The CD95 signaling pathway: To not die and fly.
Aubin Penna, Nadine Khadra, Sébastien Tauzin, Pierre Vacher, Patrick Legembre

To cite this version:
Aubin Penna, Nadine Khadra, Sébastien Tauzin, Pierre Vacher, Patrick Legembre. The CD95 signaling pathway: To not die and fly.. Communicative and Integrative Biology, Taylor Francis Open, 2012, 5 (2), pp.190-2. 10.4161/cib.18888 . hal-00873761

HAL Id: hal-00873761
https://hal.archives-ouvertes.fr/hal-00873761
Submitted on 16 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The CD95 signaling pathway
To not die and fly

Aubin Penna, Nadine Khadra, Sébastien Tauzin, Pierre Vacher and Patrick Legembre

1 Université de Rennes-1; IRSET-INSERM U1085; Team “Death Receptors and Tumor Escape”; Rennes, France; 2 Université Bordeaux Ségalen; INSERM U916; Institut Bergonié; Bordeaux, France

Keywords: lymphocyte, calcium, Orai1, Fas, FasL, TNF, apoptosis, migration, PI3K

Submitted: 11/25/11
Accepted: 11/28/11
http://dx.doi.org/10.4161/cib.18888

*Correspondence to: Patrick Legembre; Email: patrick.legembre@inserm.fr

Our recent findings indicate that cells exposed to transmembrane (m-CD95L) or metalloprotease-cleaved CD95L (cl-CD95L) undergo a localized Ca\(^{2+}\) entry that not only inhibits the initial steps of the CD95-mediated apoptotic signal but also promotes cell motility. Based on recent findings published on the non-apoptotic signals induced by CD95, we discuss how m-CD95L and cl-CD95L diverging by their stoichiometry could both contribute to the immune response by first recruiting activated T lymphocytes in the inflamed area and later by eliminating infected and transformed cells.

Emergent Functions for the Death Receptor CD95

CD95 (also known as Fas) belongs to the TNF (Tumour Necrosis Factor) -receptor superfamily. Fifteen years ago, it has been shown that when exposed to an agonistic anti-CD95 mAb (APO1–3), the aggregated receptor recruits the adaptor protein FADD (Fas-Associated protein with Death Domain), which then binds caspase-8/-10 and ultimately elicits the apoptotic signal and the death of the cell. This complex was designated the DISC for Death Inducing Signaling Complex and since numerous factors have been found to modulate the implementation of this complex and thus, the transmission of death receptor-mediated apoptotic signal. The cognate CD95 ligand, CD95L (also known as FasL or CD178) is a transmembrane “cytokine” belonging to the TNF family. CD95L exhibits a restricted expression pattern, being expressed primarily at the surface of activated T lymphocytes and NK cells, where it contributes to the elimination of infected and transformed cells. However, CD95L is also found under inflammatory conditions, at the surface of epithelial cells, macrophages or dendritic cells where its biological function remains elusive. This type II transmembrane protein can be cleaved by metalloproteases such as MMP3, MMP7, MMP9 or ADAM-10 (A Disintegrin And Metalloproteinase 10) and released as a soluble ligand into the connective tissue and the bloodstream. Cleaved CD95L (cl-CD95L) was described initially as an inert ligand competing with its membrane-bound and pro-apoptotic counterpart (m-CD95L) for binding to CD95. More recent studies confirmed that the homotrimeric cl-CD95L fails to trigger cell death but more importantly, they also bring to light that this soluble ligand possesses indeed a biological function by eliciting non-apoptotic signals leading to cell migration and/or proliferation. In this regard, we and others demonstrated that the metalloprotease-processed CD95L actively participates in aggravating inflammation and autoimmunity both in mouse model and humans affected by systemic lupus erythematosus (SLE). Overall, these findings ascribe non-apoptotic roles to CD95 through the implementation of different signals (i.e., JNK, PI3K and NF-kB). The role(s) of each CD95-mediated non-apoptotic signal remains however to be finely characterized in pathophysiological contexts.
A Novel Actor in the Initial Events of the CD95 Pathway

Calcium ions (Ca\(^{2+}\)) participate in cell signaling as a second messenger that relies on magnitude (cytosolic concentration), temporal parameters (i.e., duration and frequency) and spatial localization to trigger a variety of cellular responses. Following membrane receptor stimulation, Ca\(^{2+}\) responses mainly occur through a biphasic signal caused by activation of IP3 receptors and the release of Ca\(^{2+}\) from the endoplasmic reticulum (ER) followed by a Ca\(^{2+}\) entry across the plasma membrane. This store-operated Ca\(^{2+}\) entry (SOCE), mediated in T-lymphocytes by Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) channels, plays a pivotal role in both the replenishment of the ER store and in cell signaling. Recently, STIM1 was identified as the ER-stored Ca\(^{2+}\) sensor that links ER depletion to activation of the plasma membrane CRAC channel formed by Orai1 subunits, allowing Ca\(^{2+}\) to selectively enter the cell. Following contact of a T cell with an antigen-presenting dendritic cell, STIM1 and Orai1 colocalize with T cell receptors (TCRs) in the immunological synapse and contribute to a localized Ca\(^{2+}\) influx.

Tissues in which infected or transformed cells are disseminated require the recruitment of immune cells to specifically eliminate these threats. Based on our findings, we surmise that the first line of activated T lymphocytes infiltrating the transformed or infected area expresses high amount of membrane-bound CD95L to trigger cell death in affected cells but also to provide a pool of ligand that will be processed by metalloproteases therefore engendering a cl-CD95L gradient. This gradient would in turn recruit a second wave of activated T cells, which ultimately amplifies if necessary the immune response and leads to the total eradication of the target cells. Of note, we established that the amount of cl-CD95L is dramatically increased in sera of SLE patients and contributes to the endothelial transmigration of activated T cells. We also observed that whereas in presence of cl-CD95L, cells undergo the formation of a caspase and FADD-independent Motility-inducing signaling complex (MISC), m-CD95L stimulates the transient and Ca\(^{2+}\)-dependent recruitment of PKC-beta2 within DISC that participates in delaying the multi-protein complex formation and the transduction of the apoptotic signal.

Accordingly, these findings support the hypothesis that a non-specific T lymphocyte/bystander cell contact would

Figure 1. Role of the Orai1-driven Ca\(^{2+}\) entry in T lymphocytes challenged with the different forms of CD95L. When exposed to the two forms of CD95L, cleaved and membrane-bound, activated T lymphocytes, target cells (infected or transformed cells) or bystander cells undergo an Orai1-driven Ca\(^{2+}\) entry that modulates differently the CD95-mediated signaling pathway. The Ca\(^{2+}\) traces obtained with cells exposed to cleaved-CD95L (1) or membrane-bound CD95L (2) are depicted. MHC: Major Histocompatibility Complex.
transiently engage the CD95 receptor and achieve a Ca\(^{2+}\)-dependent Time-Of-Decision (TOD) preventing the transmission of the CD95-mediated apoptotic signal in the target cell. In contrast, the selective recognition of the MHC/peptide by cytotoxic T lymphocytes may provide a sustained interaction that overrides the Ca\(^{2+}\)-driven TOD allowing the selective elimination of infected or malignant cells. Numerous questions still remain to be addressed. First, whether cl-CD95L and finally, the molecular ordering leading to the activation of the Ca\(^{2+}\) signal remain to be identified.

Acknowledgments

This work was supported by Agence Nationale de la Recherche (ANR JCo7_183182), INCa (projets libres recherche biomédicale), Cancéropole GO, Région Bretagne, Rennes Métropole, Université de Rennes-1 and by Ligue Contre le Cancer (Comités d’Ille-et-Vilaine/du Morbihan/des Côtes d’Armor/du Maine et Loire/des Landes). N.K. is supported by Region Bretagne (ARED).

References