ANOVA decomposition of conditional Gaussian processes for sensitivity analysis with dependent inputs

Abstract : Complex computer codes are widely used in science to model physical systems. Sensitivity analysis aims to measure the contributions of the inputs on the code output variability. An efficient tool to perform such analysis are the variance-based methods which have been recently investigated in the framework of dependent inputs. One of their issue is that they require a large number of runs for the complex simulators. To handle it, a Gaussian process regression model may be used to approximate the complex code. In this work, we propose to decompose a Gaussian process into a high dimensional representation. This leads to the definition of a variance-based sensitivity measure well tailored for non-independent inputs. We give a methodology to estimate these indices and to quantify their uncertainty. Finally, the approach is illustrated on toy functions and on a river flood model.
Type de document :
Article dans une revue
Journal of Statistical Computation and Simulation, Taylor & Francis, 2015, 85 (11), pp.2164-2186. <10.1080/00949655.2014.925111>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00872250
Contributeur : Loic Le Gratiet <>
Soumis le : vendredi 11 octobre 2013 - 15:01:43
Dernière modification le : lundi 29 mai 2017 - 14:26:14
Document(s) archivé(s) le : dimanche 12 janvier 2014 - 04:36:18

Fichiers

kernelANOVA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gaëlle Chastaing, Loic Le Gratiet. ANOVA decomposition of conditional Gaussian processes for sensitivity analysis with dependent inputs. Journal of Statistical Computation and Simulation, Taylor & Francis, 2015, 85 (11), pp.2164-2186. <10.1080/00949655.2014.925111>. <hal-00872250>

Partager

Métriques

Consultations de
la notice

434

Téléchargements du document

353