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B-Spline interpolation of Kirchhoff-Love space rods

L. Greco, M. Cuomo

Department of Chil and Environmental Engineering, Universied degli Studi dil Catania, viale A Dorig 6, Italy

ABSTRACT

The paper deals with the isogecmetric analysis via B splines of space rods under Kirchhoff Lowve hypoth

eses, The approach was used by Gontier and Vollmer |12] for develeping a plane curve element within the
framework of the Timoshenke rod model, but they adeopted only one patch to represent entirely the
geometry of the rod; lurthermore the authors develeped their theory only for plane elements. In this
work we develop an isegeometric approach for the numerical analysis of the 30 Kirchhoff Love rod the

ory. We use B splines and Bezier interpolations and we show that they are able to attain very good accu

racy for red structeres, particularly for developing a 3D exact curve element with geometric torsion. The
paper presents an original parametrization of the geometric torsion that proves to be very effective, The
use of B splines allows to aveid discontinuities on the geometrical quantities, and particularly on the nor

mal fields, so that even relatively low ocrder interpelation functions are able to yield accurate results.

1. Introduction

Isogeometric analysis is a new paradigm in computational
mechanics, mainly introduced by Hughes et al. [14], that employs
the geometrical representation tools developed in the computer
aided design, and in the computer graphics technology. In isogeo
metric analysis the geometrical objects are interpolated with B
splines, which guarantee ¥ ' continuity, p being the degree of
the spline, as opposite to the usual C° continuity obtained with
the standard FEM discrete representations. The same interpolation
is used for the degrees of freedom that define the deformed geom
etry, so that an isoparametric description is obtained. Although B
splines are not shape functions in the usual sense, they verify the
partition of unity,

An extensive review of B splines technology can be found in
Piegl and Tiller [21]. In this work we employ open 8 splines defined
on an uniform knots vector.

Recently isogeometric analysis has been applied to many prob
lems of solid and fluid mechanics [17]. Its ability to correctly incor
porate in the analysis the initial geometric curvatures withour
discontinuities makes the method very appealing for rods and
shells. Isogeometric analysis of shell models has been developed
by [6] for polar and by Benson et al. [5] and Kiendl et al. [18] for
nen polar shells. In [6] the authors pay particular attention to the
interpolation of the normal vector, introducing a method based

on a newly proposed lifting operator. In [19] a procedure for join
ing different patches under Kirchhoff Love hypotheses is proposed.

In the field of 1D structural theories it is interesting (o point out
that already in 1995 Gontier and Vollmer [12] applied a Bezier's
interpolation to a plane polar rod model on the basis of the theory
of Simo [22]. Recently Echter and Bischoff [11] have studied a low
order Bezier's interpolation for polar beams, in order to investigate
the numerical shear locking. They also developed an interesting
generalization of the DSG approach for avoiding locking to the case
of isogeometric analysis, extending the idea of Bletzinger et al. [3]
of the Discrete Strain Gap. Only the case of straight beams was cov
ered by the authors.

A general model for space rods has been given by Simo and
Vu Quoc [24] who also provided its numerical implementation.
However they adopted a Timoshenko model. The bibliography on
rods is huge, and we only cite the significant numerical contribu
tions given by Crisfield [10], and, for Kirchhoff models by Goriely
et al. [13], Langer and Singer [20], Antman [1]. Finite Element
implementations of the Kirchholl Love model for finite deforma
tion space rods are not commen in literature, since continuity con
ditions for the geometry are more difficult to enforce. However,
Kirchhofl Love model has some advantages, mostly related to the
absence of shear locking phenomena especially for slender and
thin walled elements, and te the greater compaciness of the for
mulation. Furthermore, the exact evaluation of the shear correction
factor is still a matter of discussion.

In the context of standard polynomial interpelations of Finite
Elements many elements have been proposed for effectively treat
ing this kind of structures, generally based on mixed or enhanced
formulations [24,10.2]. Special elements for particular geometries



have been proposed by Ishaquddin et al. [16]. In this work we
adopt a pure displacement B Spline isoparametric formulation of
a space rod model. It is shown that the model can be efficiently
implemented in a numerical code, and that the use of a smooth
geometry improves the convergence rate of the solution. Since
we do not use NURBS, the reference geometry may be affected
by errors, so it is proposed a refinement strategy that improves
both the approximation of the reference geometry and of the con

figuration variables, similarly to what happens in FEM. It will be
shown that, at least for the case examined, there is no appreciable
loss of precision with respect to the NURBS approximation.

We consider a parametrization of the cross section independent
from the Frenet’s triad, similar to the natural frame and curvilinear
angle representation given in [20]. The normal vectors attached to
the centroid curve are mapped by a correction angle, ¢, that coin
cides with the torsional twist. The geometry of the axis is defined
via a uniform collocation of the control points. The tangent and
normal vectors are defined on the interpolation of the geometry.
In this work we consider only a single patch to represent the entire
geometry of the rod. For the quadrature we adopt the standard
Gauss Lobatto rules, considering p + 1 quadrature’s points for each
non null section in the knots vector, (where p is the polynomial
degree). Alternative strategy of quadrature rules for NURBS inter
polations can be found in [15,3].

In the paper the finite deformation kinematics is derived, and
the full non linear equilibrium equations are stated. However, since
the main goal of the work is to analyze the performance of the
B spline approximation, in the applications we have examined
only the case of infinitesimal deformation. It is consistently
obtained linearizing the finite deformation kinematics for the
space rod. The extension to geometric non linear problems will
be considered in a forthcoming paper.

2. Configuration of the space rod

The rod is treated as a ribbon, defined as a pair 4,1 where
A ]0,Lo[ is an open set of R, that is the parametric domain of
the curve p(S): A— R® and f(S): A — R is a unit vector field
everywhere orthogonal to that curve. An index ‘0’ denotes the ini
tial undeformed configuration. The normal to the original configu
ration fiy is chosen arbitrarily, i.e. it does not coincide with the
Frenet normal. The tangent vector to the reference configuration
of the curve is the unit vector field &: 4 — R® with &, % (a
hat indicates a unit vector). Then there exists a rotation operator
A(to(0),£0(S)) that transforms &,(0) in £y(S) without rotation
around &,(0) (its explicit form is given in Eq. (8)). The vector field

fiy(S)  A(to(0),20(S)) fio(0) (1)

defines the manifold S;  {(po(S), 1)(S
in the sense of a torsion free ribbon.
The geodetic ribbon is only a particular kind of admissible con
figuration. The more general configuration of the space rod is ob
tained allowing a torsion around the tangent axis, so that the
unit normal to the rod axis is given by the isometric operator

fio(S)  R(to(S), ¢o(S))ty(S)
R(t0(S), ¢0(S)A(£0(0), £(S)) 110(0). (2)

where the unit operator R(£(S), ¢(S)), represents a rotation ¢o
around the unit tangent &y(S).
The space rod is thus defined by two fields,

So {(Po(S), $o(S)) : A — R x S}, 3)
The unit local triad is completed by the unit vector

£o(S) x f1o(S) (4)

))} that is a geodetic ribbon

(S
A(to(0

nol0)

Fig. 1. Intrinsic reference axes on the initial geometry of the rod.

The geometrical transformation (2) defines the more general
Lagrangian configuration of a rod, i.e. a rod affected by geometrical
torsion but with directors always orthogonal to the axis (see Fig. 1).

3. Kinematics of the Kirchhoff Love rod

The space rod model has four degrees of freedom while there
are six components of the displacement of the cross section. In Sec
tion 3.1 the relationships between internal and external degrees of
freedom will be derived.

3.1. Internal mapping

Let py(S) : [0,Lo] — R® be the arc length parametrization of the
base curve of the reference configuration, and let
u(S) : [0,Ly] — R® be the Lagrangian arc length parametrization of
the displacement field of the centroid curve of the rod. The current
centroid curve is indicated by p(S) : [0,L,] — R* and is defined as

p(©S)  Po(S) +u(S). (5)

The Lagrangian arc length parametrization of the current tan
gent vector field is indicated by &(S) : [0,Lg] — R and is defined
by (S) % 5o that the current unit tangent vector field

£(S): [0,Lg] — R® is

Lo &S 1 dp
1 e TS ds ©

The intrinsic triad is mapped by means of two isometric operators
A(to(S), £(S)), a rotation without drilling rotation around the vector
to(S), and a second unitary operator R(£(S), ¢(S)) that gives the cor
rection drilling rotation ¢(S) : [0, L] — R around the vector &(S).
The proposed parametrization of the triad’s rotation differs
from the one originally proposed by Simo and Vu Quoc [24], and
extensively used since, based on Euler angles around the material
or spatial axes. In a Kirchhoff Love model the latter parametriza
tion is not convenient, since only one rotation is independent. Lan
ger and Singer [20] introduced for Kirchhoff Love rods a natural
frame, characterized by having uniformly zero twist (Bishop
frame), defined on the rod axis starting from a frame arbitrarily
introduced in one point of the curve (usually the point S = 0). The
idea was systematically exploited by Bergou et al. [7] for
uncoupling the bending and the torsion energy of inextensible Kir
chhoff Love rods. This parametrization requires, in addition to the
map of the twist angle, the rotation of the frame at S = 0, that may
be not convenient when dealing with rods linked at their end
points. The parametrization of the frame rotation proposed here
is different, in that no initial value of the spatial vectors is required,
and the rotation is always referred to the original configuration.
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The frame we obtain is not “natural” in Langer and Singer sense, as
it will be shown soon. However, it appears that the proposed
description of the kinematics is simpler and more general, and is
easily extended to the case of extensible rods.

Specifically, the two rotation operators are obtained particular
izing Euler Rodriguez formula

R ex®e+cos[p|(I exe)+sin[plexl. (7)

foxi

whil
ot €

The unitary axial vector of the first rotation is e

cos[p] & tandsin[p] |t x &, therefore the formula (7) gives

the representation

Ato,t) (B0 DI+ [t x 8] x I +——— (fo x D) @ (fo x 1).  (8)
T+t -t

The axial vector of the second rotation operator is € t. Setting
@=¢ and using the following property of the double cross
product:

txjtxl] I+tot 9)
or the equivalent
tot I+tx|txI. (10)

the Rodriguez operator (7) assumes the representation

R(t,¢) I+sinfg]txI+ (1 cos]) tx [txI]. (11)
Introducing the definition
Q(to(S), E(S), #(S))  R(E(S), () A(o(S), E(S)). (12)

the Lagrangian parametrization of the current directors f(S) and
V(S) are

S) Q(to
(S) Qlto

fa
np

,$)o(S)  R(E,
;@)Vo(S)  R(

- =
-
EL
=

(13)

We observe that it is also possible to define the Q operator as
Q(to,t,$) A(to,t)R(ty, $) that means that the operators A and
R commute.

Remark. The Lagrangian description of the internal state of the
rod is defined by means of the two field {u(S),4(S)}, so that it has
four degrees of freedom.

According to differential geometry the curvature and torsion of
the rod axis are:

1 1dv.

Zm Rt dS
1 1 dit .

Lrv RS (14)
1 1dn g

e T ds

The first two are the (reduced) bending curvatures, and are equal to
the components of the vector it x gg while the third is the tor
sional curvature, or twist. The name “reduced” has been added for
consistency with later definitions. In the initial configuration the
torsional curvature is y, % y, %o since the intermediate
frame (), v;) is geodetic by construction. On the contrary, in the
deformed configuration, the torsional curvature depends both from
‘;—ﬁ and from the deformation of the centroid axis, as appears from an
easy calculation,

TdR o 1 ATdAA 5

n L 1 dno N
lell

- Vo, 15
s ntu BT (13)

the latter term being the initial twist referred, however, to the de
formed arc length.

4. Tangent kinematics

In order to obtain the expression of the mechanical power for
the rod, we need to evaluate the velocity of the deformed configu
ration. In this section, first the velocity of the intrinsic triad is de
rived, then we use this result for determining an expression for the
velocity of deformation. Since we use a material description, the
velocity is formally obtained performing the partial time derivative
of the pull back of the relevant objects on the material frame (see
Simo and Fox [23], p. 287).

4.1. Velocity of the intrinsic triad

The evolution of the i.nﬁtrinsic frame can be derived in terms of
the rotation vector @ ¢t + w,in + w,V as
t oxt wof  w
+ ¢V (16)
Vo ooxv ot  ¢n

n oxft ot

From the previous definition it follows that

d)nv Vi

on bbb Ly

It ds (17)
o, ta ont LWy

t]l dS

The first component of the velocity of rotation is indeed the velocity
of the twist angle introduced in Eq. (11). As a matter of fact, the re
sults (16) can be equivalently obtained by means of the rotation
operators, i.e.

n Qi, QQ ' RR'f+RAA'R'R (18)
It follows that

n-v RR'A-v+AATR -V ¢ (19)
It can be proved that the first term is ¢, while the second term van
ishes, as can be easily understood recalling the definition of the
intermediate frame (7’,v").

The derivative along the current arc length of the velocity of
rotation w is

— 7yt on v 20
where the torsional () and bending (., ) velocities of curvature
are given by the following expressions

. 1dp w, o
T d R R
¢ 1 dw, o,

S, ¢, 1 doy o 21
N SR T 1)
: £+&+ 1 do,
LR €] ds

In the bending velocity of curvature appear the derivatives of
the components of the velocity, that are related to the second
covariant derivative of the displacement vector. The first and the
second covariant line gradients of the vector @ are given by

du

2ot
dS®t

d <d"®tf> @ (22)

Grad(m)

2,
Grad”(u) B\E

d /du da dt*
g i
dS<dS>®t®t O
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having indicated by t* the contravariant tangent vector, t* T H

The only significant covariant component is along the S coordi
nate, so that,since # ¢t 1,9 ¢ 4 ¢ the last expression can
be manipulated as follows:

d (di\ ., . dio(df o
$<E>®t®t+ﬁ<ﬁ.t>®t®t

d (dir\ di (dt

is(as) a5 (as ¢ oo o
d (1 diy .

HtHd—S(mﬁ)@t@t

2
Ul—@t*@tu
ds?

Grad® (i)

Performing the derivatives indicated in the third line of (23) we
obtain

2.
B o WP, g1

ds’ ds Ry 24
by 2 (24)
i g den Ht” o, bt

ds? ds T R,

Comparing Egs. (24) and (21) it is found an alternative expres
sion for the bending velocities of curvature:

1 da . 1 tt ¢ jm 1 t-t
e P R R e e R 25)
. 1 da . 1 tt ¢ jn 1 &t
TR TR T O R

where the definition of the reduced velocities of curvature y, have
been introduced.

4.2. The kinematic tangent operator for a Kirchhoff Love rod model

Introducing the Lagrangian coordinates 0",0" along the axes f1, v
of the cross section, the position vector of a generic point of the rod
in the generic configuration is given by

P, 9", 9")  P(S)+E  P(S)+9"R(S) +9"V(S) (26)
& I"R(S) +9"V(S).

Differentiating Eq. (26) thg tangent vectors that span the tan
gent space T*Bt at the point p are
ﬁ&p@p‘ JOR - Op . . 9P .
s astUmt e Moy MV gy Y
(27)

By means of Eq. (27) it is defined the push forward operator
from the centroid line of the rod to the generic fibre,

z g,0g. g {tav} g {tav} g {Eav} (28
where the index ® indicates contravariant base vectors defined by
g, g

The gradient of deformation from the reference configuration of
the axis to its current configuration is F g, ® g}
t®t0+n®no+v®vo (see F1g 2)

Denoting withG g, ® g te t +n® n +V R v the metric ten
sor at the generic fibre, its pull back on the centroid axis of the ref
erence configuration is *(G) F'z" GzF, whose components on
the material frame &, fig, Vo are

) tt -t vt
VG |th A v (29)

-~
-
-
<
-
-

N s

Fig. 2. Transformations from the reference to the current configuration and from
the tangent space to the centroid axes to the tangent space to the generic fibre.

Kirchhoff Love hypotheses require that v v #a i 1 and
v fi 0, then the metric tensor (29) becomes
(ki oat e
V6 |ta 1 0 (30)
tv 0 1

The Green Lagrange deformation tensor is thus obtained as

‘l ** *

Eﬂwuwﬁ
] tt to-ty At fg-to V-t Vot 31)
S|t -ty 0 0

According to the results of Section 3 and disregarding terms of order
higher than 1 in ¥",9" we find

Eu(S, 9", 9") %(i-i to- %)

1(t.t to- t0)+l9"<dn~t @.io)

2 ds ds
dv dvg .
v
+9 <d5 t s t0> +higher order terms
1 2 T e A 2
(32)
the first term is the extensional deformation of the axis. Analo
gously we have
E lﬁ.i fly - to Lgv e 1
2 2 T To
1. = x 1 e 1 (33)
— U . U . — n —_— J—
E:, 2V t vo-to 2’[9 ( p To)l
The velocity of deformation tensor at the generic quota is:
d sym (zT(zF) 1), (34)

its pull back on the centroid axis of the current configuration is

d 7dz (35)
and the pull back on the centroid axis of the reference configuration
is

D E sym((zF)TzT) D8t ®gl. (36)

The components of the last tensor on the material frame are

: 2t.t f-t+i t £Vt
E sliattn-t 0 0 (37)
tv+td 0 0
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The following sections concern the derivation of the compo
nents of the velocity of deformation.

4.2.1. Shear deformation velocity 7y

The components of the shear deformation velocity are given by
the off diagonal terms of tensor (37)
o oRERE j. bVt (38)

nt

Using Eqgs. (27) and (16) we have

. A dn . dn dv . dv :
. n v . —_
7. (E-m+t. )+19 (ds "+d5 ) 9((15 "+d5 n)
. . dn _ d dv . dv -
Vit <t~v+t )+ﬁ”<$ L >+ﬁ‘(d—;~v+d—;~v>.
(39)

The time derivative of Kirchhoff Loves constraints
tia O t v O and the equalities @ 7 0, & v A v O,
reduce (39) to
?ﬁ; 9"y j’v? 9"y
. fdn . di . (40)
Y E-vqtﬁ-v .

Using the expressions for the velocities of rotation of the refer
ence frame it is readily found

dn .
Y ds(wxn) V4 == (0 xV)

ds
dw dn dn .
= . 41
Axv- 5tV X0 et e (@x) (41)
do . .
st [

The result (21), definitions (17) and the identity

. dt n_ov
allow to get a representation of J in terms of the Lagrangian gener
alized velocity vector ¢ {11, ¢}:

1 (. dt\ di d

4.2.2. Membrane and curvature velocities of deformation
The axial velocity of deformation, using (27), is given by

P [ dv dv o[ dit dn |

t-t t-t+v (dS +d5 )+79 <dS t+d5 t)
eedvodv o (dv di dv dn 2dn di
(ﬁ)$-$+ﬁﬁ(ﬁ-%+ﬁ-ﬁ>+(ﬁ) P (44)

Proceeding as above, we have:

xox N d dn
t-t t-t+o <t K@ n)+t- ds>

o d . d
+9 (t ﬁ(wxv)th'E)
Lo d . dv d
+ 9" (dS ds(a)xv)+ds dS(wxn))
m2fdn d . w2 fdv d .
07 (5 gs@xm) + 0P (g fstoxn) @)

The term in the first parenthesis can be treated as follows:

dw dn . dn dw . dn
t E><n+t w><ds+t-ﬁ V|[t] + |[t)|E x - S
dn . dn
+||th +e It 55
dw 5 .1
vije|t-te- (46)
.

Analogous transformations lead to

t-t t~t+19”< i".out” t.tl> ﬁ"(di’ it +t- tRl>

R,
ngy [(do dn . dv ne(do o dn
Y (d5< XEHXE)) ()2 (ds it x E)
w2 fdo . dv
+ (9")? (dS v><£> (47)
Accounting for the equalities
codn o odvo ] e
vxﬁ+nxﬁ nR—v vR—n (48)
1dt h v
lefds R R, “9)
the result (47) can be cast in the form:
o . dt 2 t
toerg gl Eedp S @ ot (s0)

with the notations

L o0\ . di 1 .
€ t-t<1 RT+R7> t~t<l 6d5t||> txj
E 0"+ 0"V, (51)

In this work we disregard the quadratic terms in the section
coordinates obtaining the linear representation

P . . "0\ .
t-t e+t toe(1 oo ) 0 )+ 0 Kl
R "R,

(32)

or, substituting the expressions (21) of the velocities of curvatures,
- . n v y
et tef1 Do) Lompep 1d‘°‘+f ©On
R, R,
cope(L don & o (53)
(] dS "R, T

IIEll ds T

The velocities of curvature can be related directly to the dis
placement degrees of freedom. Using Eq. (25) and the result (42)

the bending curvature vector becomes:
. d’u 1dt , dt,

2.1

— 4
078 g+t g Ex gl (54)

It is therefore possible to obtain an alternative expression for
the axial velocity of deformation, noting that the second addend

in Eq. (54) cancels out with the second and third terms of &
tt et gt
& t-t (55)
: du [,
2,1
iergs S (Ex ) o
5. The equilibrium equation of the Kirchhoff-Love rod

5.1. The equilibrium operator

The equilibrium operator is obtained from the principle of vir
tual power. The internal power is
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IE r g, 0g, det(z)z ¥z 7, with g, {t,a,¥}, so that the
internal power is

08 Po /L ( /A r.d dA) ds (57)

with
19?1 ,191’
det(z 1 —+— 58
® (1 &) (58)
Alternatively, it is possible to use the representation of the
internal power on the reference configuration:

OZ M [ \% Pit /LD ( /A S:EdA) ds, (59)

0 L L L % 1

0.6 ‘

0.4 |

>

Y%

with § =5%gy, ® 8op the second Piola Kirchhoff stress tensor, given

Fig. 3. Quintic B-Spline basis functions with open knot vector = = {0,0,0,0,0,0,1/ by
6,2/6,3/6,4/6,5/6,1,1,1,1,1,1}.

S det(zF)(zF) 'T(zF) T (60)
P, /ﬁ ( / f‘. . d d A) ds (56) Its components on the reference unitary centroid triads are
A Stt Stn Stv
According to the beam model, we assume T Y % 0; X is the S s“ o o |. (61)
Cauchy stress tensor acting at point p. It is more convenient to refer s 0 0

to its pull back on the tangent space to the centroid curve,

1.0
== {0,0.0,1,1,1
h—refinement = os { }
| I os collocation
= —
- 04
N 0.2 1

{0,0.0.

_—

collocation /

®

J

e

{0.0.0

collocation >
——-

B-Splines-space
Geometric-space

collocation " 4
—_—

10

Fig. 4. h-refinements scheme considered, after each knot insertion, (knot inserted with multiplicity one), successively the re-collocation of the control variables,
corresponding to the new set of the Greville abscissae, is performed.
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The virtual power identity is therefore (for the sake of simplicity we
do not introduce in this expression a symbol for the virtual veloci
ties, the meaning being apparent from the context)

/Lo </AS E dA) ds Lof -1 dS+F(0) -u(0) + F(Lo)
u(Ly) + m(0) - w(0) + m(Ly) - w(Ly). (62)

Substituting the components of the velocity of deformation in (62),
one has

P / (/ S Lt + 0 i)l
Ly A

S"9") glt]) d.A) dS

/(Né+M~ZrHt||2+M:Xf|\t||>d5

Lo

(o (di du |t
/L (N<d5~t>+Mn( E v+R—‘qﬁ +

du .|t dp 1 di(, dt
M<d5 ] R—n¢ + M, E+mﬁ txﬁ ds,

+(5"9"

(63)
where the following definitions have been introduced:
N / S"dA,
A
M / £ x (SUF) dA, (64)
JA

M, / (S"9" S™9Y) dA.
A

By integrating by parts the terms of the Eq. (63) the equilibrium
equations are obtained as follows:

d 1d M, [, dt
T Nt+mﬁ(||tuM) tH(txljsﬂ f
dM , dt
f+\|t||M <t><$> m; (65)

The components of the equilibrium Eq. (65) on the updated lo
cal triad current {t, 7, v} are not relevant for the present work. The
BC’s of the equilibrium Eq. (65) projected on the local updated triad
are

I (N -+ 4 ) Go) IEINe(Le)  Fillo

(N + 5 )@ 1IN0 FeO)

(e asteimn w4 F) @) Tty Futt)

1 d t
(i as e M‘,@+

It]| dS %) (0) Ty(0) Fy(0)

(r astiemy -l Ba0) 00 Rt g
(7 sstems) +m L B0 1,00 R0
HtHMn(LO) mn(LO)

6M,0)  my()

ML) (L)

M0 m(0)

M:(Lo) me(Lo)

M;(0) m;(0).

In the Eq. (66) have been introduced the definitions of the effec
tive axial force N, and effective shear resultants T, and T,.

5.2. Constitutive operator of the rod

We assume that the rod remains elastic. The stresses § can be
obtained from an elastic potential, S = Vg W(E), that, for isotropic
materials, depends on the invariants IgIIIlIg of the strain tensor.
In this work we employ the approximation that the tangent elastic
coefficients be constant, and according to Simo [22], Kiendl et al.
[19], we use a quadratic form for the elastic potential,

(I, 1, 11T % <a1§ bIIE). (67)

Accounting  for  Kirchhoff Love  constraints, it s

Ig Eu,llg Efn E?‘, so that
1
2
where the elastic moduli E and G have been introduced. It follows
therefore

¥(E) <E E2 +2G (152 +Ef‘,>). (68)

S[[ E E[t Sm

The stress resultants defined in (64) are calculated by means of
the expressions

2GE, S” 2GE, (69)

N /S“dA E(t-t to-to)
Ja 2

e 1
v ctt
M, /Aﬁs dA EI"(Rn R—n())

M. /ﬂnsttdA ET. le* 1
! A ! Rv RvO

Mt /(Svtﬁn Smﬁ‘) d.A G J(”tH l)
A T

where the deformations are evaluated from the geometry of the up
dated configuration. The equilibrium Eq. (65) are then used for eval
uating the residual of equilibrium in an iterative procedure.

6. Linearization

The equilibrium Eq. (65) are non linear in (u,¢), therefore an
iterative procedure has to be used linearizing the equilibrium
equation in the increments of the displacements and rotation.

Since the objective of this work is the application of B spline
approximation to space rods, we consider only the case of small
deformations, linearizing the equilibrium equations in (u,¢). In this
way, a linear system is obtained, that coincides with the material
stiffness matrix referred to the undeformed configuration. It will
be obtained from the principle of virtual power (63), using for
the stresses the tangent constitutive equations:

R

; b ) L . .
St E(t-t) E{«%(l E*}%) ﬁ”xvlltllzw‘xnl\t\\z}

¢ n dzu = 2(2) v dzu 5 2(;)

E t‘t+19< E.mntu R +9 E‘v e R
s GV e
SY GO gt

(71)

Substituting into the definitions of the sectional stress resul
tants, and assuming, for simplicity, that the normal axes i1 and v
be principal of inertia, one gets the following constitutive relations:
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N, A+BH+ B O® g
M, | E 2 I alltl?® |, (72)
M, N AV
M. G / (") + (9")dA)  CTY (73)
A
withZ, [,(@")’dAdandZ, [,(9")’dA.

In the case of infinitesimal deformation, ||t|| — ||to| and R,, R,
become the curvatures of the reference configuration.

7. Numerical formulation

In the equilibrium equations derived in the previous sections
the displacement functions are strongly coupled, involving differ
ent degrees of differentiation. In order to guarantee continuity
along the beam both the displacement functions and the geometric
parameters of the axis curve, it is necessary that the interpolation
be of a sufficiently high degree. In the paper we propose the use of
a B spline bases interpolation, that have several advantages with
respect to the traditional polynomial interpolation over finite
elements.

7.1. B Spline interpolation

A B Spline curve of degree p is defined as
n
C(2) Y Nip(4)P; (74)
i1

where P;={P;,P;y,P;;} are the cartesian components of n control
points, and N;, are the n B Spline basis functions of degree p defined

on a non periodic knot vector. The knot vector is a non decreasing
sequence of m real numbers, the parametric coordinate 4
j=1,....m,withm=n+p+1,

= a,...,a,imz,...,}vm (p+2),b,...7b

p+1 m 2(p+1) p+1

The global interval [a,b] is called the patch. The B Spline is said
uniform if the knot vector are equally spaced, and non uniform
otherwise. A knot vector is said open if the first and last knots have
multiplicity p + 1; in this work only non periodic open knot vectors
are considered, with multiplicity equal to 1 for each internal knot,
so that we have (P ! parametric continuity at each knot.'

The basis functions N;,(1) are computed by means of the Cox
deBoor recursion formula (see Piegl and Tiller [21]).

Starting from p = 0 with

17 if Je [)L,i,/"LH,] [,

75
0, otherwise. (75)

Nio(2) {
for p > 1 we have:

O A
0, otherwise.

Jispi1 2

Fipil Aisl

it 2€ A, dipal;

(76)

In the formula (76) the position 0/0 =0 must be considered. The
generic interval [/;/.[ is called the knot span and can have zero
length; knot spans with length different from zero are called sec
tions. For an open knot vector there are m 2(p+1)+ 1 sections.

! If a knot has multiplicity k the B-Spline has C° ¥ continuity at the knot, i.e. if the
multiplicity is k = p the B-Spline has C° continuity at the knot considered.
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Fig. 6. Clamped torsion-free space arch; (a) initial geometry of the rod; (b) solution for the u,(S) displacement and (c) solution for the correction-angle ¢(S).

In each section there are p +1 splines different from zero. Fig. 3
shows an example of B splines bases on the interval [0,1].

If in the knot vector there are not internal knots the basis func
tions reduce to the Bernstein polynomials, so that the B Spline
interpolation is a generalization of the Bezier’s interpolation. An
interesting property of the B Spline interpolation of a curve with
an open knot vector is that the curve is tangent to the control poly
gon at the ends.

7.2. Representation of the geometry: collocation and refinements

In this work we use an isoparametric B Spline representation,
that is, both the reference geometry and the configuration vari
ables are approximated by means of the same B spline bases. In
this manner one of the interesting property of isogeometric analy
sis, the internal high continuity, is preserved. We do not follow the
usual isogeometric approach, that employs NURBS for the approx
imation of the relevant variables.

A NURBS curve is the projection of the four dimensional B
Spline of R* onto R, in this sense all the property for B Spline
are transferred to NURBS. In this approach the initial geometry is
described exactly, and it is invariant under refinements. The basis
functions are weighted and non rational and during the mechanical
simulation the weights remain fixed.

In our approach, in order to reduce the error, h or k refine
ments are used on the initial geometry as well as on the configura
tion parameters space, analogously to the refinement strategy of
the standard FEM codes.

Hughes et al. [14] and Cottrell et al. [9] have examined some of
the most common refinement techniques in isogeometric analysis,
the fundamental being the h refinement, the p refinement and the

k refinement. Under h refinement, or knot insertion, if the multi
plicity of the inserted knot is one, the geometry and the internal
continuity are invariants; while under k refinement, or degree ele
vation in the sense of the polynomial and continuity degree, only
the geometry is invariant, but the continuity is increased consis
tently to the polynomial degree.

In this work we use h refinement and k refinement. The
h refinement is described in Fig. 4. A standard knot insertion is per
formed in the B Splines space, see Piegl and Tiller [21]. Only knots
with multiplicity one are inserted, so that the continuity degree
remains unchanged. The newly generated control variables are then
collocated in the Greville abscissas and the geometry is newly de
fined. Alternative sets of collocation abscissae are presented and
analyzed in [3], for the collocation of strong differential operators.

In the k refinement, a p refinement (polynomial order eleva
tion) is performed in the B Splines spaces, followed by an h refine
ment (knot insertion), see Hughes et al. [14] and Cottrell et al. [9].
In this manner one gets higher continuity and polynomial order,
see Fig. 5.

7.3. B Spline interpolation of the rod

The interpolation of a configuration of the rod is obtained as
functions of the vector q that collects the coordinates of the control
points and the twist angle:

a(4)  {p«(4):py(4):Pz(4); d(A)}

" ) ; ) (77)
Py(2) D NipPsi  MP, ¢(2) Y Nipy®; Mo
i1 i1
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BP

€]l

.,Nnp). In general it is more conve
nient to perform the interpolation sectiontwise, since on each seg

[Nip,..

where the matrix M

ment only p + 1 basis splines are different from zero. However, in
order to simplify the exposition, we refer to the interpolation over

The interpolation of the second gradient along the arc length,

according to expression (23) is

d*e

as happens in the case of Bezier interpolation.
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The cartesian components of the sectional axes f1, v are given by
expressions (13) once the interpolation of the tangent vector (82)
has been obtained, and will be indicated as

n NP) v V(P). (84)

7.4. Material stiffness matrix

The material (tangent) stiffness matrix of the rod is derived
from the virtual power expression (63) using the definitions (64)
of the stress resultants and the constitutive Eq. (71) for the stress
components. We shall examine each contribution to the internal
power separately.

7.4.1. Material axial stiffness
The axial stiffness is obtained from the following integral,
where a tilde denotes virtual deformations:

/LDEAseds /EA( dg)("%)llto\\di 85)

Using the approximation t
the form

Ht ”, the axial stiffness matrix gets

Kax

Lo 4 (BEP)"(BTEP) AP
o EAS—r—da 0 {M)} (86)
()} 0

7.4.2. Material bending stiffness
Since the axes f,v have been chosen principal of inertia, the
bending material stiffness is obtained from the expression

Lo du . &’
EZ, n+v.o |t n+v-|t
/0 (dsz H |¢>)( H ¢
Ly da . . dt - T
+ [ EZ,| == v+n-—_|t
/0 ( ds’ as! |¢>< as®

Vi —||t|¢>

(87)
The geometric curvatures are interpolated as follows
. dt 1 BP @ BP
Vvo—|lt] ——VT|ls3 —s—|DP
di (88)
. dt 1 .t BP ® BP
n-—|t|] —N|[lxs ———|DP
The bending velocity of curvature operators are given by
d—" i+ \3-%||t\|<b NTXd + p, Md
as’ ) (89)
i a s VXt p i
The material bending stiffness is therefore given by the sum of
the two matrices:
Lo | xTNNTX X'NM | [ AP
K, EL,/ B P [ } (90)
o |p,M'NTX  p2M™™ | L[A®
b | xTvvTx X"V | [ AP
koEn [ ] o1)
0 P.MTVIX  p2MT™M | LA®

7.4.3. Material torsional stiffness
The torsional internal power is

Lo
/0 G Tieelitollds (92)
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Fig. 11. Cantilever arch with a point force; (a) initial geometry of the rod; (b) exact solution for the u,(S) displacement, and (c) exact solution for the u,(S) displacement.

The interpolation of the torsional velocity of curvature is

(A di (g dEdi g didic
[el\""ds) dsTds e\ " dsds as ds

dp 1 T T\mp
L8 1 L ( pNT 4 p,VT)BP

S o] Ht||2( p pnV')

1 .. 1

. 1 ..
+——B® —XP+-—DBo. 93
o2 Ter P e ®3)

The material torsional stiffness matrix is therefore
1 AP
Koo [ [ ] (94)
‘ 0 tof? A®

7.5. Numerical integration

xIx, x'd
B'™X, B'B

Gauss Siedel and Gauss Lobatto quadrature rules have been
used, considering p +1 Gauss quadrature points per section. No
significative difference has been found between the two quadra
ture rules.

8. Numerical applications

In this section some applications are presented, for checking the
numerical model presented. Several geometries are tested, in order
to prove that the performance of the model does not depend on the

particular geometry studied. For the simpler academic examples, a
convergence analysis is also presented.

8.1. Cantilever space arch

The first example concerns the horizontal arch shown in
Fig. 6(a), clamped at the first end and subjected to a vertical force
F={0,0, 1},[kN] at the free end. For this example it is possible to
evaluate the exact solution, so a convergence analysis for the exact
error will be presented. Both the convergence for the L2 norm of
the error and for some relevant values of the displacements or
stresses will be examined.

The radius of the centroid curve is R=1 [m] the section is rect
angular with h,=0.1 and h,=0.01 [m] respectively, and
E =1.999x108 [kN/m?], v = 0.25, (G = E/(2 + 2v)). The centroid curve
is given by

Py(®) Rcos[t o] Py(o) Rsin[t o P, (x) O,
ae[0,m/2] (95)

No geometrical torsion is considered in this case, that is
¢o(S)=0 VS €[0,Lg]. The initial unit tangent vector at the origin
is tp {0,1,0} and the unit normal vectors are assumed as
fp(0) {0,0,1} and ¥o(0) &(0) x fe(0) {1,0,0}. Since in this
case it is R(¢,to(S)) I everywhere it results fig(S) fig(0) and
Vo(S)  Ao(to(0),£(S))fe(0). The boundary conditions at the first
end are given by
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#(0) 0, n(0)-{0) 0, ¥(0)-£0) 0, $(0) O. (96)
Setting 7, ™ 7, and 7 b the exact solution for

the vertical displacement u,(S) and for the torsional rotation ¢(S)
are given respectively by

1(S) 2EZ,(S+Cos[S] 1)+Sin[S|(EZ,(S 2)+GJS)
z 2ET, GT 97)
() Sin[S|(EZ,(S 2)+GJS)
( 2ET, GT ’
At the free end we find
T 3r 2
u,(m/2 — = 0.13835450005254035 [m],
A(7/2) 4E7, 4GJ GJ [m]
b b 1

0.07580120034574506  [rad].
(98)

$(1/2) IF7, 4C7 + C7
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Fig. 13. 2D-cantilever arch with a point force at the end; (a) relative error in L*-
norm for the bending moment M, and (b) relative error in L?-norm for the axial
force N, for different polynomial degrees.

The initial geometry and the deformation fields have been rep
resented by B splines of degree ranging from 2 to 5. For each poly
nomial degree an increasing number of degrees of freedom has
been considered, inserting internal knots by means of the h refine
ment procedure. Up to 40 control points have been considered. In
addition, for comparison, the problem has been solved using Be
zier’s interpolation, with polynomial degree from 2 to 12.

In Fig. 6(b) and (c) are plotted the vertical displacement u,(S)
and the torsional rotation ¢(S) numerically calculated using 5th
degree B splines. The results obtained are very close to the exact
solution.

Convergence plots for the vertical displacement, torsional rota
tion, bending and torsional moment are reported in Figs. 7(a), (b),
8(a) and (b). On the horizontal axis is reported the number of con
trol points used, proportional to the dimension of the approxima
tion space. On the vertical axis is reported the L? error norm.
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Each curve of the plots is related to a fixed degree of the B spline,
and corresponds to an h refinement. In the plots are also shown the
lines corresponding to different rates of convergence. It can be ob
served that, for the displacements, Fig. 7(a), (b), the asymptotic con
vergence rate seems slightly better that the theoretical rate p + 1
[4]. A transition region appears where the convergence rate is even
faster. For comparison, on the same plots has been superposed the
error found with Bezier’s interpolation, whose convergence is expo
nential, since, in this case, increasing the number of control points is
equivalent to increase the polynomial degree.

Similar conclusions are drawn from the plots of the rate of con
vergence of the error for the stress resultants, compared with the
theoretical rate, respectively p for the axial force and the torsional
moment and p 1 for the bending moments. For this example, also
the convergence analysis for the displacement and rotation of the
free end, and for the bending and torsional moment at the built
in end are presented (Figs. 9(a), (b), 10(a) and (b)). The error for
the vertical displacement of the free end is proportional to the er
ror in energy. The convergence rate, as expected, is smaller than
the one found for the L norm.

(99)

8.2. 2D Cantilever arch with a point force

In this subsection it is considered a flat cantilever arch loaded at
the free end by a vertical force. The geometry is the same as in the
previous section: the radius of the centroid curve is R=1 [m] the
section is rectangular with h, =0.1 and h, = 0.01 [m] respectively,
and E = 1.999x10% [kN/m?].

The exact solution for the displacements is

)

u(s) I
" . (100)
25 S Cos[s|Sin[s]

WS E4 T 2EZ,

with S the arc length S € [0,Pi/2], represented in Fig. 11(b) and (c).
For S = Pi/2 the displacement of the loaded end is

Uy(1/2) 2E1 —  0.30015007503751867 [,
Uy (11/2) Ei 4E”In 0.47149035117732546 [m).

(101)

In Fig. 12(a) and (b) are presented the L> convergence analy
ses of the relative error for the x and y components of the displace
ment. The meaning of the plots is the same as in the previous
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Fig. 17. Stress resultants for the clamped arch. A solid black line refers to the positive pre-twisted initial configuration, a gray line to the negative pre-twisted initial

configuration and a dashed line to the torsion free initial configuration.

Axial force [kN]

Fig. 18. (FE comparison) Comparison of the axial force obtained with the B-spline
interpolation (solid line) and the axial force calculated with 15 Hermitian beam
elements (box markers)

example. Also in this example the curves appear to superconverge
in the considered range of discretization.

In Fig. 12(a) the dashed curves represents the convergence rate
for a p refinement, that is close to the convergence rate of the Be
zier’s interpolation.

Convergence analysis for the relative error on the bending mo
ment, the axial force and the shear are shown in Figs. 13(a), (b) and

Fig. 14(a). An anomalous behaviour is presented by the conver
gence of the axial force, that first gets worse then tends to con
verge. This behaviour can be explained with the onset of
membrane locking. The phenomenon has been already observed
Stolarski and Belytschko [25] and will be object of future
investigations.

In Fig. 14(b) is presented a comparison between NURBS (isogeo
metric) analysis and the present B Spline analysis. In this case the
NURBS approximation has the advantage of exactly describing the
reference geometry. Furthermore the approximating functions are
richer than B splines (as a matter of fact they reduce to B splines
when the weights are all unitary). The error on the tip vertical dis
placement uy(7/2) under h refinement for two polynomial degrees
is presented. As can be observed, increasing the number of ele
ments the differences between the two strategies are immaterial.

8.3. Pre twisted arch

In this subsection we consider a thin pre twisted arch clamped
at both ends, i.e. u(0) =u(L) = 0 and ¢(0) = ¢(L) = 0. Three cases are
compared, considering positive, null and negative pre twisting.
This is a simple case of a non geodetic manifold, because the unit
triad if affected by torsion. The centroid curve is given by Eq.
(95) with radius R=1 [m], the section is rectangular with h,, = 0.1
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and h, = 0.01 [m], Young modulus is E = 1.999x10% [kN/m?], v = 0.25
and G=E [(2+2v). The initial unit tangent at the origin is

to(0) {0,1,0} and the initial unit normal vector at the origin is

fip(0) {0,0,1}, so that v4(0) {1,0,0}. The initial normal vector

is obtained using the rotation operator A(£o(0), £(S)), that yields

1,(S)  A(£(0),£(5))fte(0)  11(0) (102)
The rotation around £(S), is given by the twist angle ¢

f10(S)  R(o(S), to(S))fte(0),  ¥o(S)  to(S) x o(S). (103)

Three cases are considered for the correction angle ¢o(S), as
shown in Fig. 15(a), (c) and (e), that is ¢(S) Z3 corresponding
to an initial configuration with positive constant torsion
% 1, ¢o(S) 0 corresponding to an initial configuration not
pre twisted with zero constant torsion ;- 0 and ¢(S) 23 cor
responding to a negative pre twisted initial configuration with
negative constant torsion J—U 1.

In Fig. 15(b), (d) and (f), respectively, are plotted the initial con
stant torsion and the initial curvatures that are not constant, while

Fig. 15(a), (c), (e) show a sketch of the initial geometries of the
arch.

The rod is subjected to a constant distributed vertical force
q.= 1 [kN/m]. A quintic degree B spline interpolation is consid
ered for the initial and deformed configurations.

In Fig. 16(a) (d) are reported the displacements and the torsion
angle ¢ for the three cases considered (a solid black line relates to
the arch with positive twisting, a dashed line to the arch without
twisting, and a gray line to the arch with negative twisting).

In Fig. 17(a) (e) and (f) the bending moments, the axial force,
the torsional moment and shear forces are shown. It can be noticed
that in the case of pre twisted arches because of the coupling be
tween flexure and torsion, also a non zero axial force arises, as well
as a bending moment around the #n axis. The results for the axial
force are compared in Fig. 18 with those obtained using a Finite
Element code, discretizing the arch with 15 straight Hermitian ele
ments, model that requires a great amount of modeling effort. The
FE results are less accurate due to the geometrical errors in inter
polating the tangent to the rod.
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Fig. 21. Twisted helix. Results for the stress resultants.

8.4. General case: pre twisted cylindrical helix

In this sub section we consider a rod with a centroid curve de
fined by an helix, mapped by the expressions

Py(x) RCos[m o], Py(o) RSin[r «o,

P,(x) poa, oe€l0,2m], (104)

with R=1 [m] and p = 0.25 [m]. The unit normal, f1, is mapped on
the cartesian bases, E;, as

fg - Ey () Cos[m o, fip-E,(a)

Sin[t  «a), ne-E; () 0, oe€](0,27, (105)

and coincides with the unit normal to the cylinder in the points on
which the helix lies. The third unit vector v is mapped by
{)n i'n X ﬁo.

The thickness of the rectangular section are h,=0.1 [m] and
hy=0.01 [m] the Young’s modulus is E=1.999 x 10® [kN/m?],
v=.25 and G =E/(2 + 2v). The initial configuration, and the initial
curvatures and twist are shown in Fig. 19(a).

The boundary conditions are u,(0) = uy,(0) = u,(0) = ¢(0) =0 and
uy(L)=u,(L)=u/L)=¢(L)=0. The external force is q={0,0, 1}
[kN/m], proportional to the self weight. The rod is modeled by a
quintic B spline with 35 internal points. The displacement u,,u,,u;,

and the rotation ¢ are shown, respectively, in Fig. 20(a) (d). The
stress resultants are reported in Fig. 21(a) (f).

The plots of the stress resultants are quite smooth, as was ex
pected, particularly for the shears, that are the most sensitive to er
rors and oscillations.

9. Conclusions

In the paper has been investigated a numerical method for the
analysis of curved and twisted elastic space rods, subjected to gen
eral loading conditions. The numerical treatment of this kind of
structures in the context of standard finite element approxima
tions requires a great modelling effort, and the results suffer of sig
nificant inaccuracy due to the geometrical discontinuities brought
about by the FE discretization. Therefore it has been proposed an
approach based on B spline approximation, that allows to describe
with high continuity and with asymptotic precision the initial
geometry.

Kirchhoff Love rods have been analyzed, since in the case of
thin rods (the ones examined in the article) shear locking is
avoided (but not, in general, membrane locking, as one of the
example presented suggests). First it has been developed a 3D
model for the deformation of the rod, defined as a ribbon extruded
over a base line. The evolution of the section of the rod along the
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axis has been defined by means of a rotation operator that does not
use Euler angles, and that has proved to be quite convenient. The
tangent kinematic operator has been derived in a Lagrangian
description. An updated Lagrangian form of the equilibrium equa
tions has been obtained, from which the definitions of the reduced
axial and shear forces often used in the literature naturally stem
out. In the hypothesis of a linear elastic behaviour we have derived
the constitutive equations of the rod in terms of the effective stress
resultants.

Next the linearized equilibrium equations have been stated, in
the hypothesis of infinitesimal deformations. The applications pre
sented are limited to this case.

An interpolation based on B spline bases has been considered.
The material stiffness matrix has been explicitly derived using a
single patch for the rod. The stiffness matrix is highly coupled,
and the axial, bending and torsional contributions have been pre
sented separately. The geometric and the load stiffness matrices
will be presented in a future work. An isoparametric approach
has been used, employing the same B splines for the reference
geometry and for the configuration variables. By means of an aca
demic example, it has been shown that, for the case of spatial rods,
the approach based on NURBS has no significant improvement on
the proposed approach based on B splines.

Convergence analyses on simple examples yield convergence
rate close to the theoretical ones, and even better in a transition re
gion. Also the convergence rate for k refinement has been tested.

The examples presented have proved the efficiency of the meth
od proposed. At least in one of the examples presented locking
phenomena have been observed. Indeed locking may be present
for very thin sections. However this important problem has not
been addressed explicitly in the present work and will be object
of a forthcoming paper.
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