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Abstract—We introduce parameterized communicating au-
tomata (PCA) as a model of systems where finite-state processes
communicate through FIFO channels. Unlike classical commu-
nicating automata, a given PCA can be run on any network
topology of bounded degree. The topology is thus a parameter
of the system. We provide various Büchi-Elgot-Trakhtenbrot
theorems for PCA, which roughly read as follows: Given a logical
specification ϕ and a class of topologies T, there is a PCA that
is equivalent to ϕ on all topologies from T. We give uniform
constructions which allow us to instantiate T with concrete
classes such as pipelines, ranked trees, grids, rings, etc. The
proofs build on a locality theorem for first-order logic due to
Schwentick and Barthelmann, and they exploit concepts from
the non-parameterized case, notably a result by Genest, Kuske,
and Muscholl.

I. INTRODUCTION

The Büchi-Elgot-Trakhtenbrot theorem states that finite au-
tomata and monadic second-order (MSO) logic over words are
expressively equivalent [6], [9], [24]. This connection between
automata and logic constitutes one of the cornerstones in the-
oretical computer science, as it bridges the gap between high-
level specifications and operational system models. Various
extensions of that result followed, providing logical character-
izations of tree automata [22], asynchronous automata [25],
and graph acceptors [23], to mention just a few.

In recent years, an analogous question has been studied
for communicating automata (CA). A CA consists of several
finite-state processes that can exchange messages through
FIFO channels by performing send and receive actions. A
single execution of a CA is captured by a message sequence
chart (MSC), a directed acyclic graph, whose nodes represent
the events that are observed during an execution. Its edge
relation C = Cproc ∪ Cmsg visualizes causal dependencies
between events. Edges from Cproc connect consecutive events
performed by a process, and edges from Cmsg connect send
events with their corresponding receives. Logical character-
izations have been established for unrestricted CA [3] and
channel-bounded CA [17], [20], [13]. All these results require
the underlying communication topology, which provides a set
of processes and channels between them, to be fixed.

Now, it is a natural question to ask for an automaton that
realizes a given logical specification for a class of topologies
(for example, all grid topologies, no matter what the size of
the grid is). This is what this paper is about, i.e., we aim for
Büchi-Elgot-Trakhtenbrot theorems in a setting with non-fixed,
parameterized topology.

In a first step, we introduce parameterized communicating
automata (PCA). Unlike classical CA, a given PCA can be run
on any network topology of bounded degree (such as pipelines,
ranked trees, grids, or rings). PCA are a conservative extension
of CA and, as such, also recognize sets of MSCs. Our study is
centered around the following question, which depends on a
given logical specification ϕ and a given class T of topologies:

Is there a PCA A that is equivalent to ϕ on all
topologies T ∈ T (when A is run on T , it accepts
precisely the MSCs over T that satisfy ϕ)?

If the answer is affirmative, then we say that formula
ϕ is realizable for T. This paper investigates realizabil-
ity wrt. several logics and instances of T in a unifying
framework. We consider standard first-order and existen-
tial MSO logic, FO[σ] and EMSO[σ], respectively. Here,
σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} is the collection of binary
relation symbols that are available in the logic. All symbols
are self-explanatory apart from ∼, which allows us to say that
two events are executed by the same process.

Our first results settle the limits of what we can hope for:
(i) There is an FO[Cproc,Cmsg]-formula that is not realizable

for the class of “ring forests” (unions of ring topologies).
(ii) There is an FO[C∗proc,Cmsg,C∗]-formula that is not real-

izable already for the class of binary trees.
This shows that we have to restrict both, the topologies and the
logic, and that we are left with only a small margin for positive
results. However, we are able to provide various Büchi-Elgot-
Trakhtenbrot theorems:
(iii) Every EMSO[Cproc,Cmsg,∼]-formula is realizable for

the classes of pipelines, ranked trees, grids, and rings.
(iv) When we suppose that the channels of a PCA are

bounded, then every EMSO[C∗proc,Cmsg]-formula is re-
alizable for the classes of pipelines, ranked trees, grids,
and rings.

In fact, we obtain (iii) and (iv) as corollaries of more
general, uniform statements: it is shown that every EMSO
formula is realizable for T whenever T is unambiguous.
Intuitively, this rules out cycle patterns that a PCA is not
able to detect on its own. Indeed, the classes of pipelines,
ranked trees, and grids are all unambiguous so that we get
realizability as a direct corollary. To capture also rings, some
additional arguments are needed.

Note that, for (iii) and (iv) to apply, a class T of topologies
has to be fixed in advance. The construction of a PCA A



from a formula ϕ is uniform, but it crucially depends on T.
That is, though A can still be run on any other topology of
bounded degree, it is only guaranteed to be equivalent to ϕ
when it is applied to a topology from T. Now, when we fix
T, we have in mind that we run A only on topologies T ∈ T.
For that reason, A does not have to check membership of
T in T. However, it will have to collect some topological
information to identify bounded subtopologies among those
from T. In fact, the translation from logic to PCA builds
on a locality theorem for first-order logic due to Schwentick
and Barthelmann, which states that satisfaction of a formula
in a structure can be reduced to satisfaction of a normal-
form formula in bounded portions of the same structure [21].
This allows us to apply notions from the setting with fixed
topologies, notably a result by Genest, Kuske, and Muscholl
[13]. Hereby, the assumption that topologies are of bounded
degree is crucial.

For EMSO[Cproc,Cmsg] (without process order), we provide
a variation of the theme: Every formula ϕ can be translated
into a PCA that is equivalent to ϕ on all prime topologies. In
that case, the construction is independent of a concrete class
of topologies (once the bound on the degree has been fixed).
Note that pipelines, trees, and grids are all prime.1

Finally, every PCA A can be transformed into a formula
from EMSO[Cproc,Cmsg] that is equivalent to A on all topolo-
gies of bounded degree. Thus, overall, we indeed establish a
variety of Büchi-Elgot-Trakhtenbrot theorems for PCA.

Related Work: It seems that neither PCA nor expressiveness
of parameterized systems in general in terms of logic have
been considered in the literature.

In [18], Jacobs and Bloem study parameterized synthesis,
where a temporal-logic specification is transformed into a sys-
tem of processes that are arranged in a token ring of arbitrary
size. Building on [10], the idea is to reduce parameterized
synthesis to distributed synthesis over a bounded architecture.
Though we also use a reduction to a bounded case, our
framework differs from [18] in the model (asynchronous rather
than token communication), in the topologies, and in the logic.

In parameterized verification, one aims at showing that
a given system is correct independently of the number of
processes or the communication topology [5], [15], [1], [4],
[8]. Our approach is different, since we generate a system
model from a high-level specification.

There have been a variety of automata constructions that
exploit normal forms of first-order logic [23], [21], [11].
We actually borrow a technique from [11], but the overall
framework is quite different.

Finally, our contribution intersects the area of distributed
algorithms. Indeed, the way a PCA evaluates a (sub)topology
is similar to constructing a map of an anonymous graph [7].
In particular, our notion of unambiguous classes of topologies
is in the spirit of universal sequences. There are also methods
to evaluate graphs versus logical specifications [16]. Though

1“Prime” is a property of single topologies, while “unambiguous” refers to
sets of topologies.

all those techniques do not seem to be directly applicable, it
will be worthwhile to explore possible connections further.

Outline: Sections II–IV settle basic notions such as topolo-
gies, MSCs, PCA, and MSO logic. In Section V, we argue
that we will have to restrict both topologies and logic. Sec-
tions VI and VII present the above-mentioned Büchi-Elgot-
Trakhtenbrot theorems, respectively. We conclude in Sec-
tion VIII. Due to space constraints, proofs are only sketched
or omitted. All details can be found in the appendix.

II. PRELIMINARIES

A. Communication Topologies

A (communication) topology2 is made up of single entities
such as b a . Here, a process (represented by the circle)
is equipped with two interfaces, a and b. The interfaces allow
the process to communicate with its environment. When they
are connected to interfaces of other processes, we obtain a
topology. A simple pipeline topology is depicted below.

a b a b a b a b a b

Thus, a topology is essentially a graph, whose nodes are
processes that can communicate with adjacent processes via
their interfaces. The pipeline, for example, will allow a process
to execute actions !a and ?a in order to send a message to
(receive a message from, respectively) its right neighbor, if it
exists. Accordingly, !b and ?b refer to the left neighbor.

Let us define topologies formally. Throughout the paper,
unless stated otherwise, we fix a nonempty finite set N =
{a, b, c, . . .} of (interface) names. When we talk about a
concrete process, we may also say interface instead of name.

Definition 1. A topology over N is a pair T = (P, )
where
• P is the nonempty finite set of processes, and
• ⊆ P ×N ×N × P is the edge relation.

We write p a b q for (p, a, b, q) ∈ , which signifies that
the a-interface of p points to q, and the b-interface of q points
to p. We require that, whenever p a b q, the following hold:
(a) p 6= q,
(b) q b a p, and
(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′ q′, we

have a = a′ iff q = q′.

By (a), a topology does not contain self-loops. Condition
(b) says that two adjacent processes are mutually connected
(in other words, a topology is “undirected”). By (c), a name
points to at most one process, and two distinct names point to
distinct processes.

We usually consider topologies up to isomorphism. The set
of all topologies over N is denoted by TN .

2What we call topology is sometimes termed architecture. It seems that,
however, in a parameterized setting, the term topology is more custom.
Actually, our definition does not quite correspond to architectures from the
literature, since processes are not connected by channels but interfaces. The
latter are more appropriate in our setting, as they support the view that a
process is specified independently of a concrete topology.
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Fig. 4. Ring T 5
ring

Given a topology T = (P, ) ∈ TN , a PCA will run
identical subautomata on processes of the same type. We define
typeT : P → 2N by typeT (p) := {a ∈ N | there are b ∈ N
and q ∈ P such that p a b q}. Thus, typeT (p) contains those
interfaces of p that are connected to some other process.
Remark 1. One can also define types independently of N , in
terms of an extra finite set Types , and include a mapping type :
P → Types in the topology. In our setting, this can be encoded
by choosing N × Types as new set of names. In a topology,
an edge p a b q is then replaced by an edge with names
(a, type(p)) and (b, type(q)). All definitions can be adapted
easily and all results hold verbatim in this alternative setting.

Example 1. Let us identify some typical topology classes.
We give an informal description. The precise definitions are
as expected and can be found in Appendix IX.

Pipelines: A pipeline is a topology over {a, b}, as already
indicated above. Recall that interface a points to the right
neighbor of a process (if it exists), while b is connected to the
left neighbor. Accordingly, the leftmost process has type {a},
the rightmost process has type {b}, and all inner processes
have type {a, b}. The pipeline of length n ≥ 2 is denoted by
T nlin. Figure 1 depicts T 4

lin. We let Tlin = {T nlin | n ≥ 2} ⊆
T{a,b} denote the set of all pipelines.

Trees: We suppose that trees are binary, but we could con-
sider arbitrary ranked alphabets. An example tree is depicted
in Figure 2. Hence, a tree is a topology over {a, b, c, d} where
interface a points to the left son, and c to the right son of a
process, while b and d are their respective “dual” interfaces.
We suppose that a tree has at least two processes. The type of
a leaf is either {b} or {d}. The type of the root is either {a},
{c}, or, as is the case in Figure 2, {a, c}. The set of all tree
topologies is denoted by Ttree ⊆ T{a,b,c,d}. Note that pipelines
can be seen as a special case of trees.

Grids: A grid is a topology over {a, b, c, d} where processes
are arranged in a matrix. It is uniquely given by its number
m ≥ 1 of rows and its number n ≥ 1 of columns. Again,
there should be at least two processes so that we suppose
max{m,n} ≥ 2. A process that is not located on the border
has a right and a left neighbor (following a and b, respectively),
but also adjacent nodes below and above (following c and d).
Let T m,ngrid denote the grid with m rows and n columns. An
example is illustrated in Figure 3. By Tgrid = {T m,ngrid | m,n ≥
1 with max{m,n} ≥ 2} ⊆ T{a,b,c,d}, we denote the set of all
grids. Again, a pipeline is a special case of a grid.

Rings: A ring can be seen as a pipeline where the endpoints
are glued together. Thus, it is a topology over {a, b} in which
every process has type {a, b}. The ring with n ≥ 3 processes
is denoted by T nring. Figure 4 illustrates T 5

ring. We denote the
set of all rings by Tring = {T nring | n ≥ 3} ⊆ T{a,b}. �

Remark 2. For many concrete topology classes of bounded de-
gree such as pipelines, grids, or rings, the names are canonical
so that fixing them in advance is not a restriction. Moreover,
in most cases considered in the literature, a few (sometimes
even one) process types will do. In particular, it is a common
assumption that processes in a ring are indistinguishable [5],
[10], [18]. However, one could also assume a distinguished
leader process (and add another interface name just for the
purpose of identifying the leader; cf. also Remark 1).

B. Message Sequence Charts

The semantics of both an automaton and a logic formula will
be defined as a set of messages sequence charts (MSCs). Each
MSC depicts a single execution of a system. It is formalized as
a labeled directed acyclic graph whose nodes, the events, are
associated with processes from a given communication topol-
ogy. Events are linked by process edges Cproc and message
edges Cmsg. The process edges connect consecutive events of
one process, and message edges connect send events with their
corresponding receives according to a FIFO policy.

Definition 2. An MSC over T = (P, ) ∈ TN is a triple
M = (E,C, `) where
• E is the nonempty finite set of events,
• C ⊆ E × E is the acyclic edge relation, which is

partitioned into Cproc and Cmsg, and
• ` : E → P determines the location of an event in the

topology; for p ∈ P , we let Ep := {e ∈ E | `(e) = p}.
We require that the following hold:
• Cproc is a union

⋃
p∈P Cp where each Cp ⊆ Ep ×Ep is

the direct-successor relation of some total order on Ep,
• there are a partition E = E! ] E? and a bijection µ :
E! → E? such that Cmsg = {(e, µ(e)) | e ∈ E!},

• for all (e, f) ∈ Cmsg, there are a, b ∈ N such that
`(e) a b `(f) (communication is restricted to adjacent
processes), and

• for all (e, f), (e′, f ′) ∈ Cmsg such that `(e) = `(e′) and
`(f) = `(f ′), we have eC∗proc e

′ iff f C∗proc f
′ (FIFO).

We do not distinguish isomorphic MSCs over T .

3
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Fig. 5. MSC M8
lin over topology T 8

lin

Given an MSC M = (E,C, `), we define a mapping actM :
E → { !a , ?a | a ∈ N} that associates with an event the
action that it executes: for (e, f) ∈ Cmsg and a, b ∈ N such
that `(e) a b `(f), we let actM (e) = !a and actM (f) = ?b.

Example 2. Figure 5 illustrates an MSC, call it M8
lin, over

topology T 8
lin ∈ Tlin. The behavior of each process is repre-

sented by a top-down process line. Arrows between process
lines determine the relation Cmsg, connecting send events with
their receive events. For illustration, some events are labeled
with the actions that they execute. We may consider Mn

lin as
the execution of a P2P protocol: a request from the leftmost
process is forwarded by n− 2 inner processes of type {a, b},
until it reaches the rightmost process. An acknowledgement
is then relayed back to the first process along the same way
backwards. Figure 8 depicts an example MSC over T 2,5

grid . �

Our main result will deal with systems that have (exis-
tentially) B-bounded channels, for some B ≥ 1 [13], [14].
Intuitively, an MSC is B-bounded if it can be scheduled in
such a way that, along the execution, there are never more than
B messages in each channel. Formally, we define boundedness
via linearizations. A linearization of an MSC M = (E,C, `)
over T = (P, ) is any total order � ⊆ E × E satisfying
C∗ ⊆ �. Then, � is called B-bounded if, for all f ∈ E,
p, q ∈ P , and a, b ∈ N such that p a b q, we have
|{e ∈ E | e � f , `(e) = p, and actM (e) = !a}| − |{e ∈ E |
e � f , `(e) = q, and actM (e) = ?b}| ≤ B. In other words, in
any prefix of �, there are no more than B pending messages,
in every “channel” (p, q). Now, we say that MSC M is B-
bounded if it has a B-bounded linearization. For example, for
all n ≥ 2, the MSC Mn

lin (cf. Figure 5) is 1-bounded, because
its (only) linearization is 1-bounded.

III. PARAMETERIZED COMMUNICATING AUTOMATA

Next, we introduce PCA. Their definition does not depend
on a topology, but only on N . The language of a PCA, a set
of MSCs, is then parameterized by a topology.

Definition 3. A parameterized communicating automaton
(PCA) over N is a tuple A = (S,Msg ,∆, I, F ) where
• S is the finite set of states,
• Msg is the finite set of messages,
• I : (2N \ {∅}) → 2S assigns to each nonempty process

type its initial states,

{a}
!reqa ?acka

{a, b}
?reqb !reqa ?acka !ackb

{b}
?reqb !ackb

Fig. 6. PCA A over {a, b}

• F is the acceptance condition: a finite boolean combina-
tion of statements 〈#(s) ≥ k〉 with s ∈ S and k ∈ N
(to be read as “s occurs at least k times as the terminal
state of a process”), and

• ∆ ⊆ S × ΣA × S is the set of transitions.
Here, ΣA := { !ma , ?ma | a ∈ N and m ∈ Msg} con-
tains send actions !ma and receive actions ?ma. A transition
(s, η, s′) ∈ ∆ is also written s

η
=⇒ s′.

The class of PCA overN is denoted by PCAN . A PCA over
N can be run on any topology T = (P, ) ∈ TN . Suppose
p a b q for processes p, q ∈ P and names a, b ∈ N . When
p executes a transition (s, !ma, s

′) ∈ ∆, it changes its local
state from s to s′ and writes m into the FIFO channel (p, q).
The message m can then be received by process q executing a
transition with action ?mb. However, messages are abstracted
away in the observable MSC behavior (they are in the spirit
of stack symbols in pushdown automata).

Formally, we define the semantics of a PCA directly on
MSCs. This is equivalent to an operational semantics in
terms of an infinite transition system, but closer to the log-
ical approach where formulas are evaluated over MSCs (see
Section IV). Let T = (P, ) ∈ TN be a topology and
M = (E,C, `) be an MSC over T . A run of A on M will
be a mapping ρ : E → S. Intuitively, ρ(e) is the state that
process `(e) reaches after executing e ∈ E. To define when ρ
is a run, we will need some more notation.

Set PM := {p ∈ P | Ep 6= ∅}, which is the set of active
processes of M . A (global) initial state of A for M is a tuple
ι = (ιp)p∈PM where ιp ∈ I(typeT (p)) for all p ∈ PM . Given
ι and ρ : E → S (a possible MSC run), we define another
mapping ρ−ι : E → S, which returns the source state of a
transition. For (f, e) ∈ Cproc, we let ρ−ι (e) = ρ(f); for a
Cproc-minimal event e ∈ E, we let ρ−ι (e) = ι`(e).

Now, a mapping ρ : E → S is called a run of A on M if
there is an initial state ι = (ιp)p∈PM for M such that, for all
(e, f) ∈ Cmsg, there are a, b ∈ N and m ∈ Msg satisfying
`(e) a b `(f), ρ−ι (e)

!ma==⇒ ρ(e), and ρ−ι (f)
?mb===⇒ ρ(f).

To determine if ρ is accepting, we define a multiset hρ :
S → N over S that counts how often each state occurs as
the terminal state of an active process. For s ∈ S, we let
hρ(s) = |{e ∈ E | e is Cproc-maximal and ρ(e) = s}|. We
say that ρ is accepting if hρ satisfies F in the expected manner;
in particular, hρ satisfies 〈#(s) ≥ k〉 if hρ(s) ≥ k. The MSC
M is accepted by A if it admits an accepting run of A. For a
topology T , the set of MSCs over T that are accepted by A is
denoted by LT (A). Finally, we let LBT (A) be the restriction
of LT (A) to B-bounded MSCs.

4



Example 3. Consider the PCA A over {a, b} from Fig-
ure 6. The acceptance condition F is simply the conjunction
of formulas ¬〈#(s) ≥ 1〉 with s ranging over the states
without double circle. Recall that the messages req and ack
do not occur in the accepted MSCs. In this example, we
could actually do with just one message (|Msg | = 1). In
general, however, message contents increase the expressive
power of PCA. Note that MSC M8

lin is the only MSC that
is accepted by A over T 8

lin (cf. Example 2). We actually have
LT nlin (A) = L1

T nlin
(A) = {Mn

lin} for all n ≥ 2. �

Remark 3. The multiset hρ defined to evaluate the acceptance
condition of a PCA does not include any states of non-active
(i.e., idle) processes. So, a PCA cannot express “the topology
has at least 5 processes”, but only “at least 5 processes are
active”. In principle, one could include idle processes as well.
However, this has to be reflected in the logic (cf. Theorem 9).
One possibility is to consider processes as single events. But,
apart from involving a more technical presentation, this does
not seem to be natural. Alternatively, one could consider a
two-sorted logic to reason about both events and processes. In
that case, one very quickly exceeds the capability of PCA to
evaluate a topology, as their runs rely on the messages that
occur in an MSC. A two-valued logic also goes against the
intuition that PCA accept behaviors rather than topologies.

The section concludes with some closure properties of PCA.

Theorem 1. PCA are closed under union and intersection:
For all A1,A2 ∈ PCAN , there are PCA A and B over N
such that, for all topologies T ∈ TN , we have LT (A) =
LT (A1) ∪ LT (A2) and LT (B) = LT (A1) ∩ LT (A2).

The construction of A and B is easy. The only (minor)
subtle point is the acceptance condition (see Appendix X).

Theorem 2. PCA are not closed under complementation:
There is A ∈ PCA{a,b} such that, for all B ∈ PCA{a,b},
we have LT 2

lin
(B) 6= {M |M MSC over T 2

lin} \ LT 2
lin

(A).

Theorem 2 is an immediate consequence of the fact
that fixed-topology CA over two processes are not comple-
mentable [3]. Finally, non-deterministic PCA are strictly more
expressive than deterministic ones (we do not give the formal
definitions). This already holds over 1-bounded MSCs, which
follows from the case of fixed-topology CA and requires a
topology with five processes and five interface names [14].

IV. MSO LOGIC AND LOCALITY OF FO LOGIC

While PCA serve as a model of an implementation of a
communicating system, we use monadic second-order (MSO)
logic to specify properties of MSCs.

A. Monadic Second-Order Logic
The set MSON of MSO formulas over N is given by:

ϕ ::=

act(x) = !a | act(x) = ?a | a ∈ type(x) |
x Cproc y | x C∗proc y | x Cmsg y | x C∗ y | x ∼ y |
x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where a ∈ N , x and y are first-order variables (interpreted
as events of an MSC), and X is a second-order variable
(interpreted as a set of events), all taken from infinite
supplies of variables. We use standard abbreviations such as
ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ), ϕ→ ψ ≡ ¬ϕ∨ψ, and ∀xϕ ≡ ¬∃x¬ϕ.

The set FON of first-order formulas is the fragment of
MSON without second-order quantification ∃X . Moreover,
EMSON (existential MSO) is the set of formulas of the form
∃X1 . . . ∃Xnϕ with ϕ ∈ FON .

A formula is evaluated wrt. an MSC M = (E,C, `) over
some topology T = (P, ) ∈ TN . Free variables x and X
are interpreted by a mapping I as an event I(x) ∈ E and a
set of events I(X) ⊆ E, respectively. For η of the form !a or
?a, the atomic formula act(x) = η is true if actM (I(x)) = η.
Formula a ∈ type(x) is true if a ∈ typeT (`(I(x))), i.e., a is
contained in the type of the process where I(x) is located.
Formula, x C∗proc y is satisfied if I(x) C∗proc I(y). Moreover,
x ∼ y holds true if `(I(x)) = `(I(y)), i.e., I(x) and I(y) are
located on the same process. Other formulas are interpreted
as expected. Though, even in FON , some binary predicates
are mutually expressible in terms of others (e.g., Cproc and
∼ in terms of C∗proc, and C∗proc in terms of C∗ and ∼), we
include all of them explicitly in the logic. They will be used
in fragments in which they would no longer be expressible.

Let σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} be a nonempty set of
relation symbols. The logics FON [σ] and EMSON [σ]
restrict FON and EMSON , respectively: instead of
{Cproc,C∗proc,Cmsg,C∗,∼}, we can only access the relation
symbols from σ. Our main (positive) result will concern the
logic EMSON [C∗proc,Cmsg] (recall that Cproc and ∼ can be
expressed in terms of C∗proc).

Let T ∈ TN be a topology, and let ϕ ∈ MSON be a
sentence, i.e., a formula without free variables. The set of
MSCs over T that satisfy ϕ is denoted by LT (ϕ). When ϕ
is not a sentence, then LT (ϕ) contains the pairs, of an MSC
and an interpretation of the free variables, that satisfy ϕ. Let
LBT (ϕ) be the restriction of LT (ϕ) to B-bounded MSCs.

Example 4. We will consider two FO{a,b}-sentences. First,
ϕ1 = ∀x(act(x) = ?b → ∃y(xC∗proc y ∧ act(y) = !b)) says
that every process that receives a message from its b-interface,
eventually sends a message through b. Note that Mn

lin ∈
LT nlin (ϕ1) for all n ≥ 2 (cf. Example 2). Next, let ϕ2 =
∃x∃y(b 6∈ type(x) ∧ a 6∈ type(y) ∧ x Cmsg y) . Interpreted
over pipelines, ϕ2 says that the leftmost process sends a
message to the rightmost process. We have Mn

lin ∈ LT nlin (ϕ2)
iff n = 2. �

B. Locality of FO Logic

Next, we state a locality theorem due to Schwentick and
Barthelmann [21].3 It formalizes the intuition that first-order
logic can only reason about local neighborhoods, which in-
clude elements whose distance from a given center is bounded
by a parameter that depends on the formula.

3Gaifman’s normal form appears to be more difficult to deal with in our
context.
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Fig. 7. Distance r = 3 in an MSC depending on the signature

Fix a nonempty set σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} of
relation symbols. Let M = (E,C, `) be an MSC over some
topology T = (P, ) ∈ TN . The distance distσM (e, f) be-
tween events e, f ∈ E is the minimal length of a path between
e and f in the graph of M with edges given by σ, in either
direction (or∞ if such a path does not exist). For example, let
σ = {C∗proc,Cmsg}. Then, distσM (e, f) refers to the distance in
the (undirected) graph (E,C∗proc∪(C∗proc)

−1∪Cmsg∪C−1msg) so
that distσM (e, f) ≤ 1 for all e, f ∈ E such that `(e) = `(f),
and distσM (e, f) = distσM (f, e) = 1 for all (e, f) ∈ Cmsg.

Example 5. Let M be the MSC over T 8
lin from Figure 7 and

let e be the distinguished event given by the white circle. The
set of events f such that distσM (e, f) ≤ 3 depends on σ, and
is illustrated for {C∗}, {C∗proc,Cmsg} (inducing the same set
as {Cmsg,∼}), and {Cproc,Cmsg}. �

Let r ≥ 1. A formula χ ∈ FON [σ] is called (r, σ)-
local around a first-order variable y if (i) y is not quan-
tified in χ and (ii) χ is obtained from some FON [σ]-
formula by replacing each subformula of the form ∃zψ with
∃z(distσ(y, z) < r ∧ ψ), and each subformula of the form
∀zψ with ∀z(distσ(y, z) < r → ψ). Here, distσ(y, z) < r
denotes the obvious FON [σ]-formula. We use strict inequality
for technical reasons (cf. [11]). Adapted to our setting, [21]
yields the following:

Theorem 3 (Schwentick & Barthelmann, [21]). Let ϕ ∈
FON [σ]. There are r ≥ 1 and ϕ′ = ∃x1 . . . ∃xn∀yχ ∈
FON [σ] such that χ is (r, σ)-local around y and, for all
topologies T ∈ TN , we have LT (ϕ) = LT (ϕ′).

V. NEGATIVE RESULTS

Recall that we are interested in realizability of formulas
ϕ for a class T of topologies: Is there a PCA A such that
LT (A) = LT (ϕ) for all T ∈ T. In this section, we show that
such a PCA does not always exist.

A. Restrictions on Topologies Are Necessary

In fact, there is a sentence from FO{a,b}[Cproc,Cmsg] that is
not realizable for the class of all topologies over {a, b}. This

even holds for the class T∗ring ⊆ T{a,b} of ring forests and when
we restrict to 1-bounded MSCs. A ring forest is a disjoint
union of an arbitrary number of rings (possibly containing
several copies of one and the same ring).

Theorem 4. There exists a sentence ϕ ∈ FO{a,b}[Cproc,Cmsg]
such that, for all PCA A ∈ PCA{a,b}, there is T ∈ T∗ring with
L1
T (A) 6= L1

T (ϕ).

The proof of Theorem 4 reveals that PCA have limited
ability to “detect” cycles in an MSC and in a topology (cf.
Appendix XI). In the following sections, we will, therefore,
restrict the “cyclic behavior” of a class of topologies (of a
single topology, respectively).

In Section VI, the construction of a PCA indeed requires
a class T of topologies to be given in advance. We show
that certain formulas are realizable for all classes T that
are unambiguous: one can tell by looking at a sequence
w ∈ (N × N )∗ of edge labels whether w produces a cycle
or not, in any topology of T. This notion exludes the set of
ring forests exploited in Theorem 4, but it captures the classes
of pipelines, trees, and grids, as well as singleton rings and
the class of “almost all” rings (which will finally allow us to
cover the class of all rings with one single PCA).

In Section VII, the construction of a PCA from a given
formula does not depend on a class of topologies, but only
on N . It makes sure that the synthesized PCA agrees with
the formula on all prime topologies. This forbids cycles with
a periodic labeling (as it occurs in rings), but includes all
pipelines, trees, and grids.

B. Restrictions on Logic Are Necessary

Next, we argue that we have to restrict the logic, too. In
fact, when we take FON (i.e., first-order logic with all binary
predicates), then the negative result even holds for the class
of trees (actually, for simple bus topologies). This has to be
contrasted with the expressive equivalence of MSO and CA
over fixed topologies when imposing any existential bound on
the channels [13].

Theorem 5. There exists a sentence ϕ ∈ FO{a,b,c,d} such
that, for all PCA A ∈ PCA{a,b,c,d}, there is T ∈ Ttree with
L1
T (A) 6= L1

T (ϕ).

The proof (cf. Appendix XII) uses a technique from [23],
which was employed to show that FO (with reflexive transitive
closure relations) and a local variant of EMSO are incompa-
rable over pictures.

We briefly discuss Theorem 5. Let ϕ ∈ FON [σ], for some
σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼}, and suppose r is the radius
associated with ϕ according to Theorem 3. Satisfaction of ϕ
in an MSC M essentially depends on the σ-neighborhoods
of the latter (informally, the σ-neighborhood of an event e is
the substructure of M , including the actions, induced by all
elements f such that distσM (e, f) ≤ r). When σ contains C∗,
there is no a priori bound on the size of the σ-neighborhood
of e: it may feature events f that are far from e in terms of
the number of messages that separate them. In other words,
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distσM (e, f) can be small for σ = {C∗}, but large for σ =
{C∗proc,Cmsg}. This is exemplified in Figure 7. On the other
hand, the exchange of information in a PCA relies on messages
and is restricted to processes that are adjacent in the topology.
This intuitively explains the mismatch between automata and
logic that Theorem 5 reveals.

The size of a {C∗proc,Cmsg}-neighborhood is a priori un-
bounded as well. However, unlike a {C∗}-neighborhood, it
has “bounded width”, since it spans over a bounded area of
the underlying topology: Figure 7 illustrates that, provided
C∗ 6∈ σ, a topology neighborhood of radius dr/2e is indeed
sufficient to cover all events f with distσM (e, f) ≤ r. As our
topologies are structures of bounded degree, there are only a
bounded number of such topology neighborhoods. This allows
us to take advantage of results on CA over fixed topologies.
We pursue this idea in Section VI to show realizability of
EMSON [C∗proc,Cmsg]- and EMSON [Cproc,Cmsg,∼]-formulas
for unambiguous classes of topologies (as discussed in the
previous subsection).

Any {Cproc,Cmsg}-neighborhood in an MSC also spans
over a bounded topology (cf. Figure 7). But here, we can go
one step further: up to isomorphism, there are only a bounded
number of {Cproc,Cmsg}-neighborhoods. Using this, we will
build, in Section VII, a PCA that evaluates a formula by
“computing” such neighborhoods in an MSC. The construction
is independent of a class of topologies. However, the resulting
PCA is only guaranteed to be equivalent to the given formula
when it is applied to prime topologies.

VI. EMSO VS. PCA OVER UNAMBIGUOUS TOPOLOGY
CLASSES

A. Main Result and Consequences

Following the discussion in the previous section, we will
consider logics that discard C∗. Particular attention is paid to
EMSON [C∗proc,Cmsg], containing the process-order relation.

Recall that the {C∗proc,Cmsg}-neighborhood of an event is
covered by a bounded area in the underlying topology. We
exploit this to translate a formula into a PCA by simulating
several fixed-topology CA in parallel. In fact, in our construc-
tion of a PCA, a process will have to determine its (bounded)
topology neighborhood, so that it can launch a corresponding
fixed-topology CA. To some extent, it can verify whether it is
the source of a w-labeled path, for a given w ∈ (N × N )∗.
In general, however, there is no means to discover whether w
forms a cycle (cf. Theorem 4). We will, therefore, consider
topology classes T in which some words are unambiguous,
i.e., they always form a cycle, or never form a cycle in T. For
example, (a, b)(c, d)(b, a)(d, c) is unambiguous for the class
of grids: it gives rise to a cycle whenever it is applicable. As
we deal with bounded topology neighborhoods, we have to
consider only words up to a certain length.

Let w = (a1, b1) . . . (an, bn) ∈ (N × N )∗. The length n
of w is denoted by |w|. For a topology (P, ) ∈ TN and
processes p, q ∈ P , we write p w q if there is a w-labeled
path from p to q, i.e., there are p0, . . . , pn ∈ P such that
p = p0

a1 b1 p1
a2 b2 . . . an bn pn = q.

Definition 4. Let k ∈ N and let T ⊆ TN be a class of topolo-
gies. We say that T is k-unambiguous if, for all w ∈ (N×N )∗

with |w| ≤ k, all topologies (P, ), (P ′, ′) ∈ T, and all
processes p, q ∈ P and p′, q′ ∈ P ′ such that p w q and
p′ w ′ q′, we have p = q iff p′ = q′.

In other words, if a topology from T admits a cycle of
length ≤k with label w, then following w (if possible) will
always form a cycle, in any topology from T. Note that
“unambiguous” is a property of a class of topologies. It
captures the classes of pipelines, trees, and grids. Moreover,
it will allow us to apply our results to ring topologies.

Lemma 1. The classes Tlin, Ttree, Tgrid, and {T nring | n ≥
max{3, k + 1}} are all k-unambiguous, for every k ∈ N.
Moreover, {T } is k-unambiguous for all T ∈ Tring and k ∈ N.

For ϕ ∈ EMSON [C∗proc,Cmsg], let rϕ ≥ 1 denote the
radius associated with the first-order kernel of ϕ according
to Theorem 3. Note that an exponential upper bound for rϕ
was given in [19]. We now present our main result:

Theorem 6. Let ϕ ∈ EMSON [C∗proc,Cmsg] be a sentence,
B ≥ 1, and T ⊆ TN be an (rϕ + 2)-unambiguous set of
topologies. There is a PCA A ∈ PCAN such that, for all
T ∈ T, we have LBT (A) = LBT (ϕ).

Before we prove Theorem 6, let us discuss it and state some
consequences. First, note that we have to commit to a class
T of topologies before constructing the PCA. This is also
what usually happens in practice: one has a “concrete” class
of topologies in mind when writing a formula. For example,
a specifier may want to synthesize a PCA that is equivalent
to the given formula on all grids.4 Though, a priori, different
topology classes give rise to different PCA, we give a uniform
construction and proof. By Lemma 1, we can then instantiate
T in Theorem 6 with various classes so that we obtain the
following corollary (for simplicity, we consider pipelines and
rings as topologies over {a, b, c, d}):

Corollary 1. Let ϕ ∈ EMSO{a,b,c,d}[C∗proc,Cmsg] be a sen-
tence, B ≥ 1, and T be any of the following:
• the set of pipeline topologies,
• the set of grid topologies,
• the set of tree topologies,
• the set of ring topologies with at least rϕ + 3 nodes, or
• the singleton set {T } where T is any ring topology.

Then, there is a PCA A ∈ PCA{a,b,c,d} such that, for all
T ∈ T, we have LBT (A) = LBT (ϕ).

The construction where one single ring topology is given is
not an immediate consequence of a corresponding result from
the setting with fixed topologies [13]. The reason is that CA
over fixed topologies have an initial state per process, while
PCA have initial states per process type, which is a priori
weaker. Now, given a formula ϕ, Corollary 1 gives us a way

4The synthesized PCA can still be run on any other topology (over the
same set of names). However, it is sufficient to know that it is equivalent to
the formula when we run it on a grid (respectively, topology from T).
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of “covering” all rings in terms of a finite collection of PCA:
For those rings with at most rϕ+2 processes, we can construct
tailor-made PCA, i.e., one PCA for each ring. All other rings
can be covered by one single PCA. Using this observation, we
can even do better than that and show that one single PCA
is enough. The idea is to “approximate” the size of the given
ring in terms of the number of active processes and to launch
a corresponding PCA according to Corollary 1. As we already
know that we will run the PCA on a ring, we in fact only have
to “determine” its size (see Appendix XV).

Theorem 7. Let ϕ ∈ EMSO{a,b}[C∗proc,Cmsg] be a sentence
and B ≥ 1. There is a PCA A ∈ PCA{a,b} such that, for all
T ∈ Tring, we have LBT (A) = LBT (ϕ).

Let us come back to the generic result of Theorem 6.
Its proof uses the logical characterization of fixed-topology
CA [13]. But it works similarly for EMSON [Cproc,Cmsg,∼]
when we take [3] instead of [13]. In the setting of fixed topolo-
gies, ∼ reduces to a local comparison of event labels so that
[3] is indeed applicable. The logic EMSON [Cproc,Cmsg,∼] is
a priori weaker than EMSON [C∗proc,Cmsg], but allows us to
drop the channel restriction.

Theorem 8. Let ϕ ∈ EMSON [Cproc,Cmsg,∼] be a sentence
and T ⊆ TN be an (rϕ + 2)-unambiguous set of topologies.
There is a PCA A ∈ PCAN such that, for all T ∈ T, we have
LT (A) = LT (ϕ).

From Theorem 8 and Lemma 1, we can derive statements
analogous to Corollary 1 and Theorem 7 (which we omit).

We do not know whether Theorem 8 holds for
EMSON [C∗proc,Cmsg] (or, equivalently, whether Theorem 6
holds without channel bound). The answer is affirmative if
EMSON [C∗proc,Cmsg] is equivalent to unbounded CA over
fixed topologies. But this is an open problem.

The translation of PCA to EMSON [Cproc,Cmsg] is not
restricted to topologies of a particular form. The proof of the
following theorem is by a standard construction.

Theorem 9. Let A ∈ PCAN be a PCA. There is a sentence
ϕ ∈ EMSON [Cproc,Cmsg] such that, for all topologies T ∈
TN , we have LT (ϕ) = LT (A).

B. Proof Sketch for Main Result (Theorem 6)
The rest of this section is devoted to the proof of Theorem 6

(which works for Theorem 8 with only minor changes).
Set σ∗ = {C∗proc,Cmsg} and let ϕ ∈ EMSON [σ∗] be a sen-

tence. According to Theorem 3, there are a radius r = rϕ ≥ 1
and ϕ′ = ∃X1 . . . ∃Xm∃x1 . . . ∃xn∀yχ ∈ EMSON [σ∗] such
that χ ∈ FON [σ∗] is (r,σ∗)-local around y and, for all
T ∈ TN , we have LT (ϕ) = LT (ϕ′). The free variables
of ∀yχ can be considered as unary predicates and are dealt
with by projection from an extended alphabet. By means of
the acceptance condition of a PCA, one can make sure that
variables xi are indeed interpreted as exactly one event. So, it
essentially remains to translate the formula ∀yχ into a PCA.

There is, however, another subtlety. Satisfaction of χ in
an MSC depends on the neighborhood of y of radius r but

also on the truth values of propositions involving only the
free variables of ∀yχ. Following [11, page 806], the PCA
will guess and verify these truth values. By means of the
acceptance condition, we can make sure that the guess is
consistent throughout a run.

For simplicity, we henceforth suppose that y is the only free
variable of χ (and write χ(y)). Thus, for the rest of the proof,
we fix r,B ≥ 1, an (r + 2)-unambiguous set T ⊆ TN of
topologies, and a sentence ∀yχ(y) ∈ FON [σ∗] such that χ(y)
is (r,σ∗)-local around y. We will build a PCA A ∈ PCAN
such that, for all T ∈ T, we have LBT (A) = LBT (∀yχ(y)).
We sketch the construction and try to give some intuition.
The formal definition of A is technical and requires a lot of
additional notation. All details can be found in Appendix XIV.

We exploit locality of χ(y): to know whether M, e |= χ(y),
i.e., MSC M satisfies χ(y) when y is interpreted as e, it is
sufficient to look at the neighborhood of e with radius r (as
y is the only free variable, r − 1 actually would be enough).

Example 6. Consider the MSC M over T = T 2,5
grid depicted

in Figure 8. Take any event e that is located on process p.
All events f such that distσ

∗

M (e, f) ≤ r = 3 lie on a process
in the gray-shaded topology neighborhood of p with radius
R = dr/2e = 2, which has p as a distinguished center. We call
this neighborhood a sphere and denote it by R-Sph(T , p). One
major task of A is to identify spheres in the topology it is run
on. But it has to rely on the messages that are predetermined
by M . Therefore, A can actually only detect a substructure of
R-Sph(T , p). Figure 9 depicts its restriction R-Sph(T , p) �M
(gray-shaded) to those edges that are “covered” by a message
of M and to those nodes that one can reach from p with at most
R such edges. However, every process preserves its complete
type information. Observe that process (2, 5) is not part of
R-Sph(T , p) �M anymore. Moreover, the edge between (1, 3)
and (1, 4) is removed, since it is not covered by a message. Let
R-Sph(M,p) be the restriction of M to R-Sph(T , p) �M (cf.
again Figure 9). We call R-Sph(M,p) a partial MSC, since it
has some unmatched events. In fact, satisfaction M, e |= χ(y)
only depends on R-Sph(M,p), for all events e on p. �

The example illustrates that, essentially, we have to cope
with spheres and partial MSCs, i.e., structures of bounded
“width”. For a fixed sphere, every MSON -formula can be
translated to a (fixed-topology) CA that accepts exactly the
partial MSCs that are a model of the fomula [13]. For [13]
to apply, we need to restrict to B-bounded MSCs (unless
we prove Theorem 8, which is based on [3]). Thus, given
a sphere θ, we can construct a CA Bθ that recognizes the
partial MSCs over θ that satisfy χ(y) for all events e located
on the sphere center. Up to isomorphism, there are only finitely
many spheres θ of radius R and, thus, finitely many CA
Bθ. To obtain the PCA A running on MSCs over arbitrarily
large topologies, we will glue these CA together. Note that, to
exploit unambiguousness, it is crucial that we restrict to those
spheres that arise from topologies in T.

We proceed as follows. Every process p guesses a sphere
θ, supposing that its topology neighborhood looks like θ, and
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runs a copy of Bθ to make sure that the partial MSC in its
neighborhood is accepted by Bθ. Whenever p communicates
with neighboring processes, the guess is forwarded in terms of
messages. Processes receiving the guess also have to simulate
Bθ. Since neighboring processes have to verify their own
guess as well, a process will actually have to run several CA
simultaneously. The main difficulty, however, is to verify that a
guess is correct so that the right CA is applied. The procedure
of guessing and forwarding spheres is not able to check by
itself whether a cycle in a sphere is correctly simulated in
an MSC, and vice versa. It is only correct by the fact that
the underlying set T of topologies is (r + 2)-unambiguous.
Indeed, 2R + 1 = 2dr/2e+ 1 ≤ r + 2 is the maximal length
of a cycle through a sphere center that is needed to cover a
given edge in the sphere.

Example 7. We resume Example 6 to illustrate the functioning
of A. So, assume T = T 2,5

grid ∈ T, r = 3, and R = dr/2e = 2.
In an accepting run of A on the MSC M from Figure 8,
process p = (2, 3) will guess the sphere θ = R-Sph(T , p) �M
illustrated in Figure 9. Accordingly, it will launch the fixed-
topology CA Bθ, which accepts the partial MSC R-Sph(M,p)
(cf. again Figure 9). Actually, Bθ consists of several local
automata Bθ[q], one per sphere process q (rather than process
type). Thus, p simulates the local automaton Bθ[(2′, 3′)]. In
doing so, it eventually sends θ to process (2, 2), together with
its current position (2′, 3′) in θ. Receiving the message through
interface a, (2, 2) can infer its own position (2′, 2′) in θ, and
so it learns that it has to simulate Bθ[(2′, 2′)]. Similarly, (2, 2)
has to receive a message over interface d that confirms that
(1, 2) has launched Bθ[(1′, 2′)], and so on. There are subtle
arguments and technical issues in A that guarantee that T
and θ simulate each other. We sketch only the direction ”T
simulates θ”. Let w = (b, a)(d, c)(a, b)(c, d). Our construction
makes sure that, starting from p, T exhibits a w-labeled path.
A priori, this does not imply that the path returns to p. But as θ
arises from the (r+2)-unambiguous class T, |w| = 4 ≤ r+2,
and w forms a cycle in θ, w forms a cycle in T as well. Recall
that every process has to run several CA simultaneously, which
we did not take into account in the example. �

Remark 4. The normal form stated in Theorem 3 can be
computed effectively (it builds on Gaifman’s effective nor-
mal form). Thus, Theorem 6 is constructive if the spheres
R-Sph(T , p) �M with T ∈ T are effectively representable

(which holds for all standard classes). It follows from the word
case that the PCA cannot be computed in elementary time.
Remark 5. We cannot exploit [17], [20], dealing with uni-
versally bounded CA, instead of [13], even if we restrict to
universally B-bounded MSCs M (all linearizations are B-
bounded): while R-Sph(M,p) is guaranteed to be (existen-
tially) B-bounded, it is not necessarily universally B-bounded.

VII. EMSO VS. PCA OVER PRIME TOPOLOGIES

Next, we present an orthogonal approach to realizability,
where the construction of a PCA is independent of a concrete
class of topologies. For this, we will restrict the logic further.

Recall that satisfaction of an FON [Cproc,Cmsg]-formula
essentially depends on the {Cproc,Cmsg}-neighborhoods that
occur in an MSC5 (Theorem 3). Up to isomorphism, there
are only finitely many such neighborhoods, for a fixed radius.
We slightly modify the construction from [3] (which we had
used as a black-box for Theorem 8) and define a PCA that,
when running on an MSC, outputs the neighborhood of each
event. However, this automaton can, a priori, not detect cycles
(cf. Theorem 4) and “needs some help” from the underlying
topology. It is only guaranteed to compute neighborhoods
correctly when it is run on prime topologies. “Prime” is in
the spirit of “unambiguous”, but on a lower level, since it
is tailored to detecting neighborhoods in MSCs rather than
in topologies. While “prime” discards all ring topologies and
ring forests, it includes all pipelines, trees, and grids. We give
more intuition in the proof sketch for Theorem 10 below.

Definition 5. A topology (P, ) ∈ TN is called prime if,
for all p ∈ P , w ∈ (N × N )∗, and n ≥ 1, we have that
p wn p implies p w p.

In other words, a prime topology satisfies the following
monotonicity property: If p w q with p 6= q, then starting
from p and “applying” w several times will never lead back to
p. Note that “prime” is a property of a single topology, while
“unambiguous” refers to a class of topologies.

Lemma 2. All topologies in Tlin, Ttree, and Tgrid are prime,
while none of the topologies in Tring is prime.

We build a PCA that is equivalent to a given formula ϕ on
all prime topologies. Unlike in Theorem 6, it does not depend
on a class of topologies, but only on ϕ and N .

5In a neighborhood, we only keep the process types, not the processes.
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Theorem 10. Let ϕ ∈ EMSON [Cproc,Cmsg] be a sentence.
There is a PCA A ∈ PCAN such that, for all prime topologies
T ∈ TN , we have LT (A) = LT (ϕ).

Proof: We sketch the idea, details can be found in
Appendix XVI. Thanks to Theorem 3, the problem reduces to
constructing a PCA from a formula ∀yχ ∈ FON [Cproc,Cmsg]
where χ is (r, {Cproc,Cmsg})-local around y, for some r ≥ 1
(cf. proof of Theorem 6). To translate ∀yχ into a PCA, we use
the sphere automaton, a PCA that “detects” neighborhoods of
radius r in an input MSC (including possible interpretations
of free variables). More precisely, it accepts any MSC, over
any given prime topology. Moreover, in any accepting run, the
state assigned to event e tells us whether χ holds, or not, when
y is interpreted as e. A sphere automaton is presented in [3] for
a fixed, known topology, but it is actually independent of that
topology. In the proof, it is only needed that MSCs are prime,
essentially in the same sense as for topologies. But MSCs over
prime topologies are indeed prime (cf. Appendix XVI) so that
we obtain the desired sphere automaton. As a last step, the
latter is restricted to states that signal that χ holds.

To compute neighborhoods, the PCA has to guarantee that
certain sequences w of “directions” form a cycle in an MSC.
While there is no direct way to enforce that w forms a cycle,
a PCA can make sure that, for all n ∈ N, an event admits
a wn-labeled path. As MSCs inherit the prime-property from
topologies, this implies that w indeed gives rise to a cycle.

Remark 6. Using Hanf’s normal form (which we did not do to
avoid additional notation), the PCA can be built in elementary
time [2]. This is a priori not guaranteed using Theorem 3.

VIII. CONCLUSION

In this paper, we developed a framework for communicating
systems with parameterized network topology. In particular,
we provided various characterizations of PCA in terms of
EMSO logic. Our constructions and proofs are uniform and
capture typical cases such as pipelines, trees, grids, and rings.

Theorem 7 reveals that the notion “unambiguous” is not
optimal: all EMSO{a,b}[C∗proc,Cmsg]-formulas are realizable
for the class of rings, which is not k-unambiguous for all
k ≥ 3. It seems difficult to characterize exactly those classes
for which all formulas from a given logic are realizable, but
it will be worthwhile to examine if classes with comparably
simple characterizations exist that generalize our results.

Our constructions crucially rely on the bounded-degree
property. An obvious question would be a framework including
topologies of unbounded degree such as star topologies or,
more generally, unranked trees. However, it is not clear how
a parameterized automaton should look like in that case. One
possibility is to employ registers so that, at any time, a process
can remember “some” of its unboundedly many neighbors.

Our framework may carry over to Zielonka’s asynchronous
automata [25] with binary actions. These automata have been
considered in [12] over tree architectures to get decidability of
the controller-synthesis problem. This also raises the question
about a parameterized formulation of the control problem.

It is important to study also parameterized verification:
Given a PCA A, is there a topology T such that LT (A) 6= ∅ ?
Since those questions are undecidable in general, one has to
impose restrictions, on PCA and/or on the topologies.

Acknowledgment: The author thanks Dietrich Kuske for stim-
ulating discussions, and Nicolas Baudru for the pointer to [7].
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APPENDIX

IX. FORMAL DEFINITION OF TOPOLOGY CLASSES

We give the formal definitions of pipelines, trees, grids, and
rings. Recall that we do not distinguish isomorphic topologies.
Given n ∈ N, we let in the following [n] := {1, . . . , n}.

For n ≥ 2, the pipeline T nlin is defined as the topology
({1, . . . , n}, ) over {a, b} where

= { (i, a, b, i+ 1) | i ∈ [n− 1] }
∪ { (i+ 1, b, a, i) | i ∈ [n− 1] } .

A tree topology is a topology (P, ) over {a, b, c, d}
where P is a prefix-closed subset of {0, 1}∗ such that |P | ≥ 2,
and

= { (u, a, b, u0) | u, u0 ∈ P }
∪ { (u0, b, a, u) | u, u0 ∈ P }
∪ { (u, c, d, u1) | u, u1 ∈ P }
∪ { (u1, d, c, u) | u, u1 ∈ P } .

For n ≥ 3, the ring T nring is defined as the topology
({1, . . . , n}, ) over {a, b} where

= { (i, a, b, (i+ 1) mod n) | i ∈ [n] }
∪ { ((i+ 1) mod n, b, a, i) | i ∈ [n] } .

For m,n ≥ 1 such that max{m,n} ≥ 2, we define T m,ngrid
as the topology ([m]× [n], ) over {a, b, c, d} where

= { ((i, j), a, b, (i, j + 1)) | i ∈ [m] and j ∈ [n− 1] }
∪ { ((i, j + 1), b, a, (i, j)) | i ∈ [m] and j ∈ [n− 1] }
∪ { ((i, j), c, d, (i+ 1, j)) | i ∈ [m− 1] and j ∈ [n] }
∪ { ((i+ 1, j), d, c, (i, j)) | i ∈ [m− 1] and j ∈ [n] } .

X. PROOF OF THEOREM 1

Theorem 1. PCA are closed under union and intersection:
For all A1,A2 ∈ PCAN , there are PCA A and B over N
such that, for all topologies T ∈ TN , we have LT (A) =
LT (A1) ∪ LT (A2) and LT (B) = LT (A1) ∩ LT (A2).

Proof: The proof is by a standard construction with one
subtlety, which is the acceptance condition. Suppose A1 =
(S1,Msg1,∆1, I1, F1) and A2 = (S2,Msg2,∆2, I2, F2). We
assume that S1 ∩ S2 = ∅.

For union, A = (S,Msg ,∆, I, F ) chooses and simulates
non-deterministically A1 or A2. The acceptance condition
makes sure that this choice is consistent throughout a run.
So, we let:
• S = S1 ∪ S2,
• Msg = Msg1 ∪Msg2,
• ∆ = ∆1 ∪∆2,
• I(t) = I1(t) ∪ I2(t) for all t ∈ 2N \ {∅}, and
• F = (F1 ∧

∧
s∈S2

¬〈#(s) ≥ 1〉)
∨ (F2 ∧

∧
s∈S1

¬〈#(s) ≥ 1〉) .

For intersection, we use a standard product construction and
define B = (S,Msg ,∆, I, F ) as follows:
• S = S1 × S2,

• Msg = Msg1 ×Msg2,
• I(t) = I1(t)× I2(t) for all t ∈ 2N \ {∅}.

Moreover, ∆ is the classical transition product: there is a
transition

(s1, s2)
!(m1,m2)a
======⇒ (s′1, s

′
2)

whenever (s1, !m1a, s
′
1) ∈ ∆1 and (s2, !m2a, s

′
2) ∈ ∆2.

Receive transitions are defined analogously. Note that the
acceptance condition F is a finite boolean combination of
statements 〈#((s1, s2)) ≥ k〉 with (s1, s2) ∈ S1 × S2. It is
given as F = [[F1]]1∧ [[F2]]2. Here, [[ . ]]1 replaces every atomic
formula 〈#(s1) ≥ k〉 by∨

m∈Mk(S2)

∧
s∈S2

〈#((s1, s2)) ≥ m(s2)〉

where Mk(S2) is the set of multisets over S2 of size k, i.e., the
set of mappings m : S2 → N such that

∑
s2∈S2

m(s2) = k.
The transformation [[ . ]]2 is defined analogously.

XI. PROOF OF THEOREM 4

Theorem 4. There exists a sentence ϕ ∈ FO{a,b}[Cproc,Cmsg]
such that, for all PCA A ∈ PCA{a,b}, there is T ∈ T∗ring with
L1
T (A) 6= L1

T (ϕ).

Proof: The sentence ϕ will say that every event is part
of the cycle pattern that is depicted in Figure 10:

ϕ = ∀x∃x1, . . . , x6(x ∈ {x1, . . . , x6} ∧ cycle(x1, . . . , x6))

where cycle(x1, . . . , x6) is defined as

x1 Cmsg x2 Cproc x3 Cmsg x4 Cproc x5 Cmsg x6

∧ x1 Cproc x6 ∧
∧
i∈{1,3,5} act(xi) = !a

Towards a contradiction, suppose there is a PCA A such
that, for all T ∈ T∗ring, LT (A) and LT (ϕ) agree on all 1-
bounded MSCs. Without loss of generality, we assume that
send transitions in A are of the form (s, !s′a, s

′), i.e., the
message coincides with the target state.

b a

a

b a

b

x1 x2

x3 x4

x5x6

Fig. 10. Cycle

b a

a

b a

b

a b a b a b

s1 s2
s3 s4

s5s6

s5 s6

s1 s2
s3 s4

Fig. 11. Fusing two cycles

Consider the MSC Mn that consists of n ≥ 1 disjoint copies
of the “atomic” MSC from Figure 10. That is, Mn is an MSC
over the topology Tn = T 3

ring ] . . . ] T 3
ring ∈ T∗ring with n

disjoint copies of T 3
ring. Obviously, Mn ∈ L1

Tn(ϕ) = L1
Tn(A)

for all n ≥ 1. When we choose n large enough, then there
is an accepting run ρ of A on Mn that behaves the same on
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at least two disjoint copies of atomic MSCs. More precisely,
Mn is an MSC over T ]T 3

ring]T 3
ring ∈ T∗ring, for some T , such

that ρ assigns states s1, . . . , s6 to the events x1, . . . , x6 of the
atomic MSCs over the last two copies of T 3

ring, respectively.
We will now replace these two atomic MSCs with the larger
one from Figure 11, over T 6

ring. The resulting MSC, call it M ′n,
is a 1-bounded MSC over T ]T 6

ring. There is still a run on M ′n,
using the assignment shown in Figure 11. As the multiset of
terminal states does not change, the run is accepting. But this
is a contradiction, since M ′n does not satisfy ϕ.

XII. PROOF OF THEOREM 5

Recall that we consider tree topologies from Ttree over
{a, b, c, d}.

Theorem 5. There exists a sentence ϕ ∈ FO{a,b,c,d} such
that, for all PCA A ∈ PCA{a,b,c,d}, there is T ∈ Ttree with
L1
T (A) 6= L1

T (ϕ).

Proof: A picture over the set Ω = { , , } of colors is
a rectangular matrix with m ≥ 1 rows and n ≥ 1 columns,
and with entries in Ω. An example picture of dimension (m =
3, n = 8) is

P =

 
The coordinates of a picture can be ordered by relations ≤1

(for columns) and ≤2 (for rows). We let (i, j) ≤1 (i′, j′)
if i ≤ i′ and j = j′, and (i, j) ≤2 (i′, j′) if i = i′ and
j ≤ j′. Accordingly, FO logic over pictures uses the binary
predicates x ≤1 y and x ≤2 y, as well as unary predicates
η(x) with η ∈ Ω. Let P= be the set of those pictures that
are the concatenation P1QP2 of pictures of the same height,
where Q is a single column with entries , and P1 and P2 are
pictures over { , } whose sets of column labelings coincide.
The example picture P above is contained in P=. Note that
P= is FO-definable by a sentence that requires that, for all
coordinates x in the first row, there has to be a coordinate
y on the opposite side of the picture (i.e., beyond column
Q) such that their respective column labelings coincide. This
can indeed be expressed using ≤1 and ≤2. In [23], Thomas
exploits the picture language P= to show that FO over pictures
using ≤1 and ≤2 is incomparable with EMSO using the direct
successor relations of ≤1 and ≤2, which is equivalent to graph
acceptors.

To transfer that result and its proof to our setting, we use
MSCs to encode pictures. An MSC encoding of a picture is
based on a tree topology of a particular form. Let Tpict be
the set of topologies T npict ∈ Ttree, with n ≥ 1, as depicted in
Figure 12 for n = 8. Note that T npict has 2n + 1 vertices.
As Tpict is a subset of Ttree, it is k-unambiguous, for all
k ∈ N, and contains only prime topologies. The MSC M
that encodes picture P (see above) is shown in Figure 12. An
event performing !a corresponds to a picture coordinate. If it is
immediately followed, on the same process line, by one event
performing !c, then its entry is . If it is immediately followed

T 8

pict:
c

d

c

d

c

d

c

d

c

d

c

d

c

d

c

d

a b a b a b a b a b a b a b a b

M :

Fig. 12. The communication topology T 8
pict over N = {a, b, c, d}, as well

as an MSC that encodes a picture

by two events performing !c, then its entry is . Otherwise, it
is . Note that M is 1-bounded.

The set of all valid picture encodings is definable by a
formula Ψ from FO{a,b,c,d}, i.e., for all n ≥ 1, LT npict

(Ψ) is the
set of MSCs that correspond to pictures with n columns. Let
Ln= be the set of MSCs over T npict, that encode a picture from
P= with n columns. In FO{a,b,c,d}, we can define formulas
is-coordinate(x) and η(x) for all η ∈ Ω in the obvious
way. Moreover, x ≤1 y (which corresponds to walking down
in a picture) is given, for MSCs, by x C∗proc y. Finally,
x ≤2 y (which corresponds to walking rightwards in a picture)
is given by x C∗ y ∧ ∀x′(x Cproc x

′ → ¬(x′ C∗ y)) . It
follows that there is a sentence ϕ ∈ FO{a,b,c,d} such that
Ln= = LT npict

(ϕ) = L1
T npict

(ϕ), for all n ≥ 1.
Now suppose that there is a PCA A = (S,Msg ,∆, I, F )

such that, for all T ∈ Tpict, we have L1
T (A) = L1

T (ϕ).
In any accepting run of A on an MSC M ∈ Ln= encoding
picture P1QP2, say, of height m, all the information needed to
compare P1 and P2 has to be present in the constant number
of equivalence classes induced by F and in the assignments of
states and messages to the events located on Q, i.e., on the -
labeled column. There are (|S| × |Msg |)m such assignments.
On the other hand, there are 22

m − 1 nonempty sets of words
of length m over { , }, which exceeds (|S| × |Msg |)m
for sufficiently large m. Thus, there is an accepting run,
possibly wrt. a different topology, on the encoding of P′1QP′2
for some P′1,P

′
2 that induce distinct sets of column labelings,

a contradiction.
Note that the proof reveals that Theorem 5 already holds

for the logic FO{a,b,c,d}[C∗,∼].

XIII. PROOFS OF LEMMA 1 AND LEMMA 2

Lemma 1. The classes Tlin, Ttree, Tgrid, and {T nring | n ≥
max{3, k + 1}} are all k-unambiguous, for every k ∈ N.
Moreover, {T } is k-unambiguous for all T ∈ Tring and k ∈ N.

Proof: Note that the claim for pipelines follows from the
result for trees or grids.
Trees: Set a = b, b = a, c = d, and d = c. We say that a word
w ∈ ({a, b, c, d}×{a, b, c, d})∗ is well-formed if it is generated
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by the grammar A→ (a, a)A(a, a)A | ε where a ∈ {a, b, c, d}.
We show that, for all w ∈ ({a, b, c, d} × {a, b, c, d})∗, all
(P, ) ∈ Ttree, and all p, q ∈ P such that p w q, we have

p = q ⇐⇒ w is well-formed.

This will imply the claim from the lemma. We proceed by
induction on the structure of w. The claim is immediate for
w = ε. So suppose that w 6= ε. First, assume p = q. Then, w is
of the form (a, a)w1(a, a)w2 such that p a a p′ w1 p′ a a

p w2 p for some p′. Using the induction hypothesis, we obtain
that w1 and w2 are both well-formed. Thus, w is well-formed
as well. Conversely, suppose that w is well-formed. Then, it
is of the form (a, a)w1(a, a)w2 such that w1 and w2 are well-
formed. By the induction hypothesis, we get p = q.

Grids: Since the grid T m,ngrid ∈ Tgrid is isomorphic to
(P, ) where P = {1, . . . ,m}×{1, . . . , n} are coordinates
in the plane, “applying” pairs (a, b), (b, a), (c, d), (d, c) to
a coordinate (i, j) corresponds to adding, component-wise,
(0, 1), (0,−1), (1, 0), (−1, 0), respectively. In the expected
manner, every word w ∈ ({a, b, c, d} × {a, b, c, d})∗ deter-
mines a pair ŵ ∈ Z× Z. For all p, q ∈ P , we have

p w q =⇒ p+ ŵ = q .

Now, p w p implies ŵ = (0, 0), which implies the claim.

Rings: The set {T nring | n ≥ max{3, k+1}} is k-unambiguous,
since a word of length ≤k is not sufficient to circumnavigate
a ring with at least max{3, k + 1} nodes. Thus, the same
argument as for pipelines (grids) applies. Finally, {T } is k-
unambiguous for every ring T ∈ Tring and k ∈ N, since every
node in T “looks the same”.

Lemma 2. All topologies in Tlin, Ttree, and Tgrid are prime,
while none of the topologies in Tring is prime.

Proof: Again, the claim for pipelines follows from the
result for trees or grids.

Trees: The claim follows from the fact that, given a word
w ∈ ({a, b, c, d} × {a, b, c, d})∗ that is not well-formed (cf.
proof of Lemma 1), wn is not well-formed either, for all n ≥ 1
(like for words that are not well-bracketed).

Grids: For grids, we also apply the argument from the proof
of Lemma 1. Suppose that p w q with p 6= q. This implies
ŵ 6= (0, 0). Since addition is monotonous, we have that p wn

q′ implies p 6= q′, for all n ≥ 1.

Rings: Let T nring = (P, ) ∈ Tring, p ∈ P , and w = (a, b)n.
Then, we have p w p. Thus, T nring is not prime.

XIV. MISSING DETAILS FOR PROOF OF THEOREM 6

Recall that we fixed r,B ≥ 1, a (r + 2)-unambiguous set
T ⊆ TN of topologies, and a sentence ∀yχ(y) ∈ FON [σ∗]
such that χ(y) is (r,σ∗)-local around y. Moreover, we set
R = dr/2e. We will build a PCA A such that, for all T ∈ T,
we have LBT (A) = LBT (∀yχ(y)).

A. Communicating Automata over Sphere Topologies

Let T = (P, ) ∈ TN . For p, q ∈ P , set distT (p, q) to be
the distance (i.e., the minimal length of a path, or∞ if such a
path does not exist) between p and q in T . By R-Sph(T , p),
we denote the R-sphere of T around p, i.e., the substructure
of (P, , typeT ) induced by the vertices q ∈ P such that
distT (p, q) ≤ R, with p as an additional constant called
center. Note that R-Sph(T , p) is always a topology (when we
ignore the type mapping and the constant). For example, the
shaded area in Figure 8 captures the sphere 2-Sph(T 2,5

grid , p).
Let R-Spheres(TN ) := {R-Sph(T , p) | T = (P, ) ∈

TN and p ∈ P}. Any element from R-Spheres(TN ) is called
an (R-)sphere. We (mostly) do not distinguish isomorphic
spheres so that the number of R-spheres is finite (thanks to
the fact that topologies have bounded degree).

Let θ = (U , γ) ∈ R-Spheres(TN ) be an R-sphere, with
U = (Q, :: , ξ). Recall that ξ : Q → 2N and γ ∈ Q is the
center. Similarly to topologies, we may also write distU (p, q)
or distθ(p, q) for dist (Q,:: )(p, q). We will define (partial)
MSCs over θ. These MSCs are connected, are empty or have at
least one event on γ, and may have unmatched events, namely
those whose communication partners are beyond U .

Definition 6. An MSC over θ is a tuple M = (E,C, `, λ)
where E is the finite (possibly empty) set of events, C =
Cproc]Cmsg ⊆ E×E is the acyclic edge relation, ` : E → Q,
and λ : E → { !a , ?a | a ∈ N}. For p ∈ Q, let Ep := {e ∈
E | `(e) = p}. We require that the following hold:
• Cproc is a union

⋃
p∈P Cp where each Cp ⊆ Ep ×Ep is

the direct-successor relation of some total order on Ep,
• there are a partition E = E!]E?]Eunm and a bijection
µ : E! → E? such that Cmsg = {(e, µ(e)) | e ∈ E!}
(events from Eunm are called unmatched),

• for all (e, f) ∈ Cmsg, there are a, b ∈ N such that
`(e) :::

a b `(f) and (λ(e), λ(f)) = (!a, ?b),
• for all (e, f), (e′, f ′) ∈ Cmsg such that `(e) = `(e′) and
`(f) = `(f ′), we have eC∗proc e

′ iff f C∗proc f
′ (FIFO),

• for all e ∈ Eunm and a ∈ N with λ(e) ∈ {!a, ?a}, we
have both distθ(γ, `(e)) = R and there is no pair (b, p) ∈
N ×Q such that `(e) :::

a b p.
Moreover, we require that, if E 6= ∅, then the graph (E,C) is
connected and Eγ 6= ∅.

Note that this definition actually depends on R, which we
had fixed. Again, we do not distinguish isomorphic partial
MSCs.

The definition of B-bounded MSCs over θ is literally the
same as for MSCs over topologies. This means that unmatched
events are discarded and considered as internal actions, i.e.,
they do not count when computing the difference between
sends and receives. An example of a 1-bounded MSC over a
2-sphere is depicted in Figure 9.

Definition 7. Suppose θ = (U , γ) to be an R-sphere with
U = (Q, :: , ξ). A communicating automaton (CA) over θ is
a tuple B = (S,∆, ι, F ) where
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• S is the finite set of states,
• ι : Q→ S associates with each process an initial state,
• F : Q→ 2S determines the local final states,
• ∆ ⊆ S × ΣB × S is the set of transitions.

Here, the set of actions is ΣB = { !ma , ?ma | a ∈ N and
m ∈ S}. We require that, for all (s, !ma, s

′) ∈ ∆, we have
m = s′. This is sufficient and will simplify our constructions.

Runs of CA are defined similarly to PCA, but we have
to consider unmatched events. Let M = (E,C, `, λ) be an
MSC over θ, and let ρ : E → S be a mapping. We define
ρ− : E → S as follows: For (f, e) ∈ Cproc, let ρ−(e) = ρ(f);
for a Cproc-minimal event e ∈ E, we let ρ−(e) = ι(`(e)).
Then, ρ is a run of B on M if
• for all (e, f) ∈ Cmsg and names a, b ∈ N with
`(e) :::

a b `(f), we have both (ρ−(e), !ρ(e)a, ρ(e)) ∈ ∆
and (ρ−(f), ?ρ(e)b, ρ(f)) ∈ ∆,

• for all e ∈ Eunm and a ∈ N with λ(e) = !a, we have
(ρ−(e), !ρ(e)a, ρ(e)) ∈ ∆,

• for all e ∈ Eunm and a ∈ N with λ(e) = ?a, we have
(ρ−(e), ?ma, ρ(e)) ∈ ∆ for some m ∈ S (the message is
irrelevant).

The run is accepting if ρ(e) ∈ F (`(e)) for all Cproc-maximal
events e ∈ E. By L(B), we denote the set of MSCs over θ for
which there is an accepting run of B. Note that L(B) always
contains the empty MSC over θ.

Let T = (P, ) ∈ TN be a topology, p ∈ P , and M =
(E,C, `) be an MSC over T . Set H = {(q, a, b, q′) ∈ |
q = `(e) and q′ = `(f) for some (e, f) ∈ Cmsg ∪ C−1msg}.
Let Q be the set of processes q ∈ P such that p and q
are connected in the graph (P,H) by a path using at most
R edges. By R-Sph(M,p) (somewhat abusing notation), we
denote the restriction of (E,C, `, actM ) to events in `−1(Q).
We also define R-Sph(T , p) �M := ((Q,H|Q, typeT |Q), p)
where H|Q = {(q, a, b, q′) ∈ H | q, q′ ∈ Q} and typeT |Q
is the restriction of typeT to Q. Then, R-Sph(T , p) �M is an
R-sphere and R-Sph(M,p) is an MSC over R-Sph(T , p) �M .
For example, consider the MSC M over T 2,5

grid from Fig-
ure 8. Figure 9 shows the MSC 2-Sph(M,p) over the sphere
2-Sph(T 2,5

grid , p) �M .
The next theorem is due to a result by Genest, Kuske, and

Muscholl. It allows us to evaluate ∀yχ(y) in terms of CA over
bounded topologies.

Theorem 10 (cf. [13], Theorem 4.1). There is a collection
(Bθ)θ∈R-Spheres(TN ) of CA Bθ over θ such that the following
holds, for all topologies T = (P, ) ∈ TN , all p ∈ P , and
all B-bounded MSCs M = (E,C, `) over T :

M, e |= χ(y) for all e ∈ Ep
⇐⇒ R-Sph(M,p) ∈ L(BR-Sph(T ,p) �M ) .

The result from [13] applies, since R-Sph(M,p) is B-
bounded and, given e ∈ Ep, all events f ∈ E such that
distσ

∗

M (e, f) ≤ r are covered by R-Sph(M,p) (cf. Figures 7,
8, and 9). Finally, as MSCs over spheres are connected, local
final states in CA are enough.

Remark 7. When χ(y) has more free variables than just y, Bθ
also depends on an assignment of truth values to propositions
in χ over these variables.

Remark 8. To prove Theorem 8, we use [3] instead of [13]. In
fact, Theorem 10 holds verbatim (even without the restriction
to B-bounded MSCs) when ∀yχ(y) ∈ FON [Cproc,Cmsg,∼].
Note that, in the fixed-topology setting, ∼ reduces to the
comparison of sphere-process labels that are added to events
so that [3] can indeed be applied.

B. The Construction of A
According to Theorem 10, it will be sufficient that each

process that is run by the PCA A identifies a subsphere of
its actual topology neighborhood. So, we set R-Sub(T) :=
{R-Sph(T , p) �M | T = (P, ) ∈ T, p ∈ P , and M
an MSC over T }, which is finite up to isomorphism. Note
that, for T ∈ T and a process p of T , R-Sub(T) includes
R-Sph(T , p) as well as some spheres that consist only of
one single node. We fix the finitely many CA (Bθ)θ∈R-Sub(T)

according to Theorem 10, where Bθ = (Sθ,∆θ, ιθ, Fθ) such
that the sets Sθ are pairwise disjoint.

We say that w ∈ (N ×N )∗ is circular (wrt. T) if there are
T = (P, ) ∈ T and p ∈ P such that p w p.

The PCA A = (S,Msg ,∆, I, F ) ∈ PCAN with S = Msg
is defined as follows (U will always refer to (Q, :: , ξ) and U ′
to (Q′, :: ′, ξ′)):

States: A state t ∈ S is a nonempty set of tuples κ =
(U , γ, α, s,H) where (U , γ) ∈ R-Sub(T) is a guessed sphere,
α ∈ Q is the active process, s ∈ S(U,γ) is the current state of
the CA B(U,γ) that is simulated, and H ⊆ N is the “history”
containing the names that have been used by the active
process. Intuitively, a process whose current state contains
κ simulates process α in B(U,γ), supposing that its topology
neighborhood resembles (U , γ, α). So, we require that, for all
κ = (U , γ, α, s,H) ∈ t and κ′ = (U ′, γ′, α′, s′, H ′) ∈ t, the
following hold:
(a) ξ(α) = ξ′(α′),
(b) if γ = α and γ′ = α′, then κ = κ′,
(c) if (U , γ, α) = (U ′, γ′, α′), then κ = κ′, and
(d) for all a, b, b′ ∈ N , p ∈ Q, and p′ ∈ Q′ such that α :::

a b p
and α′ :::

a b′ p′, we have b = b′.
Let t ∈ S and a, b ∈ N . We let t ab and ba t both denote

the set of tuples (U , γ, α, s,H) ∈ t such that there is p ∈ Q
satisfying α :::

a b p.
We say that (a, b) is enabled in t if, for all (U , γ, α, s,H) ∈

t, q ∈ Q, and w ∈ (N ×N )≤2R such that w(a, b) is circular
and q :::

w α, we have α :::
a b q.

Initial and Final States: For t ∈ 2N \ {∅}, a state t ∈ S is
contained in I(t) if, for all (U , γ, α, s,H) ∈ t, we have ξ(α) =
t, s = ι(U,γ)(α), and H = ∅. Towards the final states, let G be
the set of states t ∈ S such that, for all tuples (U , γ, α, s,H) ∈
t, we have s ∈ F(U,γ)(α) and {a ∈ N | α :::

a b p for some
b ∈ N and p ∈ Q} ⊆ H . The latter means that H contains
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all verification obligations imposed by the guessed topology
U . Then, F is defined as

∧
t∈S\G ¬〈#(t) ≥ 1〉.

Send Transitions (ST): The triple (t−, !ma, t) ∈ S×ΣA×S
is contained in the transition relation ∆ if m = t, there
is b ∈ N such that t ab 6= ∅ and (a, b) is enabled
in t, and there is a bijection Φ : t− → t such that
Φ(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) implies

1) (U−, γ−, α−) = (U , γ, α), i.e., the executing process
maintains its guesses,

2) (s−, !sa, s) ∈ ∆(U,γ), which simulates a step of process
α in the CA B(U,γ),

3) α has an a-successor in U or distU (γ, α) = R, and
4) H = H− ∪ {a}, which marks interface a as “checked”.

Receive Transitions (RT): The triple (t−, ?mb, t) ∈
S × ΣA × S is contained in ∆ if there is a ∈ N such
that ab t 6= ∅, (b, a) is enabled in t, and there are bijections
Φ : t− → t and Φ̂ : mab → ab t as well as a mapping
µ : ab t →

⋃
θ∈R-Sub(T) Sθ (associating with a tuple a

message of a CA) satisfying the following:

(a) Φ(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) =: κ implies

1. (U−, γ−, α−) = (U , γ, α),
2. (s−, ?kb, s) ∈ ∆(U,γ) for some k such that, if κ ∈

ab t, then k = µ(κ),
3. α has a b-successor in U or distU (γ, α) = R, and
4. H = H− ∪ {b}.

(b) Φ̂(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) implies

1. µ(U , γ, α, s,H) = s−,
2. (U−, γ−) = (U , γ), i.e., the guessed sphere is

forwarded, and
3. α− :::

a b α (assuming U = (Q, :: , ξ)).
(c) For all (U , γ, α, s,H) ∈ (m \mab ) ∪ (t \ ab t), we have

distU (γ, α) = R.

Note that the mappings required in (ST) and (RT) are unique,
if they exist.

This concludes the construction of the PCA A. It remains
to show its correctness in the sense of the following lemma:

Lemma 3. For all topologies T ∈ T and all B-bounded MSCs
M over T , we have M |= ∀yχ(y) iff M ∈ LT (A).

The rest of the section is devoted to the proof of Lemma 3.
So, suppose T = (P, ) ∈ T and let M = (E,C, `) be
a B-bounded MSC over T . For a process p ∈ P , we let
Mp = (Evp,Cp, `p, λp) = R-Sph(M,p), and we let τp =
((Qp, ::p, ξp), p) denote R-Sph(T , p) �M . Note that, since
M is B-bounded, Mp is B-bounded, too. Finally, let Bp =
(Sp,∆p, ιp, Fp) := Bτp , which is a CA over τp.

“⇒”: Suppose M |= ∀yχ(y). By Theorem 10, we have
Mp ∈ L(Bp), for all p ∈ P . Thus, for all p ∈ P , there is
an accepting run ρp : Evp → Sp of Bp on Mp. From the

collection (ρp)p∈P , we define a mapping ρ : E → S by

ρ(e) = {(τp, `(e), ρp(e), He) | p ∈ P with e ∈ Evp} (1)

where He = {a ∈ N | there is f ∈ E such that f C∗proc
e and actM (f) ∈ {!a, ?a}}. Towards an appropriate initial
state of A for M , we let ζ = (ζq)q∈PM where

ζq = {(τp, q, ιp(q), ∅) | p ∈ P such that q ∈ Qp} .

We show that ρ is an accepting run of A on M , which implies
M ∈ LT (A).

Clearly, ζp ∈ S, for all p ∈ PM . So, let us prove that ρ(e) ∈
S for all e ∈ E. Suppose κ = (U = (Q, :: , ξ), γ, α, s,H) ∈
ρ(e) and κ′ = (U ′ = (Q′, :: ′, ξ′), γ′, α′, s′, H ′) ∈ ρ(e).
(a) By (1), we have ξ(α) = ξ′(α′) = `(e).
(b) Assume that we have both γ = α and γ′ = α′. By

(1), we have κ = (τ`(e), `(e), ρ`(e)(e), He) and κ′ =
(τ`(e), `(e), ρ`(e)(e), He) so that κ = κ′.

(c) Assume (U , γ, α) ∼= (U ′, γ′, α′). By (1), this implies γ =
γ′ (due to isomorphism, `(e) :::

w γ iff `(e) :::
w ′ γ′ for

all w ∈ (N ×N )∗, which is impossible if γ 6= γ′). We
deduce κ = κ′.

(d) Suppose a, b, b′ ∈ N , p ∈ Q, and p′ ∈ Q′ such that
`(e) :::

a b p and `(e) :::
a b′ p′. Similarly to (c), we obtain

p = p′, which implies b = b′.
Next, we show that ρ is a run of A on M . Let e ∈ E, a, b ∈
N , and p′ ∈ P such that actM (e) ∈ {!a, ?a} and `(e) a b p′.
Clearly, we have ρ(e) ab 6= ∅. Let us show that, moreover,
(a, b) is enabled in ρ(e). Let p ∈ P such that e ∈ Evp.
Moreover, let q ∈ Qp and w ∈ (N ×N )≤2R such that w(a, b)
is circular and q :::

w
p `(e). Since, τp = R-Sph(T , p) �M

and T ∈ T with T being (r + 2)-unambiguous, we have
`(e) :::

a b
p q. Thus, (a, b) is enabled in ρ(e).

Let (e, f) ∈ Cmsg and a, b ∈ N such that `(e) a b `(f).

We show that ρ−ζ (e)
!ρ(e)a
===⇒ ρ(e) and ρ−ζ (f)

?ρ(e)b
===⇒ ρ(f). We

define a bijection Φe : ρ−ζ (e)→ ρ(e) as follows:

Case 1: If e is Cproc-minimal, then we have

ρ−ζ (e) = {(τp, `(e), ιp(`(e)), ∅) | p ∈ P such that e ∈ Evp} .

We set Φe(τp, `(e), ιp(`(e)), ∅) = (τp, `(e), ρp(e), He).

Case 2: If e is not Cproc-minimal, then there is e− such that
e− Cproc e. We have

ρ−ζ (e) = {(τp, `(e−), ρp(e
−), He−) |

p ∈ P such that e ∈ Evp} .

We set Φe(τp, `(e
−), ρp(e

−), He−) = (τp, `(e), ρp(e), He).
Note that |ρ−ζ (e)| = |ρ(e)| = |{p ∈ P | e ∈ Evp}|. So,

Φe is well-defined and indeed a bijection. It remains to verify
that Φe has the desired properties. We consider only Case 2.
So, suppose e− Cproc e and Φe(τp, `(e

−), ρp(e
−), He−) =

(τp, `(e), ρp(e), He). We show (ST).
1) We have (τp, `(e

−)) = (τp, `(e)).
2) As ρp is a run, (ρp(e

−), !ρp(e)a, ρp(e)) ∈ ∆p.
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3) We have e ∈ Evp. By the definition of Mp =
R-Sph(M,p), we have that `(e) has an a-successor in
τp, or distτp(p, `(e)) = R.

4) Clearly, He = He− ∪ {a}.
We define the bijection Φf : ρ−ζ (f)→ ρ(f) and verify (RTa)
accordingly. It remains to define a bijection Φ̂(e,f) : ρ(e) ab →
ab ρ(f) as well as a mapping µ : ab ρ(f)→

⋃
p∈P Sp.

We have

ρ(e) ab = {(τp, `(e), ρp(e), He) | p ∈ P such that
e ∈ Evp and `(e) :::

a b
p q for some q ∈ Qp} ,

ab ρ(f) = {(τp, `(f), ρp(f), Hf ) | p ∈ P such that
f ∈ Evp and q :::

a b
p `(f) for some q ∈ Qp} .

Note that ρ(e) ab and ab ρ(f) are both nonempty. For p ∈ P
with e ∈ Evp and `(e) :::

a b
p q for some q ∈ Qp, we have

f ∈ Evp. This follows from the definition of Mp. We set
Φ̂(e,f)(τp, `(e), ρp(e), He) = (τp, `(f), ρp(f), Hf ). Note that
Φ̂(e,f) is bijective. Similarly, for p ∈ P with f ∈ Evp and
q :::
a b

p `(f) for some q ∈ Qp, we have e ∈ Evp. In that case,
we set µ(τp, `(f), ρp(f), Hf ) = ρp(e). With this definition,
(RTb) is directly verified. In (RTc), we have to show that,
for all (U , γ, α, s,H) ∈ (ρ(e) \ ρ(e) ab ) ∪ (ρ(f) \ ab ρ(f)),
we have distU (γ, α) = R. So, consider (τp, `(e), ρp(e), He)
with p ∈ P such that e ∈ Evp and `(e) does not have an a-
successor in τp. Since, then, e is an unmatched event of Mp,
we have distτp(p, `(e)) = R by the definition of MSC Mp.
The reasoning for (U , γ, α, s,H) ∈ ρ(f)\ ab ρ(f) is analogous.

It remains to show that ρ is accepting. Let G be the set of
states t ∈ S such that, for all (U = (Q, :: , ξ), γ, α, s,H) ∈ t,
we have s ∈ F(U,γ)(α) and {a ∈ N | α :::

a b q for some
b ∈ N and q ∈ Q} ⊆ H . We have to show that, for all e ∈ E
that are Cproc-maximal, we have ρ(e) ∈ G.

So, let e ∈ E be Cproc-maximal. Suppose p ∈ P such
that e ∈ Evp. We have to show that ρp(e) ∈ Fp(`(e)) and
{a ∈ N | `(e) :::

a b
p q for some b ∈ N and q ∈ Qp} ⊆ He,

i.e., for all a ∈ N such that `(e) has an outgoing a-edge in τp,
there is f C∗proc e such that actM (f) ∈ {!a, ?a}. The former
holds since ρp is an accepting run. The latter holds since, by
definition, the MSC Mp “covers” the a-labeled edge.

“⇐”: Now, suppose M ∈ LT (A). There is an accepting run
ρ : E → S of A on M , say, with initial state ζ = (ζ)p∈PM
for M . In particular, for all (e, f) ∈ Cmsg and a, b ∈ N
such that `(e) a b `(f), we have ρ−ζ (e)

!ρ(e)a
===⇒ ρ(e) and

ρ−ζ (f)
?ρ(e)b
===⇒ ρ(f).

We will show M ∈ LT (∀yχ(y)). By Theorem 10, it is
sufficient to prove Mp0 ∈ L(Bp0) for all p0 ∈ PM , i.e., to
determine accepting runs ρp0 : Evp0 → Sp0 of Bp0 on Mp0 .
Let e, f ∈ E such that (e, f) ∈ Cmsg. Suppose a, b ∈ N such
that `(e) a b `(f). According to (ST) and (RT), consider
the unique mappings Φe : ρ−ζ (e) → ρ(e), Φf : ρ−ζ (f) →
ρ(f), µf : ab ρ(f)→

⋃
θ∈R-Sub(T) Sθ, and Φ̂(e,f) : ρ(e) ab →

ab ρ(f).

Pick p0 ∈ PM . For all events e ∈ E of M located on
p0, the state ρ(e) contains exactly one tuple of the form
(U , γ, γ, s,H) (where sphere center and active node coincide).
Set κe = (U , γ, γ, s,H) and ρp0(e) = s. Note that, by (ST)
and (RT), θp0 := (U , γ) is invariant along all events on p0.

We claim

τp0
∼= θp0 . (2)

Recall that, hereby, τp0 = R-Sph(T , p0) �Mp0 . In particular,
(2) implies that ρp0(e) ∈ Sp0 for all events e on p0. Before
we prove (2), we define ρp0 for all other events of Mp0 . In
doing so, whenever ρp0 is defined on e (so that κe has also
been determined), it will be defined for the direct process
predecessor e− and process successor e+ (if they exist), using
the bijections Φe and Φe+ . The tuples κe− and κe+ are defined
accordingly.

So suppose that we defined ρp0 for all events of Mp0 that
are located on processes p with 0 ≤ distτp0 (p0, p) ≤ k < R.
Consider an event f ∈ Evp0 that is located on some p with
distτp0 (p0, p) = k + 1. There is e ∈ Evp0 located on a node
with distance k to p0 (i.e., ρp0(e) is already defined) such that
e and f form a message.
• Suppose that we have (e, f) ∈ Cmsg where `(e) a b

`(f), i.e., e sends a message via interface a. Assume that
κe = (U = (Q, :: , ξ), γ, α, s,H) (by induction, this will
mean ρp0(e) = s). Due to (2), we have κe ∈ ρp0(e) ab .
By, (RTb), there is α′ ∈ Q such that α :::

a b α′ and
Φ̂(e,f)(κe) = (U , γ, α′, s′, H ′) for some s′, H ′. We set
ρp0(f) = s′.

• Suppose that we have (f, e) ∈ Cmsg where `(f) a b

`(e), i.e., e receives via interface b. Assume that κe =
(U = (Q, :: , ξ), γ, α, s,H), i.e., ρp0(e) = s. Due to (2),
we have κe ∈ ab ρp0(e). Again, due to (RTb), there is
α′ ∈ Q such that α′ :::

a b α, and we have Φ̂−1(f,e)(κe) =

(U , γ, α′, s′, H ′) for some s′, H ′. We set ρp0(f) = s′.
Note that ρp0 is well defined. So let us show that ρp0 is a run
of Bp0 on Mp0 . Pick e ∈ Evp0 .

• Suppose e is of type !a. We have ρ−ζ (e)
!ρ(e)a
===⇒ ρ(e).

Assume first that e is process-minimal on some process
p. Suppose κe = (U , γ, α, s,H). Recall that ρp0(e) = s.
Thanks to (ST), ρ−ζ (e) contains (U , γ, α, s−, ∅), with
s− = ιp0(p) and (s−, !sa, s) ∈ ∆p0 . Moreover,
H = {!a}. If e is not process-minimal, then e has a
process-predecessor e−. By (ST), κe− is of the form
(U , γ, α, ρp0(e−), H−), for some H−, and we have
(ρp0(e−), !sa, s) ∈ ∆p0 and H = H− ∪ {!a}.

• Suppose e executes action ?b and let e−, f ∈ Evp0 and
a ∈ N be such that e− Cproc e, f Cmsg e, and `(f) a b

`(e). Suppose κe = (U = (Q, :: , ξ), γ, α, s,H), κe− =
(U−, γ−, α−, s−, H−), and κf = (U ′, γ′, α′, s′, H ′). By
(RT), (U−, γ−, α−) = (U , γ, α), (U ′, γ′) = (U , γ), and
α′ :::

a b α. Finally, (s−, ?s′b, s) ∈ ∆p0 . The cases where
e does not have a process-predecessor or where e is
unmatched are similar.
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Next, we show that ρp0 is accepting. Let e ∈ Evp0 be
process-maximal and suppose κe = (U , γ, α, s,H). From the
fact that ρ is accepting, we can deduce that s ∈ Fp0(α).

To finish the proof, it remains to show (2), i.e., τp0 ∼= θp0 .
This is done using the H-component of a state as well as the
fact that T is (r + 2)-unambiguous.

For p ∈ P and a triple (U , γ, α), we write (U , γ, α) ∈
ρ(p) if there are s, H , and an event e ∈ Ep such that
(U , γ, α, s,H) ∈ ρ(e).

Suppose τp0 = (W = (W, , π), p0) and θp0 = (U =
(Q, :: , ξ), q0). For d ∈ {0, . . . , R}, let ((Wd, d, πd), p0) be
the restriction of τp0 to elements of distance at most d from
p0 in W . Similarly, let ((Qd, ::d, ξd), q0) be the restriction of
θp0 to elements of distance at most d from q0 in U .

The following claim implies (2):

Claim 1. For all d ∈ {0, . . . , R}, there is an isomorphism

hd : ((Wd, d, πd), p0)→ ((Qd, ::d, ξd), q0)

such that, for all p ∈Wd, we have

(U , q0, hd(p)) ∈ ρ(p) .

Proof: The claim holds for d = 0, since (U , q0, q0) ∈
ρ(p0).

Now, suppose the claim holds for some d < R so that we
have an isomorphism

hd : ((Wd, d, πd), p0)→ ((Qd, ::d, ξd), q0) .

Towards hd+1, we extend the domain of hd to elements p′ ∈
Wd+1 \ Wd. So let p, p′ ∈ W such that distW(p0, p) = d,
dist(p0, p

′) = d + 1, and p and p′ are connected by an edge
in τp0 . Moreover, set q = hd(p).

Suppose p a b p′ with a, b ∈ N . Since distW(p0, p) <
R, we also have, by induction hypothesis, distU (q0, q) < R.
Suppose (e, e′) ∈ Cmsg ∪ C−1msg such that e is located on
p and e′ is located on p′. By induction hypothesis, we have
(U , γ, q, s,H) ∈ ρ(e) for some s,H . By (ST) and (RT), there
is q′ ∈ Q such that (U , γ, q′, s,H) ∈ ρ(e′) and q :::

a b q′.
Note that, since hd is an isomorphism, q′ ∈ Qd+1 \ Qd. Set
hd+1(p′) = q′. This is well-defined and does not depend on
the concrete choice of p or a: if we obtained another, distinct
element q′′, we would have (U , γ, q′′, s,H) ∈ ρ(e′), which is
a contradiction to the definition of the set of states of A. We
define hd+1 to agree with hd on Wd.

It remains to show that hd+1 is an isomorphism. First, we
show that hd+1 is surjective. Let a, b ∈ N , and let q, q′ ∈ Q
with distance d and d + 1, respectively, from q0 such that
q :::
a b q′. Let p = h−1d (q). By induction hypothesis, we have

(U , q0, q) ∈ ρ(p). As distU (q0, q) < R and ρ is an accepting
run, there is p′ ∈ W satisfying p a b p′ and (U , q0, q′) ∈
ρ(p′). Thus, hd+1(p′) = q′ so that hd+1 is surjective.

For w ∈ (N ×N )∗, let ←−w ∈ (N ×N )∗ denote its reverse,
which is defined inductively by←−ε = ε and

←−−−−
w(a, b) = (b, a)←−w .

Now, let us show that hd+1 is indeed an isomorphism. Take
p1, p2 ∈ Wd and p′1, p

′
2 ∈ Wd+1 \Wd as well as w1, w2 ∈

(N ×N )d and a1, b1, a2, b2 ∈ N such that

• p0
w1 p1

a1 b1 p′1 and
• p0

w2 p2
a2 b2 p′2.

For i = 1, 2, let qi = hd+1(pi) and q′i = hd+1(p′i). We will
show that
• p′1 = p′2 iff q′1 = q′2 (so that hd+1 is injective), and
• p′1

a b p′2 iff q′1 :::
a b q′2, for all a, b ∈ N .

First, suppose p′1 = p′2. Let w = (b1, a1)←−w1w2(a2, b2).
Then, p′1

w p′1. As T is (r + 2)-unambiguous, τp0 , θp0 ∈
R-Sub(T), |w| ≤ 2R = 2dr/2e ≤ r + 2, and q′1 :::

w q′2, this
implies q′1 = q′2. The same argument applies when we start
with q′1 = q′2.

Next, suppose p′1
a b p′2, for some a, b ∈ N . Since is

the relation belonging to τp0 , a message is exchanged between
two events located on p′1 and p′2, respectively. It follows that
there is e ∈ Ep′1 such that (a, b) is enabled in ρ(e). Let w =
(b2, a2)←−w2w1(a1, b1). Then, |w| ≤ 2R and w(a, b) is circular.
As (a, b) is enabled in ρ(e), (U , q0, q′1) ∈ ρ(p′1), and q′2 :::

w q′1,
we have q′1 :::

a b q′2.
Finally, suppose q′1 :::

a b q′2, for some a, b ∈ N . Let w =
(b2, a2)←−w2w1(a1, b1). As ρ is an accepting run, a message
has to be exchanged between p′1 and a process p such that
p′1

a b p. We have q′2 :::
w q′1 :::

a b q′2 and p′2
w p′1

a b p.
As T is (r + 2)-unambiguous and |w(a, b)| ≤ 2R + 1 =
2dr/2e+ 1 ≤ r + 2, we have p = p′2. Thus, p′1

a b p′2.

This concludes the proof of Claim 1.

XV. PROOF OF THEOREM 7

Theorem 7. Let ϕ ∈ EMSO{a,b}[C∗proc,Cmsg] be a sentence
and B ≥ 1. There is a PCA A ∈ PCA{a,b} such that, for all
T ∈ Tring, we have LBT (A) = LBT (ϕ).

The rest of the section is devoted to the proof of the theorem.
Intuitively, A will “approximate” the size of the ring on which
it is run, and launch a corresponding automaton. Set n = rϕ+
2. According to Corollary 1, let An+1 be the PCA for the class
of rings of size at least n+ 1. Moreover, for k ∈ {3, . . . , n},
let Ak be the PCA for the single ring topology T kring. Now,
A is the union of several product PCA Ak × Bk (for the
intersection of Ak and Bk; cf. Theorem 1), with k ranging
over {3, . . . , n + 1}. Here, Bk imposes a condition on the
number of active processes of an MSC. First, B3 accepts those
MSCs that have ≤3 active processes. For k ∈ {4, . . . , n}, Bk
checks that an MSC has exactly k active processes. Finally,
Bn+1 requires that there are at least n+ 1 active processes.

The construction of A is straightforward. To prove its
correctness, we exploit that, for k < l, PCA Ak and Al behave
equivalently on MSCs M over T lring with k active processes.
This is why we can apply Ak to M even though the underlying
ring has size larger than k.

For an MSC M (over some topology) and k ∈ {3, . . . , n+
1}, we write M ≈ k if the following hold:
• M has ≤3 active processes if k = 3,
• M has exactly k active processes if k ∈ {4, . . . , n}, and
• M has ≥k active processes if k = n+ 1.

The following observation is crucial:
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Lemma 4. Let l ≥ 3 and k ∈ {3, . . . , n+1}. Moreover, let T
be the ring topology of size l and M be an MSC over T such
that M ≈ k. Then, M ∈ LBT (Ak) iff M ∈ LBT (Amin{l,n+1}).

Proof: If k = l, then there is nothing to show (the case
k = n + 1 < l is also immediate). Suppose k < l. Since
M = (E,C, `) is an MSC over T such that M ≈ k, M is
acyclic meaning that there is an active process p of M that
does not communicate through one of its interfaces:
• for all e ∈ Ep, actM (e) 6∈ {!a, ?a}, or
• for all e ∈ Ep, actM (e) 6∈ {!b, ?b}.

But then, according to the construction from Appendix XIV,
every accepting run of Ak on M is also an accepting run of
Amin{l,n+1} on M , and vice versa. An alternative argument is
that the truth value of a formula/automaton does not change
when we add or remove non-active processes in a topology.
Thus, we have M ∈ LBT (Ak) iff M ∈ LBT (Amin{l,n+1})

We will now argue that A is correct. Let l ≥ 3 and let T
be the ring of size l. We have to show that LBT (A) = LBT (ϕ).

We first consider the inclusion LBT (A) ⊆ LBT (ϕ). Let M ∈
LBT (A). There is k ∈ {3, . . . , n+1} such that M ∈ LBT (Ak×
Bk). As M ∈ LBT (Bk), we have M ≈ k. Moreover, M ∈
LBT (Ak). By Lemma 4, this implies M ∈ LBT (Amin{l,n+1}).
The latter equals LBT (ϕ). We deduce that M ∈ LBT (ϕ).

Now, we consider the inclusion LBT (A) ⊇ LBT (ϕ). Let M ∈
LBT (ϕ), and let k ∈ {3, . . . , n + 1} such that M ≈ k. Note
that k is uniquely determined. Clearly, we have M ∈ LBT (Bk).
Moreover, M ∈ LBT (Amin{l,n+1}). By Lemma 4, this implies
M ∈ LBT (Ak). We deduce M ∈ LBT (Ak ×Bk), which finally
implies M ∈ LBT (A).

XVI. MISSING DETAILS FOR PROOF OF THEOREM 10

MSCs over Prime Topologies: Recall that the construction
of a PCA from a formula is based on the sphere automaton.
For the construction from [3] (which we recall below) to be
applicable, we have to show that MSCs are prime just like
topologies. Let us define when an MSC is prime.6 Consider
the set D = {proc, proc−1} ∪ {msg(a,b),msg−1(a,b) | a, b ∈ N}
of directions. Let M = (E,C, `) be an MSC, over some
topology. Every direction δ ∈ D defines a binary relation
[[δ]]M ⊆ E × E as follows:
• [[proc]]M = Cproc,
• [[proc−1]]M = C−1proc,
• [[msg(a,b)]]M = {(e, f) ∈ Cmsg | `(e) a b `(f)}, and

• [[msg−1(a,b)]]M = {(f, e) ∈ C−1msg | `(e) b a `(f)}.
This is extended to strings w = δ1 . . . δn ∈ D∗: we let (e, f) ∈
[[w]]M if (e, f) ∈ idE ◦ [[δ1]]M ◦ . . . ◦ [[δn]]M (where ◦ is the
relation product). The MSC M is called prime if, for all w ∈
D∗, n ≥ 1, and e ∈ E, we have that (e, e) ∈ [[wn]]M implies

6The property is exploited in [3, Claim 4.1] without being called prime. In
[B. Bollig. On the expressive power of 2-stack visibly pushdown automata.
Logical Methods in Computer Science, 4(4:16), 2008.], a weaker property
(which is implied by prime) is named circular. There, the sphere automaton
is constructed for nested words.

(e, e) ∈ [[w]]M . Note that MSCs are in general not prime, i.e.,
for arbitrary topologies. However, we can show the following:

Lemma 5. Let T = (P, ) ∈ TN be a prime topology and
M = (E,C, `) be an MSC over T . Then, M is prime.

Proof: Let w ∈ D∗, n ≥ 1, and e ∈ E, and suppose
(e, e) ∈ [[wn]]M . We build the “projection” 〈w〉 ∈ (N ×N )∗

of w to the alphabet N × N so that it can be applied to
the topology T . It is defined by 〈proc〉 = 〈proc−1〉 = ε and
〈msg(a,b)〉 = 〈msg−1(a,b)〉 = (a, b).

From (e, e) ∈ [[wn]]M , we deduce `(e)
〈w〉n

`(e), which
implies `(e) 〈w〉

`(e), since T is prime. Towards a contra-
diction, assume that (e, e) 6∈ [[w]]M (which implies w 6= ε
and n > 1). Consider the unique event e1 ∈ E such that
(e, e1) ∈ [[w]]M . Due to `(e)

〈w〉
`(e), we have either

eC+
proc e1 or e1 C+

proc e. Suppose eC+
proc e1. The other case is

analogous. As (e, e) ∈ [[wn]]M , there are e2, . . . , en ∈ E such
that (e, e1), (e1, e2), . . . , (en−1, en) ∈ [[w]]M . Thus, (e, en) ∈
[[wn]]M . As MSCs obey a FIFO policy, we moreover have
e C+

proc e1 C
+
proc e2 C

+
proc . . . C

+
proc en and, therefore, e 6= en.

But this contradicts (e, e) ∈ [[wn]]M . We conclude that M is
prime.

Sphere Automaton: Next, we adapt the construction of the
sphere automaton from [3] to our setting. We build a PCA
that is able to tell us whether, at a given event, a local formula
holds. Again, we restrict to local formulas with only one free
variable. To decide if a local formula holds, it is actually
sufficient for the PCA to detect spheres, i.e., local neighbor-
hoods of radius r ∈ N. Let us define spheres formally. Set
σ = {Cproc,Cmsg}. Let T = (P, ) ∈ TN be a topology,
M = (E,C, `) be an MSC over T , and e ∈ E. The r-sphere
of M around e, denoted by r-Sph(M, e), is the restriction of
(E,C, `, actM ) to events of distance at most r from e. More
precisely, it is defined as the structure M = (E′,C′, π, λ, e)
where E′ = {f ∈ E | distσM (e, f) ≤ r}, C′ is given by
C′proc = Cproc ∩ (E′ × E′) and C′msg = Cmsg ∩ (E′ × E′),
and π and λ are mappings with domain E′: for all e ∈ E′,
π(e) = typeT (`(e)) and λ(e) = actM (e). Note that M does
not depend on a topology anymore, as an event is mapped by
π to a process type rather than a process.

Let Sr := {r-Sph(M, e) |M is an MSC over some topology
T ∈ TN and e is an event of M} denote the set of r-spheres
that arise from MSCs, ranging over all topologies. Note that Sr
is finite up to isomorphism. Interestingly, the sphere automaton
that we are going to construct has similarities with the PCA
built in Section VI. However, the crucial difference is that
the sphere automaton is supposed to detect spheres, while
the automaton from Section VI evaluates topologies. So, the
sphere automaton will guess a sphere, for each event e, and
verify that the guessed sphere is indeed isomorphic to the r-
sphere around e.

Lemma 6. Let r ∈ N be some radius. There are a PCA
A = (S,Msg ,∆, I, F ) ∈ PCAN and a mapping ν : S → Sr
such that the following hold, for all prime topologies T ∈ TN
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and all MSCs M = (E,C, `) over T :
• M ∈ LT (A), and
• for all accepting runs ρ of A on M and all events e ∈ E,

we have ν(ρ(e)) ∼= r-Sph(M, e).

We define the PCA A = (S,Msg ,∆, I, F ) with S = Msg
as follows:

States: A state t ∈ S is either ∅ω for some ω ∈ 2N \ {∅}
(the empty set with some annotated type; we set type(∅ω) =
ω and let ν(t) be an arbitrary sphere), or a nonempty set
of tuples (M, γ, α, col) where (M = (E,C, π, λ), γ) ∈ Sr,
α ∈ E is the active event, and col ∈ {1, . . . , 4 · maxE 2 +
1} is a color with maxE the maximal number of events of
an r-sphere from Sr. The coloring is needed to distinguish
isomorphic overlapping spheres. For nonempty t, we require
that the following hold:
• there is a unique tuple (M, γ, α, col) ∈ t such that γ = α

(in that case, we set ν(t) = (M, γ)),
• for all tuples ((E,C, π, λ), γ, α, col) ∈ t and

((E′,C′, π′, λ′), γ′, α′, col ′) ∈ t, we have π(α) = π′(α′)
and λ(α) = λ′(α′) (we set type(t) = π(α) and
label(t) = λ(α)), and

• if (M, γ, α, col) ∈ t and (M, γ, α′, col) ∈ t, then α =
α′.

Initial and Final States: For all ω ∈ 2N \{∅}, we let I(ω) =
{∅ω}. Let G be the set of nonempty states t ∈ S such that
there is (M, γ, α, col) ∈ t with α not Cproc-maximal in M.
We set F =

∧
t∈G ¬〈#(t) ≥ 1〉.

Send Transitions: In the following, we let M refer to
(E,C, π, λ). The triple (t−, !ma, t) ∈ S×ΣA×S is contained
in ∆ if the following hold:
(1) m = t and label(t) = !a,
(2) type(t−) = type(t),
(3) for all (M, γ, α, col) ∈ t and e ∈ E, we have e Cproc α

iff (M, γ, e, col) ∈ t−,
(4) for all (M, γ, α, col) ∈ t− and e ∈ E, we have αCproc e

iff (M, γ, e, col) ∈ t,
(5) for all (M, γ, α, col) ∈ t, if α is Cproc-minimal in M

and t− 6= ∅, then distσM(γ, α) = r, and
(6) for all (M, γ, α, col) ∈ t−, if α is Cproc-maximal in M,

then distσM(γ, α) = r.

Receive Transitions: The triple (t−, ?ma, t) ∈ S × ΣA × S
is contained in ∆ if (2)–(6) as above as well as the following
hold:
(7) label(t) = ?a,
(8) for all (M, γ, α, col) ∈ t and e ∈ E, we have e Cmsg α

iff (M, γ, e, col) ∈ m,
(9) for all (M, γ, α, col) ∈ m and e ∈ E, we have αCmsg e

iff (M, γ, e, col) ∈ t.
This concludes the construction of A. The correctness proof

in the sense of Lemma 6 follows the same lines as that of [3].

To show that cycles in spheres are correctly simulated by a
given input MSC M , we use the fact that M is prime. Let
T = (P, ) ∈ TN be a prime topology, M = (E,C, `) be
an MSC over T (i.e., according to Lemma 5, M is prime), and
ρ be an accepting run of A on M . Let e0 ∈ E and w ∈ D∗,
and consider ν(ρ(e0)) = (M = (E′,C′, π′, λ′), γ). We show
that, then, (γ, γ) ∈ [[w]]M (with the obvious meaning) implies
(e0, e0) ∈ [[w]]M .

So, suppose (γ, γ) ∈ [[w]]M. By the construction of A,
we have that, for all n ≥ 1, there is en ∈ E such that
(e0, en) ∈ [[wn]]M (cf. proof of [3, Claim 4.11]). In particular,
(en, en+1) ∈ [[w]]M for all n ∈ N. Towards a contradiction,
assume e1 6= e0. Note that this implies w 6= ε. As M is prime,
we have e2 6= e0. But we also have e2 6= e1: otherwise, there
would be events f1, f2, f ∈ E and δ ∈ D such that f1 6= f2,
(f1, f) ∈ [[δ]]M , and (f2, f) ∈ [[δ]]M , which is a contradiction,
as f can have at most one δ-predecessor. Continuing this
scheme, we get en 6∈ {e0, . . . , en−1} for all n ≥ 1. But
this is a contradiction to the fact that E is finite. We deduce
(e0, e0) ∈ [[w]]M .
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