formed in the B Splines space, see Piegl and Tiller [21]. Only knots
with multiplicity one are inserted, so that the continuity degree
remains unchanged. The newly generated control variables are then
collocated in the Greville abscissas and the geometry is newly de
fined. Alternative sets of collocation abscissae are presented and
analyzed in [3], for the collocation of strong differential operators.

In the k refinement, a p refinement (polynomial order eleva
tion) is performed in the B Splines spaces, followed by an h refine
ment (knot insertion), see Hughes et al. [14] and Cottrell et al. [9].
In this manner one gets higher continuity and polynomial order,
see Fig. 5.

7.3. B Spline interpolation of the rod

The interpolation of a configuration of the rod is obtained as
functions of the vector q that collects the coordinates of the control
points and the twist angle:

qðkÞ fpxðkÞ; pyðkÞ;pzðkÞ;/ðkÞg

paðkÞ
Xn

i 1

Ni;pPai M̂Pa /ðkÞ
Xn

i 1

Ni;pUi M̂U
ð77Þ
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so that pðkÞ MP with dð�Þ Bp : ð81Þ
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75 ð78Þ

where the matrix M̂ ½N1;p; . . . ;Nn;p�. In general it is more conve
nient to perform the interpolation sectiontwise, since on each seg
ment only p + 1 basis splines are different from zero. However, in
order to simplify the exposition, we refer to the interpolation over
the whole patch, as happens in the case of Bezier interpolation.
We define the following matrices of the derivatives of the interpo
lation functions

B
dM

dk
D

d2
M

dk2 ð79Þ

The interpolation of the initial tangent vector and of its norm is

t0 BP0 kt0k BP0BP0

p
; ð80Þ

that are evaluated on the interpolation of the initial geometry. The
interpolated arc length differentiation is
dS PT
BTBP

so that the cartesian components of the current tangent vector is gi
ven by

t
BP
kt0k

ð82Þ

The interpolation of the second gradient along the arc length,
according to expression (23) is

d2�
dS2

1
kt0k

d
dk

1
kt0k

d�
dk

� �
1

kt0k2

1

ktk2

dt
dk
� t

� �
d�
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� 1

kt0k2 D
DP0 � BP0ð Þ
kt0k4 B

1
BP � BP

1

kt0k2

� DP � BP BP � BP
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BP0 � BP0

� 	
B

� 1

kt0k2 D
DP � BP

ktk2kt0k2 B X

ð83Þ
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The cartesian components of the sectional axes n̂; m̂ are given by
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Fig. 9. (a) Error on the displacement uz(L); (b) error on the torsion angle /(L).
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moment at the first end.
expressions (13) once the interpolation of the tangent vector (82)
has been obtained, and will be indicated as
n NðPÞ m VðPÞ: ð84Þ
7.4. Material stiffness matrix
The material (tangent) stiffness matrix of the rod is derived
from the virtual power expression (63) using the definitions (64)
of the stress resultants and the constitutive Eq. (71) for the stress
components. We shall examine each contribution to the internal
power separately.

7.4.1. Material axial stiffness
The axial stiffness is obtained from the following integral,

where a tilde denotes virtual deformations:Z
L0

E A _e~edS
Z L0

0
E A t � d

_u
dS

� �
t � d

~u
dS

� �
kt0kdk ð85Þ

Using the approximation t BP
kt0k

, the axial stiffness matrix gets
the form

Kax

R L0
0 E A BT BPð ÞT BT BPð Þ

kt0k3 dk 0

0 0

2
4

3
5 DP

DU

� 	
ð86Þ
7.4.2. Material bending stiffness

Since the axes n̂; m̂ have been chosen principal of inertia, the

bending material stiffness is obtained from the expressionZ L0

0
E I m

d2 _u
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dS
ktk _/
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ð87Þ

The geometric curvatures are interpolated as follows
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dS
ktk 1

kt0k
VT I3�3

BP� BP
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DP qm
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ð88Þ

The bending velocity of curvature operators are given by

d2 _u

dS2 � n̂þ m̂ � dt̂
dS
ktk _/ NTX _dþ qmM̂

_U

d2 _u

dS2 � m̂ þ n̂ � dt̂
dS
ktk _/ VTX _dþ qnM̂

_U

ð89Þ

The material bending stiffness is therefore given by the sum of
the two matrices:

Kn̂ E I m

Z L0

0

XTNNTX qmX
TNM̂

qmM̂
TNTX q2

mM̂
TM̂

" #
DP
DU

� 	
ð90Þ

K m̂ E In

Z L0

0

XTVVTX qnX
TVM̂

qnM̂
TVTX q2

nM̂
TM̂

" #
DP
DU

� 	
ð91Þ
7.4.3. Material torsional stiffness

The torsional internal power isZ L0

0
G J _vt ~vtkt0kdk ð92Þ
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The interpolation of the torsional velocity of curvature is !  ! particular geometry studied. For the simpler academic examples, a
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Fig. 11. Cantilever arch with a point force; (a) initial geometry of the rod; (b) exact solution for the ux(S) displacement, and (c) exact solution for the uy(S) displacement.
1
ktk t̂ � dt̂

dS
� d

_u
dS
þ d _/

dS
1
ktk m̂ � dt̂

dS
d _u
dS
� n̂þ n̂ � dt̂

dS
d _u
dS
� m̂

þ d _/
dS

1
kt0k

1

ktk2 qmN
T þ qnV

T
� �

B _P

þ 1
kt0k

B̂ _U
1
kt0k

Xt
_P þ 1
kt0k

B̂ _U: ð93Þ

The material torsional stiffness matrix is therefore

Kt G J
Z L0

0

1

kt0k2

XT
t Xt XT

t B̂

B̂TXt B̂TB̂

" #
DP
DU

� 	
ð94Þ
7.5. Numerical integration
Gauss Siedel and Gauss Lobatto quadrature rules have been
used, considering p + 1 Gauss quadrature points per section. No
significative difference has been found between the two quadra
ture rules.

8. Numerical applications

In this section some applications are presented, for checking the
numerical model presented. Several geometries are tested, in order
to prove that the performance of the model does not depend on the
convergence analysis is also presented.

8.1. Cantilever space arch

The first example concerns the horizontal arch shown in
Fig. 6(a), clamped at the first end and subjected to a vertical force
F = {0,0, 1},[kN] at the free end. For this example it is possible to
evaluate the exact solution, so a convergence analysis for the exact
error will be presented. Both the convergence for the L2 norm of
the error and for some relevant values of the displacements or
stresses will be examined.

The radius of the centroid curve is R = 1 [m] the section is rect
angular with hn = 0.1 and hm = 0.01 [m] respectively, and
E = 1.999⁄108 [kN/m2], m = 0.25, (G = E/(2 + 2m)). The centroid curve
is given by

PxðaÞ R cos½p a� PyðaÞ R sin½p a� PzðaÞ 0;
a 2 ½0;p=2� ð95Þ

No geometrical torsion is considered in this case, that is
/0(S) = 0 "S 2 [0,L0]. The initial unit tangent vector at the origin
is t̂0 f0;1;0g and the unit normal vectors are assumed as
n̂0ð0Þ f0; 0;1g and m̂0ð0Þ t̂0ð0Þ � n̂0ð0Þ f1;0;0g. Since in this
case it is Rð/0; t̂0ðSÞÞ I everywhere it results n̂0ðSÞ n̂0ð0Þ and
m̂0ðSÞ K0ðt̂0ð0Þ; t̂0ðSÞÞn̂0ð0Þ. The boundary conditions at the first
end are given by

http://dx.doi.org/10.1016/j.cma.2012.11.017


_uð0Þ 0; _̂nð0Þ � t̂ð0Þ 0; _̂mð0Þ � t̂ð0Þ 0; _/ð0Þ 0: ð96Þ The initial geometry and the deformation fields have been rep
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Fig. 12. 2D-cantilever arch with a point force at the end; (a) relative error in L2-
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Fig. 13. 2D-cantilever arch with a point force at the end; (a) relative error in L2-
norm for the bending moment Mm and (b) relative error in L2-norm for the axial
force N, for different polynomial degrees.
Setting Im
hmh3

n
12 ; In

h3
mhn
12 and J h3

mhn
3 the exact solution for

the vertical displacement uz(S) and for the torsional rotation /(S)
are given respectively by

uzðSÞ
2EI mðSþ Cos½S� 1Þ þ Sin½S�ðEI mðS 2Þ þ GJ SÞ

2EIm GJ

/ðSÞ Sin½S�ðEI mðS 2Þ þ GJ SÞ
2EIm GJ ;

ð97Þ

At the free end we find

uzðp=2Þ p
4EI m

3p
4GJ þ

2
GJ 0:13835450005254035 ½m�;

/ðp=2Þ p
4EI m

p
4GJ þ

1
GJ 0:07580120034574506 ½rad�:

ð98Þ
resented by B splines of degree ranging from 2 to 5. For each poly
nomial degree an increasing number of degrees of freedom has
been considered, inserting internal knots by means of the h refine
ment procedure. Up to 40 control points have been considered. In
addition, for comparison, the problem has been solved using Be
zier’s interpolation, with polynomial degree from 2 to 12.

In Fig. 6(b) and (c) are plotted the vertical displacement uz(S)
and the torsional rotation /(S) numerically calculated using 5th
degree B splines. The results obtained are very close to the exact
solution.

Convergence plots for the vertical displacement, torsional rota
tion, bending and torsional moment are reported in Figs. 7(a), (b),
8(a) and (b). On the horizontal axis is reported the number of con
trol points used, proportional to the dimension of the approxima
tion space. On the vertical axis is reported the L2 error norm.
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Fig. 15. In the (a), (c) and (e) are shown respectively the initial configurations with a positive initial torsion, without torsion and with negative initial torsion. In Fig. 21, (f) and
(d) are plotted for the three cases the initial geometric curvature 1

Rn
(solid line), the initial geometric curvature 1

Rm
(dashed line), and the initial torsional curvature 1

s (mixed
line).
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8.2. 2D Cantilever arch with a point force

0 5 10 15 20 25 30

0.00004

0.00002

0

0.00002

0.00004

λ

span

U
x

D
is
pl
ac
em
en
t
m

0 5 10 15 20 25 30
0.00004

0.00002

0

0.00002

0.00004

λ

span

U
y

D
is
pl
ac
em
en
t
m

0 5 10 15 20 25 30
0.00035
0.00030
0.00025
0.00020
0.00015
0.00010
0.00005
0.00000

λ

span

U
z

D
is
pl
ac
em
en
t
m

0 5 10 15 20 25 30
0.0008

0.0006

0.0004

0.0002

0.0000

λ

span

AN
G
LE

ra
d

Y
ZX

Y
ZX

Y
ZX

(a) (b)

(c) (d)

(e)
Fig. 16. Deformations of the clamped arch. In (a) is reported the ux-displacement, in (b) the uy-displacement, in (c) the uz-displacement, and in (d) the torsion angle /; a solid
line refers to positive pre-twisting, a gray line refers to negative pre-twisting and a dashed line to the no pre-twisted case. (e) shows the initial (gray) and the final
configurations (black) of the pre-twisted rod (in the case of positive twisting) due to a constant vertical distributed load.
kðÞexack R
L0
ðÞ2exacdS

q ð99Þ

Each curve of the plots is related to a fixed degree of the B spline,
and corresponds to an h refinement. In the plots are also shown the
lines corresponding to different rates of convergence. It can be ob
served that, for the displacements, Fig. 7(a), (b), the asymptotic con
vergence rate seems slightly better that the theoretical rate p + 1
[4]. A transition region appears where the convergence rate is even
faster. For comparison, on the same plots has been superposed the
error found with Bezier’s interpolation, whose convergence is expo
nential, since, in this case, increasing the number of control points is
equivalent to increase the polynomial degree.

Similar conclusions are drawn from the plots of the rate of con
vergence of the error for the stress resultants, compared with the
theoretical rate, respectively p for the axial force and the torsional
moment and p 1 for the bending moments. For this example, also
the convergence analysis for the displacement and rotation of the
free end, and for the bending and torsional moment at the built
in end are presented (Figs. 9(a), (b), 10(a) and (b)). The error for
the vertical displacement of the free end is proportional to the er
ror in energy. The convergence rate, as expected, is smaller than
the one found for the L2 norm.
In this subsection it is considered a flat cantilever arch loaded at
the free end by a vertical force. The geometry is the same as in the
previous section: the radius of the centroid curve is R = 1 [m] the
section is rectangular with hn = 0.1 and hm = 0.01 [m] respectively,
and E = 1.999⁄108 [kN/m2].

The exact solution for the displacements is

uxðSÞ
Sin½S�2

2 EIn
;

uyðSÞ
2S

E A
S Cos½S�Sin½S�

2E In
;

ð100Þ

with S the arc length S 2 [0,Pi/2], represented in Fig. 11(b) and (c).
For S = Pi/2 the displacement of the loaded end is

uxðp=2Þ 1
2 E In

0:30015007503751867 ½m�;

uyðp=2Þ p
E A

p
4E In

0:47149035117732546 ½m�:

ð101Þ

In Fig. 12(a) and (b) are presented the L2 convergence analy
ses of the relative error for the x and y components of the displace
ment. The meaning of the plots is the same as in the previous
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example. Also in this example the curves appear to superconverge

Fig. 14(a). An anomalous behaviour is presented by the conver
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Fig. 17. Stress resultants for the clamped arch. A solid black line refers to the positive pre-twisted initial configuration, a gray line to the negative pre-twisted initial
configuration and a dashed line to the torsion free initial configuration.
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Fig. 18. (FE comparison) Comparison of the axial force obtained with the B-spline
interpolation (solid line) and the axial force calculated with 15 Hermitian beam
elements (box markers)
in the considered range of discretization.
In Fig. 12(a) the dashed curves represents the convergence rate

for a p refinement, that is close to the convergence rate of the Be
zier’s interpolation.

Convergence analysis for the relative error on the bending mo
ment, the axial force and the shear are shown in Figs. 13(a), (b) and
gence of the axial force, that first gets worse then tends to con
verge. This behaviour can be explained with the onset of
membrane locking. The phenomenon has been already observed
Stolarski and Belytschko [25] and will be object of future
investigations.

In Fig. 14(b) is presented a comparison between NURBS (isogeo
metric) analysis and the present B Spline analysis. In this case the
NURBS approximation has the advantage of exactly describing the
reference geometry. Furthermore the approximating functions are
richer than B splines (as a matter of fact they reduce to B splines
when the weights are all unitary). The error on the tip vertical dis
placement uy(p/2) under h refinement for two polynomial degrees
is presented. As can be observed, increasing the number of ele
ments the differences between the two strategies are immaterial.

8.3. Pre twisted arch

In this subsection we consider a thin pre twisted arch clamped
at both ends, i.e. u(0) = u(L) = 0 and /(0) = /(L) = 0. Three cases are
compared, considering positive, null and negative pre twisting.
This is a simple case of a non geodetic manifold, because the unit
triad if affected by torsion. The centroid curve is given by Eq.
(95) with radius R = 1 [m], the section is rectangular with hn = 0.1

http://dx.doi.org/10.1016/j.cma.2012.11.017


and hm = 0.01 [m], Young modulus is E = 1.999⁄108 [kN/m2], m = 0.25 Fig. 15(a), (c), (e) show a sketch of the initial geometries of the
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Fig. 19. In (a) are superposed the initial configuration (solid gray line), and the final configuration of the helix (solid black line). In (b) are shown the initial curvatures 1

Rn
(gray

line), 1
Rm

(dashed line) and the initial torsion 1
s (thick black line).
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Fig. 20. Twisted helix. Results for the displacements ux,uy,uuz and for the torsion angle /.
and G = E /(2 + 2m). The initial unit tangent at the origin is
t̂0ð0Þ f0;1;0g and the initial unit normal vector at the origin is
n̂0ð0Þ f0;0;1g, so that m̂0ð0Þ f1;0;0g. The initial normal vector
is obtained using the rotation operator Kðt̂0ð0Þ; t̂0ðSÞÞ, that yields

n̂[
0ðSÞ Kðt̂ð0Þ; t̂ðSÞÞn̂0ð0Þ n̂0ð0Þ ð102Þ

The rotation around t̂ðSÞ, is given by the twist angle /

n̂0ðSÞ Rð/0ðSÞ; t̂0ðSÞÞn̂0ð0Þ; m̂0ðSÞ t̂0ðSÞ � n̂0ðSÞ: ð103Þ

Three cases are considered for the correction angle /0(S), as
shown in Fig. 15(a), (c) and (e), that is /0ðSÞ p

2
S
L corresponding

to an initial configuration with positive constant torsion
1
s0

1; /0ðSÞ 0 corresponding to an initial configuration not
pre twisted with zero constant torsion 1

s0
0 and /0ðSÞ p

2
S
L cor

responding to a negative pre twisted initial configuration with
negative constant torsion 1

s0
1.

In Fig. 15(b), (d) and (f), respectively, are plotted the initial con
stant torsion and the initial curvatures that are not constant, while
arch.
The rod is subjected to a constant distributed vertical force

qz = 1 [kN/m]. A quintic degree B spline interpolation is consid
ered for the initial and deformed configurations.

In Fig. 16(a) (d) are reported the displacements and the torsion
angle / for the three cases considered (a solid black line relates to
the arch with positive twisting, a dashed line to the arch without
twisting, and a gray line to the arch with negative twisting).

In Fig. 17(a) (e) and (f) the bending moments, the axial force,
the torsional moment and shear forces are shown. It can be noticed
that in the case of pre twisted arches because of the coupling be
tween flexure and torsion, also a non zero axial force arises, as well
as a bending moment around the n̂ axis. The results for the axial
force are compared in Fig. 18 with those obtained using a Finite
Element code, discretizing the arch with 15 straight Hermitian ele
ments, model that requires a great amount of modeling effort. The
FE results are less accurate due to the geometrical errors in inter
polating the tangent to the rod.
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8.4. General case: pre twisted cylindrical helix and the rotation / are shown, respectively, in Fig. 20(a) (d). The
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Fig. 21. Twisted helix. Results for the stress resultants.
In this sub section we consider a rod with a centroid curve de
fined by an helix, mapped by the expressions

PxðaÞ R Cos½p a�; PyðaÞ R Sin½p a�;
PzðaÞ p a; a 2 ½0;2p�; ð104Þ

with R = 1 [m] and p = 0.25 [m]. The unit normal, n̂, is mapped on
the cartesian bases, Ei, as

n̂0 � ExðaÞ Cos½p a�; n̂0 � EyðaÞ
Sin½p a�; n̂0 � EzðaÞ 0; a 2 ½0;2p�; ð105Þ

and coincides with the unit normal to the cylinder in the points on
which the helix lies. The third unit vector m̂ is mapped by
m̂0 t̂0 � n̂0.

The thickness of the rectangular section are hn = 0.1 [m] and
hm = 0.01 [m] the Young’s modulus is E = 1.999 � 108 [kN/m2],
m = .25 and G = E/(2 + 2m). The initial configuration, and the initial
curvatures and twist are shown in Fig. 19(a).

The boundary conditions are ux(0) = uy(0) = uz(0) = /(0) = 0 and
ux(L) = uy(L) = uz(L) = /(L) = 0. The external force is q = {0,0, 1}
[kN/m], proportional to the self weight. The rod is modeled by a
quintic B spline with 35 internal points. The displacement ux,uy,uz
stress resultants are reported in Fig. 21(a) (f).
The plots of the stress resultants are quite smooth, as was ex

pected, particularly for the shears, that are the most sensitive to er
rors and oscillations.

9. Conclusions

In the paper has been investigated a numerical method for the
analysis of curved and twisted elastic space rods, subjected to gen
eral loading conditions. The numerical treatment of this kind of
structures in the context of standard finite element approxima
tions requires a great modelling effort, and the results suffer of sig
nificant inaccuracy due to the geometrical discontinuities brought
about by the FE discretization. Therefore it has been proposed an
approach based on B spline approximation, that allows to describe
with high continuity and with asymptotic precision the initial
geometry.

Kirchhoff Love rods have been analyzed, since in the case of
thin rods (the ones examined in the article) shear locking is
avoided (but not, in general, membrane locking, as one of the
example presented suggests). First it has been developed a 3D
model for the deformation of the rod, defined as a ribbon extruded
over a base line. The evolution of the section of the rod along the
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axis has been defined by means of a rotation operator that does not [4] Y. Bazilevs, L.B. ao Da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Iogeometric
analysis: approximation, stability and error estimates for h-refined meshes,
use Euler angles, and that has proved to be quite convenient. The

tangent kinematic operator has been derived in a Lagrangian
description. An updated Lagrangian form of the equilibrium equa
tions has been obtained, from which the definitions of the reduced
axial and shear forces often used in the literature naturally stem
out. In the hypothesis of a linear elastic behaviour we have derived
the constitutive equations of the rod in terms of the effective stress
resultants.

Next the linearized equilibrium equations have been stated, in
the hypothesis of infinitesimal deformations. The applications pre
sented are limited to this case.

An interpolation based on B spline bases has been considered.
The material stiffness matrix has been explicitly derived using a
single patch for the rod. The stiffness matrix is highly coupled,
and the axial, bending and torsional contributions have been pre
sented separately. The geometric and the load stiffness matrices
will be presented in a future work. An isoparametric approach
has been used, employing the same B splines for the reference
geometry and for the configuration variables. By means of an aca
demic example, it has been shown that, for the case of spatial rods,
the approach based on NURBS has no significant improvement on
the proposed approach based on B splines.

Convergence analyses on simple examples yield convergence
rate close to the theoretical ones, and even better in a transition re
gion. Also the convergence rate for k refinement has been tested.

The examples presented have proved the efficiency of the meth
od proposed. At least in one of the examples presented locking
phenomena have been observed. Indeed locking may be present
for very thin sections. However this important problem has not
been addressed explicitly in the present work and will be object
of a forthcoming paper.
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