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Abstract

We give necessary and sufficient conditions to characterize the con-
vergence in distribution of a sequence of arbitrary random variables to
a probability distribution which is the invariant measure of a diffusion
process. This class of target distributions includes the most known
continuous probability distributions. Precisely speaking, we character-
ize the convergence in total variation to target distributions which are
not Gaussian or Gamma distributed, in terms of the Malliavin calculus
and of the coefficients of the associated diffusion process. We also prove
that, among the distributions whose associated squared diffusion coef-
ficient is a polynomial of second degree (with some restrictions on its
coefficients), the only possible limits of sequences of multiple integrals
are the Gaussian and the Gamma laws.
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1 Introduction

In the seminal paper [14], Nualart and Peccati discovered a surprising cen-
tral limit theorem (called The Fourth Moment Theorem) for sequences of
multiple stochastic integrals in a Wiener chaos of a fixed order. This result
says that the convergence in distribution of such a sequence of random vari-
ables to the standard normal law is actually equivalent to the convergence
of only the sequence of their fourth moments. A multidimensional version
of this result has been given in [15]. Since the publication of these two
pathbreaking papers, many improvements and developments on this theme
have been considered. Among them is the work [13], giving a new proof
only based on Malliavin calculus and the use of integration by parts on the
Wiener space.

Another pathbreaking paper is the work [7] by Nourdin and Peccati in
which the authors bring together Stein’s method with Malliavin calculus
and obtain useful estimates for the distance between the law of an arbitrary
random variable and the Gaussian distribution in terms of the Malliavin
calculus. It turns out that Stein’s method and Malliavin calculus fit together
admirably well, and that their interaction has led to some remarkable new
results involving central and non-central limit theorems for functionals of
infinite-dimensional Gaussian fields. We refer to the recent monographs [6]
for an overview of the existing literature and to [17] for various applications
of the Stein’s method and Malliavin calculus to limit theorems and statistics.

There is also a version of the Fourth Moment Theorem having the
Gamma distribution as the target distribution (see [9]). The convergence of
a sequence of multiple stochastic integrals toward a Gamma distribution is
characterized by the convergence of the sequences of the third and fourth
moments; alternatively, one can also characterize the convergence to the
Gamma law in terms of the Malliavin derivatives.

In the paper [5] we obtained bounds between the distance of an arbitrary
random variable and target distributions which are invariant measures of dif-
fusions processes. This class contains the most common continuous proba-
bility distributions, including the Gaussian, Gamma, Beta, Pareto, uniform,
Student or log-normal distributions, among others. See also [1], [4] for other
attempts to extend the theory to more general target distribution via Malli-
avin calculus. Now, our purpose is to give necessary and sufficient conditions
for the convergence of a sequence of random variables (regular enough in
the Malliavin sense) to such target distributions. We obtain several results
based on the Malliavin derivatives of the sequence and of the diffusion co-
efficients associated to the target distribution. Precisely speaking, we prove
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the equivalence between the convergence in total variation of random vari-
ables under a suitable condition and the convergence of a value consisting
of the diffusion coefficients and the Malliavin derivatives. The value is as-
sociated to the so-called Stein factor, and the result also characterizes the
convergence of the Stein factor. Several situations when this theory can be
applied (meaning that the diffusion coefficients have an explicit expression)
are presented. Then we treat the case of the convergence in law of special
sequences of random variables that belong to a Wiener chaos of fixed order
and we characterize their convergence to target distributions that are differ-
ent from the Gaussian and Gamma laws. For example, we obtain necessary
and sufficient conditions in the case when the limit is a product normal dis-
tribution (the product of two independent normal random variables) or the
sum of a normal and an independent random variable.

We will also focus our analysis on the particular case when the squared
diffusion coefficient is a polynomial of (at most) second degree. Several
common probability laws are contained in this class. In this situation the
necessary and sufficient conditions for the convergence of a sequence of mul-
tiple integrals to the target distribution can be analyzed in details. We
actually show that, among the distributions whose associated squared dif-
fusion coefficient is a polynomial of second degree with some restrictions on
its coefficients, the only possible limits of sequences of multiple integrals are
the Gaussian and the Gamma laws. In particular, we show that a sequence
of multiple Wiener-Itô integrals cannot converge toward a beta or uniform
distribution. We retrieve the standard Fourth Moment Theorem (Theorem
2.2) and its version for the Gamma law as particular cases.

We organized our paper as follows. Section 2 contains some preliminaries
on the Malliavin calculus. In Section 3 we recall and extend several results in
[5] concerning the characterization of the random variables whose probability
distribution is the invariant measure of a diffusion process. In Section 4 we
give necessary and sufficient conditions for the convergence of a sequence of
random variables (regular enough in the Malliavin sense), while Section 5
and 6 treat the convergence in distribution of sequence of multiple stochastic
integrals.

2 Preliminary: Wiener-Chaos and Malliavin deriva-

tives

Here we describe the elements from stochastic analysis that we will need in
the paper. Consider H a real separable Hilbert space and (W (h), h ∈ H)
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an isonormal Gaussian process on a probability space (Ω,A, P ), which is a
centered Gaussian family of random variables such that E [W (ϕ)W (ψ)] =
〈ϕ,ψ〉H . Denote by In the multiple stochastic integral with respect to B (see
[12]). This mapping In is actually an isometry between the Hilbert space
H⊙n(symmetric tensor product) equipped with the scaled norm 1√

n!
‖ · ‖H⊗n

and the Wiener chaos of order n which is defined as the closed linear span
of the random variables Hn(W (h)) where h ∈ H, ‖h‖H = 1 and Hn is the
Hermite polynomial of degree n ∈ N

Hn(x) =
(−1)n

n!
exp

(

x2

2

)

dn

dxn

(

exp

(

−
x2

2

))

, x ∈ R.

The isometry of multiple integrals can be written as follows: form,n positive
integers,

E (In(f)Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (2.1)

It also holds that
In(f) = In

(

f̃
)

where f̃ denotes the symmetrization of f defined by the formula f̃(x1, . . . , xn) =
1
n!

∑

σ∈Sn
f(xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable
with respect to the σ-algebra generated by W can be expanded into an
orthogonal sum of multiple stochastic integrals

F =
∞
∑

n=0

In(fn) (2.2)

where fn ∈ H⊙n are (uniquely determined) symmetric functions and I0(f0) =
E [F ].

Let L be the Ornstein-Uhlenbeck operator

LF = −
∑

n≥0

nIn(fn)

if F is given by (2.2) and it is such that
∑∞

n=1 n
2n!‖fn‖

2
H⊗n <∞.

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D
α,p as
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the closure of the set of polynomial random variables with respect to the
norm

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω)

where I represents the identity. We denote by D the Malliavin derivative op-
erator that acts on smooth functions of the form F = g(W (h1), . . . ,W (hn))
(g is a smooth function with compact support and hi ∈ H)

DF =

n
∑

i=1

∂g

∂xi
(W (h1), . . . ,W (hn))hi.

The operator D is continuous from D
α,p into D

α−1,p (H) .
We will intensively use the product formula for multiple integrals. It is

well-known that for f ∈ H⊙n and g ∈ H⊙m

In(f)Im(g) =
n∧m
∑

r=0

r!

(

n
r

)(

m
r

)

Im+n−2r(f ⊗r g) (2.3)

where f ⊗r g means the r-contraction of f and g (see e.g. Section 1.1.2 in
[12]).

We recall the expression of the third and fourth moment of a random
variable in a fixed Wiener chaos. These formulas play an important role in
our proofs.

Lemma 2.1. Let F = In(f) with n ∈ N and f ∈ H⊙n. Then

E[F 3] =
(n!)3

[(n/2)!]3
〈f, f⊗̃n/2f〉1{n is even} (2.4)

and

E[F 4] = 3E[F 2]2 + 3n

n−1
∑

p=1

(p− 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n− 2p)!‖fm⊗̃pfm‖2

= 3E[In(f)
2]2 + n!2

n−1
∑

r=1

(Cr
n)

2
[

‖f ⊗r f‖
2 + Cn−r

2n−2r‖f⊗̃rf‖
2
]

(2.5)

Proof. We refer to [9], proof of Theorem 1.2 for the first two relations and
to [6], formula (5.2.6) for the last equality.

The Fourth Moment Theorem states as follows.
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Theorem 2.2. ([14] and [13]) Fix n ∈ N. Consider a sequence (Fk =
In(fk))k∈N of square integrable random variables in the n-th Wiener chaos.
Assume that

lim
k→∞

E[F 2
k ] = lim

k→∞
‖fk‖

2
H⊙n = 1. (2.6)

Then, the following statements are equivalent.

(i) The sequence of random variables (Fk = In(fk))k≥1 converges to the
standard normal law in distribution as k → ∞.

(ii) limk→∞E[F 4
k ] = 3.

(iii) limk→∞ ‖fk ⊗l fk‖H⊗2(n−l) = 0 for l = 1, 2, . . . , n− 1.

(iv) ‖DFk‖
2
H converges to n in L2(Ω) as k → ∞.

We consider the general version of this theorem below.

3 General versions of Stein’s method and Stein’s

bound

In order to discuss the general version of the Fourth Moment Theorem, we
review Stein’s method and Stein’s bound obtained in [5] with small exten-
sion. Let us briefly recall the context in [5]. Let S be the interval (l, u)
(−∞ ≤ l < u ≤ ∞) and µ be a probability measure on S with a density
function p which is continuous, strictly positive on S, and admits finite vari-
ance. Consider a continuous function b on S such that there exists k ∈ (l, u)
such that b(x) > 0 for x ∈ (l, k) and b(x) < 0 for x ∈ (k, u), b ∈ L1(µ), bp is
bounded on S and

∫ u

l
b(x)p(x)dx = 0.

Define

a(x) :=
2
∫ x
l b(y)p(y)dy

p(x)
, x ∈ S. (3.1)

Then, the stochastic differential equation:

dXt = b(Xt)dt+
√

a(Xt)dWt, t ≥ 0

has a unique Markovian weak solution, ergodic with invariant density p. See
Theorem 2.4 in [2].

Based on this fact, it is possible to define a so-called Stein’s equation for
a given function f ∈ L1(µ). In Section 3 of [5], we have considered only the
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case that f ∈ C0(S) (the set of continuous functions on S vanishing at the
boundary of S). However, it is easy to see that the argument is valid even
if f ∈ L1(µ), as follows.

For f ∈ L1(µ), let mf :=
∫ u
l f(x)µ(dx) and define g̃f by, for every x ∈ S,

g̃f (x) :=
2

a(x)p(x)

∫ x

l
(f(y)−mf )p(y)dy. (3.2)

Then, by Proposition 1 in Section 3.2 of [5] we have

g̃f (x) =

∫ x

l

2(f(y)−mf )

a(y)
exp

(

−

∫ x

y

2b(z)

a(z)
dz

)

dy, x ∈ S.

The function gf (x) :=
∫ x
0 g̃f (y)dy satisfies that f − mf = Agf (A is the

generator of the diffusion (Xt)t≥0) µ-almost everywhere, and

f(x)−E[f(X)] =
1

2
a(x)g̃′f (x) + b(x)g̃f (x), µ-a.e. x (3.3)

where X is a random variable with its law µ. The equation (3.3) is a
generalized version of Stein’s equation.

Remark 3.1. (i) If f ∈ L1(µ) ∩ C(S) (where C(S) denotes the class of
continuous functions on S), (3.3) holds for all x ∈ S.

(ii) Since µ has the density function p, (3.3) follows almost everywhere
with respect to the Lebesgue measure.

Similarly to the original Stein’s equation, (3.3) characterizes the distri-
bution of X as follows. This result will play a crucial role in the proofs of
the main results in the next sections.

Theorem 3.2. Assume that
∫

S a(x)µ(dx) < ∞. Let Y be a S-valued ran-
dom variable such that E[|b(Y )|] <∞. Then, the distribution of Y coincides
with µ if and only if

E

[

1

2
a(Y )h′(Y ) + b(Y )h(Y )

]

= 0 (3.4)

for every h ∈ C1(S) such that E[|b(Y )h(Y )|] <∞ and E[|a(Y )h′(Y )|] <∞.

Proof. Assume that the distribution of Y is µ. Let h ∈ C1
b (S) such that

E[|b(Y )h(Y )|] <∞ and E[|a(Y )h′(Y )|] <∞, and

f(x) :=
1

2p(x)

d

dx
[a(x)p(x)h(x)], x ∈ S.
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Here, note that ap ∈ C1(S) follows by the definition of a. Since

d

dx
[a(x)p(x)h(x)] = [a(x)p(x)]′h(x) + a(x)p(x)h′(x)

= 2b(x)p(x)h(x) + a(x)p(x)h′(x),

we have
∫

S
|f(x)|µ(dx) =

1

2

∫

S

∣

∣

∣

∣

d

dx
[a(x)p(x)h(x)]

∣

∣

∣

∣

dx

≤

∫

S
|b(x)h(x)|p(x)dx +

1

2

∫

S
a(x)p(x)|h′(x)|dx

= E[|b(X)h(X)|] +
1

2
E[a(X)|h′(X)|].

Hence, f ∈ L1(µ). Define g̃f as in (3.2). Then, we have h = g̃f by explicit
calculation. Therefore, in view of (3.3), we obtain (3.4) in the case that h
is bounded. The case that h is not bounded is obtained by approximation.

Next we show that the distribution of Y is µ if (3.4) holds. Let f ∈
CK(S), where CK(S) is the total set of continuous functions on S with
compact support. Since f(x) = 0 for x sufficiently near to u, there exists
u′ ∈ (l, u) such that
∫ x

l
[f(y)−mf ]p(y)dy = mf

(

1−

∫ x

l
p(y)dy

)

= mf

∫ u

x
p(y)dy, x ∈ [u′, u)

where mf =
∫ u
l f(x)p(x)dx. On the other hand, for sufficiently small ε > 0

the assumption on b implies that there exists u′′ ∈ (l, u) such that

b(x) < −ε and

∫ u

x
b(y)p(y)dy < 0

for x ∈ [u′′, u). Let ũ := max{u′, u′′}. Hence, by (3.1) we have for x ∈ [ũ, u)

|g̃f (x)| =
2

a(x)p(x)

∣

∣

∣

∣

∫ x

l
(f(y)−mf )p(y)dy

∣

∣

∣

∣

=
|mf |

∫ u
x p(y)dy

∣

∣

∫ x
l b(y)p(y)dy

∣

∣

=
|mf |

∫ u
x p(y)dy

∣

∣

∫ u
x b(y)p(y)dy

∣

∣

≤
|mf |

ε
.

Similarly, there exists l̃ ∈ (l, u) such that

|g̃f (x)| ≤
|mf |

ε
, x ∈ (l, l̃].
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These estimates and the continuity and positivity of a(x)p(x) in S imply that
the function g̃f defined by (3.2) is bounded and satisfies E[|b(Y )g̃f (Y )|] <∞.
The finiteness of E[|a(Y )g̃′f (Y )|] is obtained from (3.3). By (3.3) and (3.4)
we have

E[f(Y )]−E[f(X)] = E

[

1

2
a(Y )g̃′f (Y ) + b(Y )g̃f (Y )

]

= 0.

Since this equality holds for any f ∈ CK(S), X and Y have the same distri-
bution.

An alternative characterization of the random variables Y with distribu-
tion µ has been Theorem 2 in Section 3.2 of [5]. It involves operators from
Malliavin calculus and a conditional expectation given the σ-field generated
by Y . The same conditional expectation will appear in the statement of the
main result in the next section.

Theorem 3.3. Consider a random variable Y ∈ D
1,2 with its values on S

which satisfies that b(Y ) ∈ L2(Ω). Then, Y has probability distribution µ if
and only if E[b(Y )] = 0 and

E

[

1

2
a(Y ) + 〈D(−L)−1b(Y ),DY 〉H

∣

∣

∣

∣

Y

]

= 0.

Stein’s bounds below for the distance between the law of an arbitrary
random variable and the measure µ are based on the Stein equation (3.3)
and the bounds of g̃f and g̃′f are obtained in Section 3.2 of [5]. Now we state
the result in [5] for later use.

Assumption 3.4. (i) If u < ∞, assume that there exists u′ ∈ (l, u)
such that b is non-decreasing and Lipschitz continuous on [u′, u) and
lim infx→u a(x)/(u − x) > 0. If u = ∞, assume that there exists u′ ∈
(l, u) such that b is non-decreasing on [u′, u) and lim infx→u a(x) > 0.

(ii) If l > −∞, assume that there exists l′ ∈ (l, u) such that b is non-
increasing and Lipschitz continuous on (l, l′] and lim infx→l a(x)/(x−
l) > 0. If l = −∞, assume that there exists l′ ∈ (l, u) such that b is
non-decreasing on (l, l′] and lim infx→l a(x) > 0.

Theorem 3.5. (i) Let d be the Fortet-Mourier distance. Assume that
there exist l′, u′ ∈ (l, u) such that b is non-increasing on (l, l′) and
(u′, u). Then we have for S-valued random variable Y ∈ D

1,2

d(L(Y ), µ) ≤ CE

[

E

[∣

∣

∣

∣

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]
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+ C|E [b(Y )] |,

where C is a positive constant independent of Y and L(Y ) is the law
of Y .

(ii) Let d be the Kolmogorov distance or the total variation distance. Under
Assumption 3.4, we have for S-valued random variable Y ∈ D

1,2

d(L(Y ), µ) ≤ CE

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

+ C|E [b(Y )] |,

where C is a positive constant independent of Y and L(Y ) is the law
of Y .

We remark that Assumption 3.4 is designed for the estimate of the Kol-
mogorov distance or the total variation distance, while the estimate of the
Fortet-Mourier distance is obtained under a simple assumption. This dif-
ference of the assumptions comes from the estimate of g̃′f . We also remark
that the cases that µ has the normal distribution and µ has the Gamma
distribution satisfy the Assumption 3.4 under suitable choices of a and b.
See Section 3.2 of [5] for the details.

The Fourth Moment Theorem tells us that the Stein’s bound is sharp
for multiple integrals in the case of Gaussian law, meaning that a sequence
of multiple stochastic integrals convergences to a Gaussian distribution if
and only if the right-hand side of the Stein’s bound vanishes. The purpose
of the last three sections of our paper is to give a necessary and sufficient
condition for sequences of random variables to converge to a measure µ as
described above.

4 Necessary and sufficient conditions for the con-

vergence to the invariant measure of a diffusion

The purpose of this section is to provide necessary and sufficient conditions
for the convergence of the sequence (Fm)m∈N to the invariant measure of a
diffusion µ (as described in Section 3). We aim to give such a characteri-
zation in terms of the squared diffusion coefficient a and of the Malliavin
derivatives of Fm. The main result in [5] (see also Section 3) implies that
a sufficient condition for the convergence in distribution of (Fm)m∈N in a
certain class to µ is that E

[

1
2a(Fm)− 〈DFm,D(−L)−1{Fm − b(Fm)}〉

∣

∣Fm

]
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converges in L1(Ω) to zero as m → ∞ and E[b(Fm)] converges to zero as
m → ∞. But it will follow from the results presented below in this section
that this condition is sometimes too strong and it is not a necessary condi-
tion for the convergence of (Fm)m≥1 in distribution to µ. Actually, we will
consider the convergence in total variation which is strictly stronger than the
convergence in distribution. Recall that the total variation distance between
the law of two random variables X and Y is defined by

dTV (L(X),L(Y )) = sup
A

|P (X ∈ A)− P (Y ∈ A)|

where the supremum is taken over all Borel sets A ⊂ R. We also have (see
e.g. Appendix C in [6])

dTV (L(X),L(Y )) =
1

2
sup
h

|E [h(X)] −E [h(Y )]|

where the supremum is considered over all Borel measurable functions h
with ‖h‖∞ ≤ 1. Let us start with the following result which is connected
with Theorem 3.3.

Set S = (l, u), µ,X, p, b, a and k as in Section 3. Recall that
∫

S |b(x)|µ(dx) <
∞. We assume that

∫

S a(x)µ(dx) <∞. Denote the Lebesgue measure on R

by dx. Additionally we consider the function φ on S given by

φ(x) :=
1

2
a(x) + (|k| + |x|)|b(x)|

where k is an element in S which appeared in the assumption of b.

Theorem 4.1. Let Y be an S-valued random variable in D
1,2 and as-

sume that the distribution of Y is absolutely continuous with respect to the
Lebesgue measure. Then, for every p > 1 we have

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

≤ {1 + (1 +E [|b(Y )|p] +E [|b(X)|p])E [|Y − k|] +E [φ(Y )p] +E [φ(X)p]}

× dTV(L(Y ), µ)1−1/p.

Proof. First we show that for M > 0

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

≤ (M +E [|Y − k|])dTV(L(Y ), µ)
+E [φ(Y );φ(Y ) > M ] +E [φ(X);φ(X) > M ]
+E [|Y − k|] (E [|b(Y )|; |b(Y )| > M ] +E [|b(X)|; |b(X)| > M ]).

(4.1)
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Let h ∈ L∞(S, dx) (the space of essentially bounded functions on S with
respect to dx). For x ∈ S define

fh(x) :=
1

2
a(x)h(x) + b(x)

∫ x

k
h(y)dy.

We remark that the existence of the density function of X implies |h(X)| ≤
‖h‖∞ almost surely. Since E[|a(X)h(X)|] <∞ and

E

[∣

∣

∣

∣

b(X)

∫ X

k
h(y)dy

∣

∣

∣

∣

]

≤ ‖h‖∞E [|b(X)X|] + |k|‖h‖∞E [|b(X)|]

<∞,

Theorem 3.2 implies E[fh(X)] = 0. Hence, by integration by parts formula,
we have

E [fh(Y )]−E [fh(X)]

= E

[

1

2
a(Y )h(Y ) + b(Y )

∫ Y

k
h(y)dy

]

= E

[

1

2
a(Y )h(Y ) + (b(Y )−E[b(Y )])

∫ Y

k
h(y)dy

]

+E[b(Y )]E

[∫ Y

k
h(y)dy

]

= E

[

1

2
a(Y )h(Y ) +

[

δD(−L)−1(b(Y )−E[b(Y )])
]

∫ Y

k
h(y)dy

]

+E[b(Y )]E

[∫ Y

k
h(y)dy

]

= E

[

1

2
a(Y )h(Y ) +

〈

D(−L)−1(b(Y )−E[b(Y )]),D

∫ Y

k
h(y)dy

〉

H

]

+E[b(Y )]E

[∫ Y

k
h(y)dy

]

= E

[

h(Y )

(

1

2
a(Y ) +

〈

D(−L)−1(b(Y )−E[b(Y )]),DY
〉

H

)]

+E[b(Y )]E

[
∫ Y

k
h(y)dy

]

.

Since the duality between the L1(S, dx) and the L∞(S, dx) yields

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

= sup
‖h‖∞≤1

∣

∣

∣

∣

E

[(

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

)

h(Y )

]∣

∣

∣

∣

,
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we obtain

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

≤ sup
‖h‖∞≤1

|E [fh(Y )]−E [fh(X)]|+ |E [b(Y )]|E [|Y − k|] .
(4.2)

Now we consider the estimate of fh. For x ∈ S, it holds that

|fh(x)| ≤

∣

∣

∣

∣

b(x)

∫ x

k
h(y)dy

∣

∣

∣

∣

+
1

2
a(x)|h(x)|

≤ ‖h‖∞(|k|+ |x|)|b(x)| +
1

2
a(x)|h(x)|.

Since the existence of the density function of X and Y implies |h(X)| ≤
‖h‖∞ and |h(Y )| ≤ ‖h‖∞ almost surely, we have

|fh(X)| ≤ ‖h‖∞

{

(|k|+ |X|)|b(X)| +
1

2
a(X)

}

= ‖h‖∞φ(X),

|fh(Y )| ≤ ‖h‖∞

{

(|k|+ |Y |)|b(Y )|+
1

2
a(Y )

}

= ‖h‖∞φ(Y )

almost surely. Hence,

|E [fh(Y )]−E [fh(X)]|

≤ |E [fh(Y );φ(Y ) ≤M ]−E [fh(X);φ(X) ≤M ]|

+ |E [fh(Y );φ(Y ) > M ]−E [fh(X);φ(X) > M ]|

≤ ‖h‖∞MdTV(L(Y ), µ)

+ ‖h‖∞ (E [φ(Y );φ(Y ) > M ] +E [φ(X);φ(X) > M ]) .

This inequality and (4.2) yield

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

≤MdTV(L(Y ), µ) +E [φ(Y );φ(Y ) > M ] +E [φ(X);φ(X) > M ]

+ |E [b(Y )]|E [|Y − k|] .

(4.3)

Since E[b(X)] = 0, we have

|E [b(Y )]|

13



= |E [b(Y )]−E [b(X)]|

≤ |E [b(Y ); |b(Y )| ≤M ]−E [b(X); |b(X)| ≤M ]|

+E [|b(Y )|; |b(Y )| > M ] +E [|b(X)|; |b(X)| > M ]

≤MdTV(L(Y ), µ) +E [|b(Y )|; |b(Y )| > M ] +E [|b(X)|; |b(X)| > M ] .

From this inequality and (4.3) we obtain (4.1).
It is easy to see

E [φ(Y );φ(Y ) > M ] ≤M1−pE [φ(Y )p;φ(Y ) > M ]

≤M1−pE [φ(Y )p] .

Similarly we have

E [φ(X);φ(X) > M ] ≤M1−pE [φ(X)p] ,

E [|b(Y )|; |b(Y )| > M ] ≤M1−pE [|b(Y )|p] ,

E [|b(X)|; |b(X)| > M ] ≤M1−pE [|b(X)|p] .

Hence, (4.1) implies

E

[∣

∣

∣

∣

E

[

1

2
a(Y ) + 〈D(−L)−1 {b(Y )−E[b(Y )]} ,DY 〉H

∣

∣

∣

∣

Y

]∣

∣

∣

∣

]

≤ (M +E [|Y − k|])dTV(L(Y ), µ)

+M1−p(E [|b(Y )|p + |b(X)|p]E [|Y − k|] +E [φ(Y )p + φ(X)p]).

Letting M = dTV(L(Y ), µ)−1/p and using the fact that dTV(L(Y ), µ) ≤ 1,
we obtain the desired estimate.

Theorems 3.5 and 4.1 give a necessary and sufficient condition of the
convergence of in total variation.

Theorem 4.2. Suppose Assumption 3.4. Let Fm be a sequence of S-valued
random variables in D

1,2 and assume that the distribution of Fm is absolutely
continuous with respect to the Lebesgue measure for m ∈ N. Assume that
there exists ε > 0 such that

E [|X|] +E
[

|b(X)|1+ε
]

+E
[

φ(X)1+ε
]

<∞

sup
m∈N

(

E [|Fm|] +E
[

|b(Fm)|1+ε
]

+E
[

φ(Fm)1+ε
])

<∞.

Then, the following statements are equivalent.
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(i) The distribution of Fm converges to the distribution of X in total vari-
ation.

(ii) lim
m→∞

E

[∣

∣

∣

∣

1

2
a(Fm) +E

[

〈D(−L)−1 {b(Fm)−E[b(Fm)]} ,DFm〉H
∣

∣Fm

]

∣

∣

∣

∣

]

=

0 and lim
m→∞

E[b(Fm)] = 0.

Proof. The implication of (i) to (ii) follows from Theorem 4.1, the uniform
integrability of {b(Fm)} and E[b(X)] = 0. The converse implication follows
from Theorem 3.5.

Remark 4.3. • Our Theorem 4.2 is related to the result stated in Theo-
rem 3.2 in [1]. In this reference, a criterium involving the conditional
expectation for the convergence towards a linear combination of chi
squared random variable is given.

• If the random variables Fm from Theorem 4.2 belong to a Wiener chaos
of fixed orde and the limit distribution is not trivial, then the conver-
gence in total variation is equivalent to the convergence in distribution
(see [8]).

• The result in Theorem 4.2 indicates that the condition

1

2
a(Fm)−E

[

〈DFm,D(−L)−1 (b(Fm)−E[b(Fm)])〉H
∣

∣Fm

]

→m 0 in L1(Ω)

is sometimes maybe stronger than the convergence in law.

From now on, for simplicity, we additionally assume that E[X] =
∫

S xµ(dx) =
0 and b(x) = −x. In this case, k = 0 ∈ S and φ(x) := 1

2a(x) + |x|2.

Corollary 4.4. Suppose Assumption 3.4. Let Fm be a sequence of S-valued
random variables in D

1,2 and assume that the distribution of Fm is absolutely
continuous with respect to the Lebesgue measure for m ∈ N. Assume that
there exists ε > 0 such that

E

[

1

2
a(X)1+ε + |X|2+ε

]

<∞, sup
m∈N

E

[

1

2
a(Fm)1+ε + |Fm|2+ε

]

<∞.

Then, the following statements are equivalent.

(i) The distributions of Fm converges to the distribution of X in total
variation.
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(ii) lim
m→∞

E

[∣

∣

∣

∣

1

2
a(Fm)−E

[

〈D(−L)−1Fm,DFm〉H
∣

∣Fm

]

∣

∣

∣

∣

]

= 0

and lim
m→∞

E[Fm] = 0.

Remark 4.5. The conditional expectation

E
[

〈D(−L)−1F,DF 〉H
∣

∣F
]

is called the Stein factor associated with the random variable F , and Corol-
lary 4.4 implies that the convergence of the distributions in total variation
is characterized by the Stein factor. Recently, the Stein factor and the ap-
plications are studied as a hot topic, and many results have been obtained
(see [10] for details).

We continue the consideration of the necessary and sufficient conditions
of the convergence in distributions. We additionally assume

∫

S a(x)
2µ(dx) <

∞.

Proposition 4.6. Consider a sequence (Fm)m≥1 of S-valued random vari-
ables in D

1,4, which satisfies that there exists ε > 0 satisfying

sup
m

E
[

a(Fm)2+ε + |Fm|4+ε
]

<∞. (4.4)

Suppose that the distribution of Fm converges to µ as m→ ∞ Then the con-
dition that 1

2a(Fm)−〈DFm,D(−L)−1Fm〉H converges to 0 in L2(Ω) as m→
∞ is equivalent to the condition that 1

4E[a(Fm)2]−E[〈DFm,D(−L)−1Fm〉2H ]
converges to 0 as m→ ∞.

Proof. Since distribution of Fm converges to µ, by Theorem 3.2 we have

lim
m→∞

E

[

1

2
a(Fm)h′(Fm)− Fmh(Fm)

]

= 0

for h ∈ C1(S) such that supmE
[

|h(Fm)|2+ε + |h′(Fm)|2+ε
]

< ∞. On the
other hand,

E [Fmh(Fm)] = E
[

h(Fm)(δD)(−L)−1Fm

]

= E
[

h′(Fm)〈DFm,D(−L)−1Fm〉H
]

.

Hence, we have

lim
m→∞

E

[(

1

2
a(Fm)− 〈DFm,D(−L)−1Fm〉H

)

h′(Fm)

]

= 0
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for h ∈ C1(S) such that supmE
[

|h(Fm)|2+ε + |h′(Fm)|2+ε
]

< ∞. We have
assumed (4.4). Hence, we can choose h ∈ C1(S) such that h′(x) = a(x).
Thus, we obtain

lim
m→∞

(

1

2
E
[

a(Fm)2
]

−E
[

a(Fm)〈DFm,D(−L)−1Fm〉H
]

)

= 0. (4.5)

On the other hand,

E

[

(

1

2
a(Fm)− 〈DFm,D(−L)−1Fm〉H

)2
]

= E[〈DFm,D(−L)−1Fm〉2H ]−
1

4
E[a(Fm)2]

+
1

2
E
[

a(Fm)2
]

−E
[

a(Fm)〈DFm,D(−L)−1Fm〉H
]

.

Hence, applying (4.5), we obtain the required equivalence.

The necessary and sufficient condition in Theorem 4.2 for the conver-
gence of the sequence (Fm)m≥1 to the distribution µ in total variation is
that the sequence

E

[

1

2
a(Fm) + 〈D(−L)−1 {b(Fm)−E[b(Fm)]} ,DFm〉H

∣

∣

∣

∣

Fm

]

converges to zero in L1(Ω) as m → ∞. Due to the appearance of the
conditional expectation, this condition is sometimes hard to be checked.
Therefore, we give below in Theorem 4.7 an alternative result which does
not involve the conditional expectation.

Theorem 4.7. Assume that there exists a random variable G ∈ D
1,4 such

that the distribution of G is equal to µ and 〈DG,D(−L)−1G〉H is measurable
with respect to the σ-field generated by G. Consider a sequence (Fm)m≥1 of
S-valued random variables in D

1,4 such that E[Fm] = 0 and (4.4) is satisfied.
Then, the following statements are equivalent.

(i) The vector valued random variable (Fm, 〈DFm,D(−L)−1Fm〉H) con-
verges to (G, 〈DG,D(−L)−1G〉H) in distribution as m → ∞, and
{a(Fm)2} and 〈DFm,D(−L)−1Fm〉2H are uniformly integrable.

(ii) 1
2a(Fm)− 〈DFm,D(−L)−1Fm〉H converges to 0 in L2(Ω) as m→ ∞.
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Proof. Assume (ii). By Theorem 3.5 Fm converges to G in distribution.
Since 〈DG,D(−L)−1G〉H is measurable with respect to the σ-field generated
by G, by Theorem 3.3 we obtain

1

2
a(G) = 〈DG,D(−L)−1G〉H (4.6)

almost surely. Hence, by the convergence of Fm to G in distribution and
(ii), we have for h1, h2 ∈ Cb(R)

lim sup
m→∞

∣

∣E
[

h1(Fm)h2
(

〈DFm,D(−L)−1Fm〉H
)]

−E
[

h1(G)h2
(

〈DG,D(−L)−1G〉H
)]∣

∣

≤ lim sup
m→∞

∣

∣

∣

∣

E

[

h1(Fm)h2

(

1

2
a(Fm)

)]

−E

[

h1(G)h2

(

1

2
a(G)

)]∣

∣

∣

∣

+ lim sup
m→∞

∣

∣

∣

∣

E

[

h1(Fm)

{

h2

(

1

2
a(Fm)

)

− h2
(

〈DFm,D(−L)−1Fm〉H
)

}]∣

∣

∣

∣

= 0.

Thus, (i) is obtained.
Assume (i). Noting that (4.6) holds, by the assumption (i) we have

lim
m→∞

(

1

4
E[a(Fm)2]−E

[

〈DFm,D(−L)−1Fm〉2H
]

)

=
1

4
E[a(G)2]−E

[

〈DG,D(−L)−1G〉2H
]

= 0.

Thus, by Proposition 4.6, (ii) is obtained.

Remark 4.8. If we suppose the assumptions in both Corollary 4.4 and The-
orem 4.7, then the equivalent conditions in Corollary 4.4 and Theorem 4.7
will be also equivalent. This fact perhaps implies that generally the conver-
gence of distributions to the invariant measures of diffusion processes would
be complicated, while the fourth moment theorems with respect to Gaussian
distributions and Gamma distributions are simple.

In order to apply the above result, we need to know how to compute the
squared diffusion coefficient for a given law and to check the measurability
of 〈DG,D(−L)−1G〉H with respect to G.

Proposition 4.9. (i) Let F = cW (h) where c ∈ R and h ∈ H such that
‖h‖H = 1. Then,

〈D(−L)−1F,DF 〉H = c2.
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In particular, 〈D(−L)−1F,DF 〉H is measurable with respect to the σ-
field generated by F .

(ii) Let F = c(W (h)2 − 1) where c ∈ R and h ∈ H such that ‖h‖H = 1.
Then,

〈D(−L)−1(F −E[F ]),DF 〉H = 2cF + 2c2.

In particular, 〈D(−L)−1F,DF 〉H is measurable with respect to the σ-
field generated by F .

(iii) Let F = ecW (h) where c ∈ R and h ∈ H such that ‖h‖H = 1. Then,

〈D(−L)−1(F −E[F ]),DF 〉H = c2F

∫ 1

0
F ve

c2

2
(1−v2)dv.

In particular, 〈D(−L)−1(F −E[F ]),DF 〉H is measurable with respect
to the σ-field generated by F .

(iv) Let F = ec
∑n

k=1 W (hk)
2
where n ∈ N, c ∈ (−∞, 1/2) and h1, h2, . . . , hn ∈

H such that ‖hk‖H = 1 for k = 1, 2, . . . , n, and 〈hk, hl〉H = 0 for
k, l = 1, 2, . . . , n. Then,

〈D(−L)−1(F −E[F ]),DF 〉H = 4cF (log F )

∫ 1

0

vF
v2

1−2c(1−v2)

(1− 2c(1 − v2))
n
2
+1
dv.

In particular, 〈D(−L)−1(F −E[F ]),DF 〉H is measurable with respect
to the σ-field generated by F .

(v) Let F = W (h)n − E [W (h)n] where n ∈ N and h ∈ H such that
‖h‖H = 1. Then,

〈D(−L)−1F,DF 〉H

=
n2

2

⌊(n−1)/2⌋
∑

l=0

(n− 1)!(2l − 1)!!

(2l)! (n − 1− 2l)!
β
(n

2
− l, l + 1

)

|F +E [W (h)n]|2−2(l+1)/n .

where ⌊(n−1)/2⌋ is the largest integer which is no larger than (n−1)/2.
In particular, 〈D(−L)−1F,DF 〉H is measurable with respect to the σ-
field generated by F .

Proof. When F is given as in (i), E[F ] = 0 and

〈D(−L)−1F,DF 〉H = c2〈DW (h),DW (h)〉H = c2.
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Hence, (i) holds.
When F is given as in (ii), E[F ] = 0 and

〈D(−L)−1F,DF 〉H =
1

2
c2〈D(W (h)2 − 1),D(W (h)2 − 1)〉H

= 2c2W (h)2 = 2cF + 2c2.

Hence, (ii) holds.
Next we show the case that F is given as in (iii). In this case, we

use the following formula proved in [11]: if Y = f(N) − E[f(N)] where
f ∈ C1

b (R
n;R) with bounded derivatives and N = (N1, ..., Nn) is a Gaussian

vector with zero mean and covariance matrix K = (Ki,j)i,j=1,..,n then

〈D(−L)−1(Y −E[Y ]),DY 〉H

=

∫ ∞

0
e−uduE′





n
∑

i,j=1

Ki,j
∂f

∂xi
(N)

∂f

∂xj
(e−uN +

√

1− e−2uN ′)



 .
(4.7)

Here N ′ denotes an independent copy of N , and N and N ′ are defined
on a product probability space (Ω× Ω′,F ⊗ F , P × P ′) and E′ denotes the
expectation with respect to the probability measure P ′.

By (4.7), we have

〈D(−L)−1(F −E[F ]),DF 〉H

=

∫ ∞

0
e−uduE′

[

c2ecW (h)ec(e
−uW (h)+

√
1−e−2uW ′(h))

]

= c2ecW (h)

∫ 1

0
ecvW (h)E′

[

ec
√
1−v2W ′(h)

]

dv

= c2F

∫ 1

0
F ve

c2

2
(1−v2)dv.

Hence, (iii) holds.
Next we show the case that F is given as in (iv). In this case, we use

Lemma 1 in Section 4 of [5]. The statement of the lemma is as follows. Let
Z be a random variable with the standard normal distribution, K > −1

2 ,
C ∈ R and a ∈ (0, 1). Then,

E
[

e−K(C+
√
1−a2Z)2

]

=
1

√

1 + 2K(1− a2)
e
− C2K

1+2K(1−a2) (4.8)

E
[(

C +
√

1− a2Z
)

e−K(C+
√
1−a2Z)2

]

=
C

(1 + 2K(1− a2))
3
2

e
− C2K

1+2K(1−a2) .

(4.9)
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It is sufficient to show the case that c 6= 0. By (4.7), we have

〈D(−L)−1(F −E[F ]),DF 〉H

=

∫ ∞

0
e−uduE′

[

n
∑

i=1

2cW (hi)e
c
∑n

j=1 W (hj)2

× 2c(e−uW (hi) +
√

1− e−2uW ′(hi))e
c
∑n

j=1(e
−uW (hj)+

√
1−e−2uW ′(hj))

2

]

= 4c2
∫ ∞

0
e−udu

n
∑

i=1

W (hi)e
c
∑n

j=1 W (hj)2
∏

j 6=i

E′
[

ec(e
−uW (hj)+

√
1−e−2uW ′(hj))

2
]

×E′
[

(e−uW (hi) +
√

1− e−2uW ′(hi))e
c(e−uW (hi)+

√
1−e−2uW ′(hi))

2
]

= 4c2
∫ 1

0
dv

n
∑

i=1

W (hi)e
c
∑n

j=1 W (hj)
2





∏

j 6=i

E′
[

ec(vW (hj)+
√
1−v2W ′(hj))

2
]





×E′
[

(vW (hi) +
√

1− v2W ′(hi))e
c(vW (hi)+

√
1−v2W ′(hi))2

]

.

Applying (4.8) and (4.9) to this equation, we obtain

〈D(−L)−1(F −E[F ]),DF 〉H

= 4c2
∫ 1

0
dv

n
∑

i=1

W (hi)e
c
∑n

j=1 W (hj)
2





∏

j 6=i

exp
(

cv2W (hj)
2

1−2c(1−v2)

)

√

1− 2c(1 − v2)





×
vW (hi) exp

(

cv2W (hj)
2

1−2c(1−v2)

)

(1− 2c(1 − v2))
3
2

= 4c2

(

n
∑

i=1

W (hi)
2

)

ec
∑n

j=1 W (hj)
2
∫ 1

0

v exp

(

cv2
∑n

j=1 W (hj)
2

1−2c(1−v2)

)

(1− 2c(1 − v2))
n
2
+1

dv

= 4cF (log F )

∫ 1

0

vF
v2

1−2c(1−v2)

(1− 2c(1 − v2))
n
2
+1
dv.

Hence, (iv) holds.
Finally we show (v). By (4.7) we have

〈DF,D(−L)−1F 〉H

= n2
∫ ∞

0
e−uduE′

[

W (h)n−1
(

e−uW (h) +
√

1− e−2uW ′(h)
)n−1

]
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= n2W (h)n−1

∫ 1

0
dyE′

[

(

yW (h) +
√

1− y2W ′(h)
)n−1

]

.

where W ′(h) denotes an independent copy of W (h), and W (h) and W ′(h)
are defined on a product of abstract Wiener spaces (Ω× Ω,H ⊗H,P × P ′)
and E′ denotes the expectation with respect to the Gaussian measure P ′.
Hence,

〈DF,D(−L)−1F 〉H

= n2W (h)n−1

∫ 1

0
dy

n−1
∑

j=0

(n− 1)!

j! (n − 1− j)!
(yW (h))n−1−jE′

[

(

√

1− y2W ′(h)
)j
]

= n2
⌊(n−1)/2⌋
∑

l=0

(n − 1)!(2l − 1)!!

(2l)! (n − 1− 2l)!
W (h)2n−2−2l

∫ 1

0
yn−1−2l(1− y2)ldy

where we regard (−1)!! = 1. Noting that the beta function β(a, b) for a, b > 0
satisfies

β(a, b) =

∫ 1

0
ta−1(1− t)b−1dt

= 2

∫ 1

0
s2a−1(1− s2)b−1ds,

we obtain

〈DF,D(−L)−1F 〉H

=
n2

2

⌊(n−1)/2⌋
∑

l=0

(n− 1)!(2l − 1)!!

(2l)! (n − 1− 2l)!
β
(n

2
− l, l + 1

)

|F +E [W (h)n]|2−2(l+1)/n .

Now we give several common probability distributions as examples.

Example 4.10. (Gaussian and Gamma) Let F = cW (h) where c ∈ R and
h ∈ H such that ‖h‖H = 1. Then, E[F ] = 0. By (i) of Proposition 4.9, we
have 〈D(−L)−1F,DF 〉H is measurable with respect to the σ-field generated
by F , and we have

1

2
a(x) = c2, x ∈ R.

Let F = c(W (h)2 − 1) where c ∈ R and h ∈ H such that ‖h‖H = 1.
Then, E[F ] = 0. By (ii) of Proposition 4.9, we have 〈D(−L)−1F,DF 〉H is
measurable with respect to the σ-field generated by F , and

1

2
a(x) = 2c2(x+ 1), x > −1.
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Example 4.11. (Log-normal) Let F = ecW (h) where c ∈ R\{0} and h ∈ H
such that ‖h‖H = 1. By (iii) of Proposition 4.9, we have 〈D(−L)−1(F −
E[F ]),DF 〉H is measurable with respect to the σ-field generated by F , and

1

2
a(x) = c2x

∫ 1

0
xve

c2

2
(1−v2)dv, x > 0.

Example 4.12. (Exponential of the sum of Gaussian squares) Let F =
ec

∑n
k=1 W (hk)

2
where n ∈ N, c ∈ (−∞, 1/2) \ {0} and h1, h2, . . . , hn ∈ H

such that ‖hk‖H = 1 for k = 1, 2, . . . , n, and 〈hk, hl〉H = 0 for k, l =
1, 2, . . . , n. By (iv) of Proposition 4.9, we have 〈D(−L)−1(F −E[F ]),DF 〉H
is measurable with respect to the σ-field generated by F and

1

2
a(x) = 4cx(log x)

∫ 1

0

vx
v2

1−2c(1−v2)

(1− 2c(1 − v2))
n
2
+1
dv

for x belonging to the support of the law (that depends on the choice of c).
This case includes the uniform distribution U [0, 1] (by taking for example
n = 2 and c = −1

2), the centered Pareto distribution (if we consider n = 2
and c = 1

4 we obtain a centered Pareto distribution with parameter 2) or
the centered beta distribution (by taking c = −1, n = 2 we have a random
variable with centered beta law with parameters 1

2 and 1). We refer to [5]
for a review on these probability distributions.

Example 4.13. (Power of Gaussian) Consider the random variable

G =W (h)n −E [W (h)n]

where h ∈ H such that ‖h‖H = 1 and n ∈ N. By (v) of Proposition 4.9, we
have 〈D(−L)−1(F −E[F ]),DF 〉H is measurable with respect to the σ-field
generated by F and

1

2
a(x)

=
n2

2

⌊(n−1)/2⌋
∑

l=0

(n− 1)!(2l − 1)!!

(2l)! (n − 1− 2l)!
β
(n

2
− l, l + 1

)

|x+E [W (h)n]|2−2(l+1)/n

for x in the support of the law of G. The case that n = 1 and n = 2 are
associated to the standard normal distribution and the centered Gamma
distribution, respectively (see Example 4.10). When n = 3,

1

2
a(x) = 3|x|4/3 + 6|x|2/3, x ∈ R.
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When n = 4,

1

2
a(x) = 4(x+ 3)3/2 + 12(x + 3), x ∈ (−3,∞).

Remark 4.14. A concrete example of application of the theory presented
in this section is given in [18] and concerns the convergence of a sequence
of Pareto distributed random variables to the exponential law. Indeed, if we
consider a sequence of random variables (Fn)n≥1 such that each Fn follows
a Pareto distribution with parameter n ≥ 2 then it is well-known that the
sequence (Yn)n≥1 given by Yn = (n−1)(Fn−1) converges in law, as n→ ∞,
to the exponential distribution with parameter 1. The rate of convergence
has been estimated in [18] using the techniques presented in this section.

5 Extension of the Fourth Moment Theorem

In this section, we analyze the weak convergence of sequences of random
variables in a Wiener chaos to X ∼ µ. The purpose of the argument is to
generalize the Fourth Moment Theorem (Theorem 2.2).

Through this section, µ is assumed to satisfy the hypothesis in the previ-
ous section. In addition we set b(x) := −x and assume that

∫

a(x)2µ(dx) <
∞ and the expectation of the invariant measure equals zero, i.e.

∫

xµ(dx) =
E[X] = 0.

Let us assume that Fm = Ip(fm),m ∈ N is sequence of multiple inte-
grals in the pth Wiener, with fm ∈ H⊙p for every m ∈ N. Our result in
Theorem 4.7 says that the joint convergence in distribution as m → ∞ of
(Fm,

1
p‖DFm‖2H) to (G, 〈DG,D(−L)−1G〉H), with G ∼ µ, is equivalent to

the convergence in L2(Ω) of 1
2a(Fm)− 1

p‖DFm‖2H to zero as m→ ∞, where
a denotes the squared diffusion coefficient associated to the law µ.

The nice results in [14] and [9] show that, in the case when the target
distribution µ is Gaussian or (centered) Gamma, then the hypothesis on the
convergence of ‖DFm‖H (or the conditional expectation in Theorem 4.2)
can be eliminated. Indeed, by assuming that EF 2

m →m EG2, the sequence
(Fm)m≥1 convergence to µ (which is Gaussian or Gamma) if and only if the
sequence 1

2a(Fm)− 1
p‖DFm‖2H converges to zero in L2(Ω).

It is then natural to ask if the same holds for other target distributions.
We will show in the sequel that the answer is in general negative. We will
show that in some special situations, the convergence in law of a sequence
of multiple integrals to a law (different from Gaussian and Gamma) can be
expressed in terms of the convergence of sequence of the fourth moment and
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also in terms of some squared diffusion coefficients associated to the law and
of the Malliavin derivatives.

5.1 Product normal distribution

Let X,Y ∼ N(0, 1) be two independent random variables (X = I1(h1), Y =
I1(h2) with h1, h2 ∈ H orthonormal) and consider the random variable

G = XY.

Then G follows the so-called product normal distribution and its density is
given by

fG(x) = K0(|x|), x ∈ R

where K0 is the modified Bessel function of the second kind. We remark
that fG(x) diverges at x = 0, in particular fG is not continuous in R. Hence,
Theorems in Sections 3 and 4 are not applicable in this case.

We will characterize the convergence in distribution (which is equivalent
to the convergence in total variation) of a particular class of sequences of
multiple integrals toward the product normal distribution.

Remark 5.1. Let us recall that, if X,Y are independent multiple integrals,
then (X,DX) and (Y,DY ) are independent random vectors. Moreover,
〈DX,DY 〉H = 0. See Lemma 1 in [3].

Theorem 5.2. Suppose (Xk = Ip(fk))k∈N and (Yk = Iq(gk))k∈N are two
sequences of multiple integrals in the pth and qth Wiener chaos respectively
such that

lim
k→∞

E[X2
k ] = 1 and lim

k→∞
E[Y 2

k ] = 1.

Assume that for every k ∈ N, the random variables Xk and Yk are indepen-
dent. Then the following are equivalent:

(i) XkYk converges in distribution as k → ∞ to XY .

(ii) limk→∞E
[

(XkYk)
4
]

= 9.

(iii) limk→∞ ‖fk ⊗r fk‖H⊗2(p−r) = 0 and limk→∞ ‖gk ⊗l gk‖H⊗2(q−l) = 0 for
every r = 1, 2, . . . , p− 1 and l = 1, 2, . . . , q − 1.

(iv) limk→∞ ‖DXk‖
2
H = p and limk→∞ ‖DYk‖

2
H = q in L2(Ω).

(v) limk→∞E[X4
k ] = 3 and limk→∞E[Y 4

k ] = 3.

(vi) Xk →k→∞ X and Yk →k→∞ Y in distribution.
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Proof. Note that for every k ∈ N, XkYk = Ip+q(fk ⊗ gk). This comes from
the product formula for multiple stochastic integrals (2.3) and the fact that,
for every k ≥ 1, the independence of Xk and Yk is equivalent to fk⊗1 gk = 0
almost everywhere, see [19]. Note that the implication (vi) → (i) is trivial,
and the equivalence between (iii), (iv), (v) and (vi) follows from Theorem
2.2. Hence, it is sufficient to prove

(i) → (ii) → (iii)

for the first assertion. The implication (i) → (ii) is obvious since XkYk is
a multiple integral in the Wiener chaos of order p + q and thus for every
r ≥ 1, supk E [|XkYk|

r] <∞. Let us show (ii) → (iii). We use formula (2.5)
for the fourth moment of a multiple integral and we get

E
[

In(f)
4
]

= 3E
[

In(f)
2
]2

+Rf

where, for every f ∈ H⊙n, we denoted

Rf := n!2
n−1
∑

r=1

(

n!

r! (n− r)!

)2
[

‖f ⊗r f‖
2
H⊗2(n−r) + Cn−r

2n−2r‖f⊗̃rf‖
2
H⊗2(n−r)

]

.

(5.1)
We have, for every k ≥ 1,

E
[

(XkYk)
4
]

= E
[

X4
k

]

E
[

Y 4
k

]

= (3E
[

X2
k

]2
+Rfk)(3E

[

Y 2
k

]2
+Rgk)

with Rfk and Rgk defined above by (5.1). Since 3E
[

X2
k

]2
× 3E

[

Y 2
k

]2
→ 9,

we easily get that ‖fk⊗rfk‖H⊗2(p−r) →k→∞ 0 and ‖gk⊗lgk‖H⊗2(q−l) →k→∞ 0
for every r = 1, ..., p − 1 and l = 1, .., q − 1.

Remark 5.3. The convergence of Wiener polynomials whose orders are uni-
formly dominated from above to a non-degenerate distribution in distribution
is equivalent to the convergence in total variation (see Theorem 3.1 in [8]).

5.2 The sum of a standard normal random variable and an

independent random variable

Let Z ∼ N(0, 1) and let G be a centered random variable with the fourth
moment and is independent of Z. We will characterize the convergence (of a
special class of sequences of multiple stochastic integrals) to the distribution
of the random variable Z+G. See [3] for the case when Z,G are independent
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Gamma distributed random variables. We assume that G has a continuous
density function on R (not necessary strictly positive on R). Below a will
denote the squared diffusion coefficient associated to Z +G.

Proposition 5.4. Let (Xk = Ip(fk))k∈N be a sequence of random variables
in the pth Wiener chaos such that

lim
k→∞

E[X2
k ] = 1.

Let (Yk = (Iq(gk))k∈N be another sequence of random variables in the qth
Wiener chaos such that Xk and Yk are independent for every k ∈ N and

lim
k→∞

E[Y 2
k ] = E[G2] and lim

k→∞
E[Y 4

k ] = E[G4].

Then the following assertions are equivalent:

(i) Xk →k Z and Yk →k G in distribution

(ii) Xk + Yk →k Z +G in distribution

If in addition, a satisfies the assumptions in Corollary 4.4, then the following
is also equivalent.

(iii)
1

2
a(Xk + Yk)−E

[

1

p
‖DYk‖

2
H +

1

q
‖DXk‖

2
H

∣

∣

∣

∣

Xk + Yk

]

→k 0 in L1(Ω).

Proof. Clearly (i) → (ii). We show that (ii) → (i). We use the relation

E
[

(Xk + Yk)
4
]

= E
[

X4
k

]

+ 6E
[

X2
k

]

E
[

Y 2
k

]

+E
[

Y 4
k

]

= 3E
[

X2
k

]

+ 6E
[

X2
k

]

E
[

Y 2
k

]

+E
[

Y 4
k

]

+Rfk

∼ 3 + 6E
[

G2
]

+E
[

G4
]

+Rfk , (5.2)

where we used (2.5) and Rfk given by (5.1). Recall that ∼ means that the
sides have the same limit as k → ∞. On the other hand, from (ii) we have

E
[

(Xk + Yk)
4
]

→k E
[

(Z +G)4
]

= 3 + 6E
[

G2
]

+E
[

G4
]

. (5.3)

By combining (5.2) and (5.3), we get Rfk →k 0 and thus

‖fk ⊗r fk‖H⊗2(p−r) →k 0

for every r = 1, 2, . . . , p − 1. This gives the converges in distribution of Xk

to Z as k → ∞ (see Theorem 2.2), and then we easily get the convergence
in law as k → ∞ of Yk to G.

Theorem 3.1 in [8] implies that (ii) is equivalent to the convergence of
Xk+Yk in total variation. Hence, if we additionally give the assumptions in
Corollary 4.4, we obtain the equivalence between (ii) and (iii) by Corollary
4.4.
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We apply the above result to the particular case when G follows a cen-
tered chi-squared distribution.

Corollary 5.5. Consider two sequences (Xk)k≥1 and (Yk)k≥1 as in Propo-
sition 5.4 and assume that the random variable G from Proposition 5.4
is a centered Gamma random variable i.e G = W (h)2 − 1 where h ∈ H,
‖h‖H = 1. Then the following are equivalent:

(i) Xk + Yk →k Z +G in distribution.

(ii) Xk →k Z and Yk →k G in distribution.

(iii) 1
p‖DXk‖

2
H → 1 and 1

q‖DYk‖
2
H − 2Yk →k 0 in L2(Ω).

(iv) 1− 1
p‖DXk‖

2
H + 2Yk −

1
q‖DYk‖

2
H →k 0 in L2(Ω).

(v) 1
2a(Xk + Yk)−E

[

1
p‖DXk‖

2
H + 1

q‖DYk‖
2
H

∣

∣

∣Xk + Yk

]

→k 0 in L1(Ω).

Proof. The points (i) and (v) are equivalent due to Proposition 5.4 by noting
the squared diffusion coefficient a associated with the law Z+G satisfies the
assumptions from Corollary 4.4. The fact that (i) is equivalent to (ii), (iii),
(iv) follows from Theorem 1.2 in [9] and Remark 5.1. On the other hand,
the explicit expression for a (that can be calculated via (3.1), is pretty
complexe.

Remark 5.6. Condition (iv) above show that the convergence toward the
sum Z + G of a Gaussian and an independent Gamma distribution can
be characterized (without the appearance of the conditional expectation) in
terms of the diffusion coefficients associated with Z and G.

6 The case when the diffusion coefficient is a poly-

nomial of second degree

Since we are studying the convergence of a sequence of multiple stochastic
integrals, whose expectation is zero, we will assume that the measure µ is
centered and the drift coefficient is b(x) = −x. We will also assume that the
diffusion coefficient is a polynomial of second degree expressed as

a(x) = αx2 + βx+ γ, x ∈ S, α, β, γ ∈ R (6.1)

such that a(x) > 0 for every x ∈ S. In this case it is possible to understand
better when the necessary and sufficient condition for the weak convergence
of a sequence of multiple integrals toward the law µ is satisfied.
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This class contains the known continuous probability distributions. See
Table 1 in [2]. It contains among others, the normal, Gamma, uniform,
Student, Pareto, inverse Gamma or F distributions. We mention by the
way that, except the first laws listed here, the others cannot be limits in
distribution of a sequence of multiple integrals, because they do not admit
moments of any order. Nevertheless, the class satisfying (6.1) and admitting
moments of any order contains an infinity of probability distributions.

We give below some examples qualified as candidate to be limit in dis-
tribution of sequences of multiple integrals. Note that in Table 1 in [2] the
diffusion coefficient is given for non centered probability distributions. In
order to obtain the diffusion coefficient a of the centered measure from the
diffusion coefficient a0 of the non centered measure we apply the following
rule (see Lemma 2.5 in [2])

a(x) = a0(x+E[X])

where X ∼ µ.

Example 6.1. The normal distribution N(0, γ), γ > 0. In this case
a(x) = 2γ.

Example 6.2. The Gamma Γ(a, λ), a, λ > 0 law. Here the density is
f(x) = λa

Γ(a)x
a−1e−λx for x > 0 and f(x) = 0 otherwise. Also E[X] = a

λ and
the centered Gamma law has

a(x) =
2

λ
(x+

a

λ
)

meaning that α = 0, β = 2
λ , γ = 2a

λ2 .

Example 6.3. The uniform U(0, 1) distribution. Here the density is
f(x) = 1[0,1](x), the mean is E[X] = 1

2 and U [0, 1] − E[U [0, 1]] has squared
diffusion coefficient

a(x) = (x+
1

2
)(
1

2
− x) =

1

4
− x2.

So α = −1, β = 0, γ = 1
4 .

Example 6.4. The Beta β(a, b) law, a, b > 0. In this case the probability
density function is

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−11(0,1)(x),
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E[X] = a
a+b and the centered beta law has

a(x) =
2

a+ b
(x+

a

a+ b
)(

b

a+ b
− x).

Note that the beta distribution with a = b has the fourth cumulant negative
and therefore it cannot be limit of a sequence of multiple integrals.

Therefore α = − 2
a+b , β = 2

a+b
b−a
a+b , γ = 2

a+b
a

a+b
b

a+b .

The polynomial form of the diffusion coefficient a together with The-
orem 3.2 implies several consequences on the moments of the probability
distribution of X ∼ µ. We will present them in the following useful lemma.
In particular, we give a recurrence formula for the moments of X.

Lemma 6.5. Suppose that a is given by (6.1). Then for every k ∈ R, k ≥ 1
such that E[X2k] <∞ one has

(

1−
2k − 1

2
α

)

E[X2k] =
2k − 1

2
βE[X2k−1] +

2k − 1

2
γE[X2k−2]. (6.2)

In particular, if α 6= 2,

E[X2] =
γ

2− α
, (6.3)

if α 6= 1, 2,

E[X3] =
β

1− α
E[X2] =

βγ

(1− α)(2 − α)
(6.4)

and if α 6= 2, 23 , then

E[X4] =
3( β2

1−α + γ)

2− 3α
E[X2] =

3γ( β2

1−α + γ)

(2− α)(2 − 3α)
. (6.5)

Proof. Relation (6.2) is obtained by applying Theorem 3.2 with h(x) =
x2k−1. In particular, for k = 1, since E[X] = 0

E[X2] = E

[

1

2
a(X)

]

=
1

2

(

αE[X2] + βE[X] + γ
)

and thus E[X2] = γ
2−α . By applying successively Proposition 3.2 with

h(x) = x2 (k = 3
2) and h(x) = x3 (k = 2) we obtain the expressions (6.4)

and (6.5).
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Lemma 6.6. Assume (6.1) with α 6= 1, 2, 23 . Fix n ≥ 1 and let {Fm =
In(fm),m ≥ 1} such that

E[F 2
m] →m→∞ E[X2], E[F 4

m] →m→∞ E[X4] and E[F 3
m] →m→∞ E[X3].

(6.6)
Then

E

[

F 4
m −

3

2
a(Fm)F 2

m

]

≃ C0n!‖fm‖2 + 3n

n−1
∑

p=1;p 6=n
2

(p− 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n − 2p)!‖fm⊗̃pfm‖2

+
3

2
c−2
n n!‖fm⊗̃n/2fm‖2 −

3

2
βE[F 3

m] →m→∞ 0 (6.7)

where ≃ means that the two sides have the same limit as m → ∞, cn is
defined by

cn =
(n/2)!3

n!2
(6.8)

and

C0 =
3

2
α

[

−4γ

(2− α)(2 − 3α)
−

3β2

(1− α)(2 − 3α)

]

. (6.9)

Proof. From assumption (6.6) and Theorem 3.2,

E

[

F 4
m −

3

2
a(Fm)F 2

m

]

→m E

[

X4 −
3

2
a(X)X2

]

= 0.

Now, by (6.1)

E

[

F 4
m −

3

2
a(Fm)F 2

m

]

= E[F 4
m]−

3

2
αE[F 4

m]−
3

2
γE[F 2

m]−
3

2
βE[F 3

m]

and, on the other hand, using (6.6), (6.5) and (2.5) we get
(

1−
3

2
α

)

E[F 4
m]−

3

2
γE[F 2

m]

≃ 3E[F 2
m]2 + 3n

n−1
∑

p=1

(p− 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n− 2p)!‖fm⊗̃pfm‖2

−
3

2
α
3( β2

1−α + γ)

2− 3α
E[F 2

m]−
3

2
γE[F 2

m]
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≃ C0E[F 2
m] + 3n

n−1
∑

p=1

(p − 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n − 2p)!‖fm⊗̃pfm‖2

with C0 given by (6.9). Therefore, the desired relation (6.7) is obtained.

From the above result we will deduce several restrictions on the prob-
ability distributions that can be limits of sequences of multiple stochastic
integrals. We will discuss separately the cases β = 0 and β 6= 0.

6.1 The case β = 0

Let us assume that β = 0 in (6.1). This is the case of the Student, uniform
and beta (with parameters a = b) distributions. In this situation, since
EX3 = 0 (see (6.4)), the order of the chaos n can be even or odd in principle.

Theorem 6.7. Assume (6.1) with α 6= 2, 23 and β = 0. Fix n ≥ 1 and let
(Fm = In(fm)m≥1 satisfying (6.6). Then α = 0, γ > 0 and if S = (−∞,∞),
X follows a centered normal distribution with variance γ.

Proof. Let us show that C0 ≥ 0. Note that

C0 = −
6αγ

(2− α)(2 − 3α)
.

Relations (6.3) and (6.5) with β = 0 give

E[X2] =
γ

2− α
and E[X4] =

3γ2

(2− α)(2 − 3α)

and this implies in particular

(2− α)(2 − 3α) > 0.

On the other hand, from the relation (6.2) with β = 0 we notice that
(

1−
2k − 1

2
α

)

E[X2k] =
2k − 1

2
γE[X2k−2]

for every k ≥ 1 we notice that α, γ have different parities. Indeed, if α > 0
then for k large enough

(

1− 2k−1
2 α

)

becomes negative and thus γ < 0. If

α < 0 then
(

1− 2k−1
2 α

)

is positive and so γ should be positive. So C0 ≥ 0.
Next, since E

[

F 4
m − 3

2a(Fm)F 2
m

]

→m 0 we have from Lemma 6.6

C0E[F 2
m]+3n

n−1
∑

p=1

(p−1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n−2p)!‖fm⊗̃pfm‖2 →m→∞ 0
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and this is not possible unless C0 = 0. In this case, we have α = 0 (from
(6.9)), γ > 0 (from (6.3)) and consequently, when S = (−∞,∞), X follows
a normal distribution with mean zero and variance γ. This can be easily
obtained by computing the density of X using Proposition 1 in [5].

As a consequence, we notice that several probability distributions cannot
be limits in distribution of sequences of multiple stochastic integrals.

Corollary 6.8. A sequence of random variables in a fixed Wiener chaos
cannot converge to the uniform distribution.

6.2 The case β 6= 0

In this paragraph we study the convergence of a sequence a multiple stochas-
tic integrals to the law of a random variable X ∼ µ where µ is the invari-
ant measure of a diffusion with drift coefficient b(x) = −x (meaning that
E[X] = 0) and diffusion coefficient a given by (6.1) with β 6= 0. This is the
case of the Pareto, Gamma, inverse Gamma and F distributions.

Fix n ≥ 1. Consider throughout this section that {Fm,m ≥ 1} is a
sequence of random variables expressed as Fm = In(fm) with fm ∈ H⊙n.
Since the third moment of a multiple Wiener -Itô integral of odd order is
zero, from (6.4) we may assume in this paragraph that n is even.

Let us first deduce some consequences on the convergence in law of Fm

to X.

Lemma 6.9. Assume (6.1) with α 6= 1, 2, 23 . Fix n ≥ 1 and let {Fm =
In(fm),m ≥ 1} satisfying (6.6). Then

lim
m

〈fm, fm⊗̃n/2fm〉 = lim
m

β

1− α
cn‖fm‖2

where cn is given by (6.8).

Proof. Condition (6.6) and Proposition 3.2 imply

E
[

F 3
m − a(Fm)Fm

]

→m→∞ E[X3 − a(X)X] = 0

or equivalently
(1− α)E[F 3

m]− βE[F 2
m] →m 0.

But from (2.4) we have

(1− α)E[F 3
m]− βE[F 2

m] = (1− α)
n!3

(n/2)!3
〈fm, fm⊗̃n

2
fm〉 − βn!‖fm‖2
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=
n!3

(n/2)!3

[

(1− α)〈fm, fm⊗̃n
2
fm〉 − βcn‖fm‖2

]

and since this converges to zero as m → ∞, we obtain the conclusion. Let
us also mention that the two limits in the statement of the lemma exist due
to Lemma 2.1 and to the convergence of the sequences of the second and
third moments of (Fm)m≥1.

We will need the following auxiliary lemma.

Lemma 6.10. Let the assumptions stated in Lemma 6.9 prevail. Then for
every c ∈ R

E

[

F 4
m −

3

2
a(Fm)F 2

m

]

≃
3

2
c−2
n n!

[

2

3
c2n

(

C0 −
3

2
(1− c)

β2

1− α

)

‖fm‖2 − βccn〈fm, fm⊗̃n
2
fm〉+ ‖fm⊗̃n/2fm‖2

]

+3n

n−1
∑

p=1;p 6=n
2

(p− 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n − 2p)!‖fm⊗̃pfm‖2

→m→∞ 0 (6.10)

where ≃ means that the two sides have the same limit as m → ∞, cn, C0

are defined by (6.8) and (6.9) respectively.

Proof. Recall the relation (6.7). For every c ∈ R we can write

3

2
βE[F 3

m] =
3

2
(1− c)βE[F 3

m] +
3

2
cβE[F 3

m]

and using (6.4) and the convergence of the moments of Fm to those of µ
(relation (6.6)),

3

2
(1− c)βE[F 3

m] ≃
3

2
(1− c)β

β

1− α
E[X2]

≃
3

2
(1− c)β

β

1 − α
E[F 2

m] =
3

2
(1− c)β

β

1− α
n!‖fm‖2. (6.11)

By combining (6.7) and (6.11), we obtain (6.10).

The next step is to find c ∈ R such that

2

3

(

C0 −
3

2
(1− c)

β2

1− α

)

= A2 and βc = 2A.
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If such c ∈ R exists then the sequence E[F 4
m − 3

2a(Fm)F 2
m] (which converges

to zero as m → ∞ due to (3.4)) will have the same limit as ‖Acnfm −
fm⊗̃n/2fm‖2 plus a positive term (this is consequence of (6.10)). The exis-
tence of c ∈ R is equivalent to the existence of a real solution to the second
degree equation

3β2c2 −
12β2

1− α
c−

(

8C0 −
12β2

1− α

)

= 0 (6.12)

which has the following discriminant

∆ = −
144α

2− 3α

[

β2

(1 − α)2
+

2γ

2− α

]

. (6.13)

Since β2

(1−α)2 +
2γ
2−α > 0 (see (6.3)) the sign of ∆ depends on the sign of α

2−3α .

Theorem 6.11. Assume (6.1) with α 6= 1, 2, 23 . Fix n ≥ 1 and let {Fm =
In(fm),m ≥ 1} satisfying (6.6). Moreover, let us assume α

2−3α ≤ 0 (that

is, α ∈ R \ (0, 23 ]). Then α = 0 and, if S = (− a
λ ,∞), X follows a centered

Gamma law Γ(a, λ) −E[Γ(a, λ)] where β = 2
λ , γ = 2a

λ2 .

Proof. When α /∈ [0, 23), then the discriminant ∆ (6.13) is positive and the
equation (6.12) admits two real solutions (that may coincide). Let us denote
by c1, c2 ∈ R and by Ai =

βci
2 , i = 1, 2. From (6.10) we deduce that, for

i = 1, 2

E

[

F 4
m −

3

2
a(Fm)F 2

m

]

≃
3

2
c−2
n n!

∣

∣

∣

∣Aicnfm − fm⊗̃n/2fm
∣

∣

∣

∣

2

+3n

n−1
∑

p=1;p 6=n
2

(p − 1)!

(

n− 1
p− 1

)2

p!

(

n
p

)2

(2n − 2p)!‖fm⊗̃pfm‖2 →m 0

and consequently

‖Aicnfm−fm⊗̃n/2fm‖ →m 0 and ‖fm⊗pfm‖ →m→∞ 0 for p = 1, ..., n − 1, p 6= n
2

(6.14)
where cn is given by (6.8). Relation (6.14) and Lemma 6.9 immediately
imply Ai =

β
1−α for i = 1, 2 and consequently the two solutions to (6.12)

must coincide. The discriminant ∆ (6.13) then vanishes and that gives
α = 0. The fact that µ is a centered Gamma law follows from (6.1) with
α = 0 and β 6= 0 by computing the density of X in terms of the squared
diffusion coefficient a, see Proposition 1 in [5].
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Since in the case of the beta distribution α = −2
a+b and a, b > 0, we have

the following corollary.

Corollary 6.12. A sequence of random variables in a fixed Wiener chaos
cannot converge to the beta distribution.

Remark 6.13. In the case of the centered Gamma distribution, we obtain
from the proof of Theorem 6.11 : a sequence (Fm = In(fm)m≥1 such that
E[F 2

m] →m→∞
a
λ2 converges to the centered Gamma law Γ(a, λ)−E[Γ(a, λ)]

if and only if the following assertions are satisfied:

• E[F 3
m] →m

2a
λ3 and E[F 4

m] →m
3a(a+2)

λ4

• ‖ 2
λcnfm − fm⊗̃n/2fm‖ →m 0 (recall that cn is given by (6.8))

• 1
λF

2
m + a

λ2 − 1
n‖DFm‖2H converges to zero in L2(Ω).

When λ = 1
2 and a = ν

2 we retrieve the results in [9], Theorem 1.2.
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