A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data

Laurent Bourgeois 1 Jérémi Dardé 2
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this paper, we introduce a new version of the method of quasi-reversibility to solve the ill-posed Cauchy problems for the Laplace's equation in the presence of noisy data. It enables one to regularize the noisy Cauchy data and to select a relevant value of the regularization parameter in order to use the standard method of quasi-reversibility. Our method is based on duality in optimization and is inspired by the Morozov's discrepancy principle. Its efficiency is shown with the help of some numerical experiments in two dimensions. © 2010 IOP Publishing Ltd.
Type de document :
Article dans une revue
Inverse Problems, IOP Publishing, 2010, 26 (9), pp.095016. <10.1088/0266-5611/26/9/095016>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00873058
Contributeur : Aurélien Arnoux <>
Soumis le : mardi 15 octobre 2013 - 12:03:18
Dernière modification le : jeudi 9 février 2017 - 15:47:48

Identifiants

Collections

Citation

Laurent Bourgeois, Jérémi Dardé. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Problems, IOP Publishing, 2010, 26 (9), pp.095016. <10.1088/0266-5611/26/9/095016>. <hal-00873058>

Partager

Métriques

Consultations de la notice

171