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Abstract— We show that a finite dimensional strictly passive
linear controller exponentially stabilizes a large class of partial
differential equations which are actuated through its boundaries
on a one dimensional spatial domain. This is achieved by
extending existing results on exponential stability of boundary
control system with static boundary control to the case with
dynamic boundary control. The approach is illustrated on a
physical example.

I. INTRODUCTION

Boundary control systems (BCS) [1] are a class of abstract

systems which models partial differential equations (PDEs)

with the control and the observations at the boundary of

its spatial domain. A large class of physical systems may

be modelled as BCS, and very powerful results on well-

posedness and stability have been reported for the ones

formulated using the framework of infinite dimensional port-

Hamiltonian system [2]–[5]. More specifically in [4] it has

been shown that a clever choice of the boundary conditions

(static feedback) render the BCS exponentially stable, and

in [3] it has been shown that for a class of BCS arising

from the modelling of physical systems, a power preserving

interconnection with a finite dimensional strictly positive real

(SPR) [6] linear system (dynamic boundary control) results

in an asymptotically stable BCS on an extended space. In

this paper we extend the exponential stability result to BCS

with linear dynamic boundary control. We show that if the

linear finite dimensional controller is strictly passive, then

the closed-loop BCS is exponentially stable on an extended

space. This result permits to elegantly, and quite easily, prove

the exponential stability for a large class of linear controllers,

in particular those arising from energy shaping methods

using Casimir functions [7], [8].

The paper is organized as follows. In Section II and III

we give the preliminaries on BCS and dynamic boundary

control. In Section IV we derive the main result of the paper.

Section V presents a physical example and in Section VI we

give some final remarks.

II. BOUNDARY CONTROL SYSTEMS

In the following we will briefly recall the main definitions

of the BCS of interest. The reader is referred to [2], [4] and

in particular to [3], [5] for further details on BCS and to
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[1] for a complete exposition of infinite dimensional linear

system theory.

We will follow the same notation as in [4], thus Mn(H)
denotes the space of square n×n matrices whose entries lie

in the vector space H. By 〈·, ·〉R we denote de inner product

on R or Rn, and 〈·, ·〉L2
, or simply 〈·, ·〉 denotes the standard

inner product on L2(a, b,R
n). The Sobolev space of order k

is denoted by Hk(a, b,Rn). We say that a symmetric matrix

is positive definite, in short M > 0, if all its eigenvalues

are positive, and positive semi-definite, in short M ≥ 0 if

its eigenvalues are non-negative. A self-adjoint operator L
is coercive on an inner product space X if there exists an ǫ
such that L ≥ ǫI . The systems under study are described by

the following PDE

∂x

∂t
= P1

∂

∂z
(L(z)x)(t, z)) + P0L(z)x(t, z), (1)

z ∈ (a, b), satisfying the following assumption.

Assumption 1. P1 ∈ Mn(R) is a non-singular symmetric

matrix, P0 = −P⊤
0 ∈ Mn(R), and x takes values in

R
n. Furthermore, L(·) ∈ Mn(L2(a, b)) is a bounded and

continuously differentiable matrix-valued function satisfying

for all z ∈ (a, b), L(z) = L(z)⊤ and L(z) > mI , with m
independent from z.

For simplicity L(z)x(t, z) will be denoted by (Lx)(t, z).
The state space is defined as X = L2(a, b;R

n) with

inner product 〈x1, x2〉L = 〈x1,Lx2〉 and norm ‖x1‖2L =
〈x1, x1〉L. Hence X is a Hilbert space. Note that the natural

norm on X and the L2 norm are equivalent. The reason for

selecting this space os that ‖ · ‖2 is usually proportional to

the energy function of the system.

Definition 2. [2] Let Lx ∈ H1(a, b;Rn). Then the boundary

port variables associated with system (1) are the vectors

e∂,Lx, f∂,Lx ∈ R
n, defined by

[
f∂,Lx

e∂,Lx

]

=
1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]

.

Note that the port variables are linear combinations of the

boundary variables. Let us define the matrix Σ ∈ M2n(R)
as follows

Σ =

[
0 I
I 0

]

. (2)

Theorem 3. [2] Let W be a n× 2n real matrix. If W has

full rank and satisfies WΣW⊤ ≥ 0, where Σ is defined in

(2), then the system (1), satisfying Assumption 1, with input

u(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]



is a boundary control system on X . Furthermore, the oper-

ator Ax = P1(∂/∂z)(Lx) + P0Lx with domain

D(A) =
{

Lx ∈ H1(a, b;Rn)
∣
∣
∣

[
f∂,Lx(t)

e∂,Lx(t)

]

∈ kerW
}

generates a contraction semigroup on X .

Let W̃ be a full rank matrix of size n × 2n with
[
W
W̃

]

invertible and let PW,W̃ be given by

PW,W̃ =

([
W

W̃

]

Σ

[
W

W̃

]⊤
)−1

=

[
WΣW⊤ WΣW̃⊤

W̃ΣW⊤ W̃ΣW̃⊤

]−1

.

Define the output of the system as the linear mapping C :
L−1H1(a, b;Rn) → R

n,

y = Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]

.

Then for u ∈ C2(0,∞;Rk), Lx(0) ∈ H1(a, b;Rn), and

u(0) = W
[
f∂,Lx(0)

e∂,Lx(0)

]

the following balance equation is

satisfied:

1

2

d

dt
‖x(t)‖2L =

1

2

[
u(t)⊤ y(t)⊤

]
PW,W̃

[
u(t)
y(t)

]

. (3)

Remark 4. The matrix PW,W̃ is defined if and only if
[
W
W̃

]

invertible. The input and output of the system are acting

on the boundary of the spatial domain, hence the system

can only exchange energy with its environment through the

boundaries. Finally let us do the remark that the balance

equation (3) usually equals the energy of the system and

that it may be rewritten as

1

2

d

dt
‖x(t)‖2L =

1

2

[

〈(Lx)(t, b), P1(Lx)(t, b)〉R

− 〈(Lx)(t, a), P1(Lx)(t, a)〉R
]

. (4)

In [4] sufficient conditions for the exponential stability

of the BCS of Theorem 3 have been given. The following

Lemma is key to prove the exponential stability.

Lemma 5. [4], [5] Consider a BCS as described in Theorem

3 with u(t) = 0, for all t ≥ 0. Then the energy of the system

E(t) = (1/2)‖x(t)‖2
L

satisfies for τ large enough

E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2
R
dt, and

E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2
R
dt,

where c is a positive constant that only depends on τ .

Using Lemma 5 it is possible to show (see [4] or [5])

that the BCS is exponentially stable if the energy of the

system satisfies (dE/dt) ≤ −k‖(Lx)(t, b)‖2
R

or (dE/dt) ≤
−k‖(Lx)(t, a)‖2

R
for some positive constant k. This condi-

tion is satisfied if the boundary conditions of the system are

selected such that the (2, 2)-block of the matrix PW,W̃ is

negative definite.

III. DYNAMIC BOUNDARY CONTROL

Dynamic control boundary implies that the BCS system

is controlled through it boundaries with a dynamic control

system. This implies that the boundary conditions of the

infinite dimensional system are changing dynamically. In

order to use some existing results from [3] we assume the

following.

Assumption 6. The dynamic controller is linear, finite di-

mensional and strictly passive.

Let us briefly recall the concepts of dissipative, passive

and positive real system for finite dimensional systems. The

reader is referred to [6], [9], [10] for further details. Consider

a linear system

v̇ = Acv +Bcuc

yc = Ccv +Dcuc

(5)

with state space v ∈ V = R
m, set of input values uc ∈

Uc = R
n and set of output values yc ∈ Y = R

n. The set

Uc of admissible inputs consists of all Uc-valued piecewise

continuous functions defined on R. Ac, Bc, Cc and Dc are

constant real matrices of dimension m×m, m×n, n×m and

n×n respectively. Assume without loss of generality that the

vector field Acv has at least one equilibrium: A·0 = 0. Let w
be a real valued function defined on U×Y , called the supply

rate. We assume that for any uc ∈ U and for any v(0) ∈ V ,

the output yc(t) of (5) is such that w(t) = w(uc(t), yc(t))
satisfies

∫ τ

0

|w(t)|dt < ∞ for all τ ≥ 0. (6)

Definition 7. [10] A system of the form (5) with supply rate

w is said to be dissipative if there exists a C0 non-negative

function Ec : V → R, called the storage function, such that

for all uc ∈ Uc, v(0) ∈ V , t ≥ 0

Ec(τ)− Ec(0) ≤
∫ τ

0

w(t)dt

The above inequality is called the dissipation inequality.

A particularly important special class of dissipative systems

are the ones with supply rate given by the inner product.

w = 〈yc, uc〉 = u⊤

c yc.

Definition 8. [10] A system of the form (5) is said to be

passive if it is dissipative with supply rate w = 〈uc, yc〉, and

the storage Ec satisfies Ec(v = 0) = 0.

Hence, (5) is passive if there exists a C0 non-negative

function Ec : V → R, which satisfies Ec(0) = 0, such that

Ec(τ)− Ec(0) ≤
∫ τ

0

u⊤

c (t)yc(t)dt.

Definition 9. [10] A passive system (5) with storage function

Ec is said to be strictly passive if there exists a positive

definite function, called the dissipation rate, s : V → R

such that for all uc ∈ U , v(0) ∈ V , t ≥ 0

Ec(τ)− Ec(0) =

∫ τ

0

u⊤

c (t)yc(t)dt−
∫ t

0

s(v(t))dt. (7)



Passive systems encompass a very large class of systems,

in particular port Hamiltonian systems with dissipation [6],

[11], [12]. Passive systems are also positive real systems [10].

The latter can be defined as follows.

Definition 10. [10] A system (5) is said to be positive real

if for all uc ∈ U , t ≥ 0

0 ≤
∫ τ

0

u⊤

c (t)yc(t)dt (8)

whenever v(0) = 0.

In [3] it is shown that a power conserving interconnection

[12], i.e.,

u = r − yc,

y = uc,
(9)

with r ∈ R
n the new input of the system, of a impedance

energy preserving BCS, i.e., that satisfies 1
2

d
dt
‖x(t)‖2

L
=

u(t)y(t), and a linear strictly positive real (SPR) finite

dimensional system defines again a BCS on an extended

space. SPR is a more restrictive condition than strict passivity

[6]. It is possible to relax this condition on the controller and

show that the power conserving interconnection with a linear

strictly passive controller defines a BCS.

Theorem 11. [3] Let the state of the open-loop BCS satisfy
1
2

d
dt
‖x(t)‖2

L
= u(t)y(t). Consider a LTI strictly passive

finite dimensional system with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉Rm , Qc = Q⊤

c > 0 ∈ R
m × R

m. Then the

feedback interconnection of the BCS and the finite dimen-

sional system is again a BCS on the extended state space

x̃ ∈ X̃ = X×V with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L+
〈v1, Qcv2〉V . Furthermore, the operator Ae defined by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]

with

D(Ae) =
{[

x
v

]

∈
[
X
V

] ∣
∣
∣Lx ∈ HN (a, b;Rn),





f∂,Lx

e∂,Lx

v



 ∈ ker W̃D

}

,

where

W̃D =
[

(W +DcW̃ Cc)
]

generates a contraction semigroup on X̃ .

Proof: The proof is very similar to the one presented

in [3, Theorem 5.8, pp:120]. Here we only comment on

the steps of the proof and why it still holds when using

a strictly passive controller instead of strictly positive real

controller. The proof is performed by applying the Lumer-

Phillips Theorem [5, Theorem 6.1.7, pp:69], which is divided

in two parts: showing that Ae is a dissipative operator (i.e.

Re〈Ax̃, x̃〉 ≤ 0) and that ran(I −Ae) = X̃ = X × V . If the

controller is dissipative it is straightforward to show that Ae

is dissipative using the Kalman-Yakubovich-Popov (KYP)

Lemma [6], [9]. The second part of the proof, ran(I−Ae) =

X̃ , follows if the matrix (I−Ac) is non-singular. This is true

if all the eigenvalues of the matrix Ac are in the left half of

the complex plane, which is achieved if the controller has

some strict dissipation term. Booth parts of the proof hold

for SPR and strictly passive systems. �

Remark 12. In [3] the controller is also assumed SPR to

prove the asymptotic stability of the extended system. Indeed,

if the controller has a feed through term then the KYP

Lemma for linear SPR system [6] is used to prove that the

closed-loop system converges to a maximal invariant subset

equal to {0} and asymptotic stability follows from LaSalle’s

invariance principle. This is actually not necessary in the

present case since LaSalle’s invariance Theorem is not used

to prove the exponential stability (see Section IV).

Remark 13. For Theorem 11 to be fulfilled the matrices W
and W̃ should be selected such that

PW,W̃ =

[
0 I
I 0

]

.

Notice that the power preserving interconnection (9) ac-

tually defines a feedback loop, where the finite dimensional

system acts as the controller.

IV. EXPONENTIAL STABILITY

In this section it is shown that the BCS defined in Theorem

11 is exponentially stable if the finite dimensional controller

is strictly passive. For this purpose we use the same idea as

in [4] and extend Lemma 5 to the present case.

Lemma 14. Consider a BCS as described in Theorem 11

with r(t) = 0, for all t ≥ 0. Then the energy of the

system Ẽ(t) = 1
2‖x(t)‖2L+ 1

2v(t)
TQcv(t) satisfies for τ large

enough

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2
R
dt+ Emax

c , and

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2
R
dt+ Emax

c ,

(10)

where c is a positive constant that only depends on τ and

Emax
c is the maximum value of Ec for t ≥ 0.

Proof: In [4] it has been proved that the function

F (z) =

∫ τ−γ(b−z)

γ(b−z)

x⊤(t, z)L(z)x(t, z)dt

fulfils F (b) ≥ F (z)e−κ(b−a) for z ∈ [a, b] where κ is

a positive constant. On other hand due to the contraction

property of the semigroup Ẽ(t2) ≤ Ẽ(t1) for t2 ≥ t1 it is

deduced that

∫ τ−γ(b−z)

γ(b−z)

Ẽ(t)dt ≥ Ẽ(τ − γ(b− a))

∫ τ−γ(b−z)

γ(b−z)

dt

= (τ − 2γ(b− a))Ẽ(τ − γ(b− a)).



Hence we obtain

2(τ − 2γ(b− a))Ẽ(τ)

≤ 2(τ − 2γ(b− a))Ẽ(τ − γ(b− a))

≤
∫ b

a

(
∫ τ−γ(b−z)

γ(b−z)

x⊤(Lx)dt
)

dz + 2

∫ τ−γ(b−z)

γ(b−z)

Ecdt

≤
∫ b

a

Fdz + 2

∫ τ−γ(b−z)

γ(b−z)

Ecdt

≤ (b− a)F (b)eκ(b−a) + 2

∫ τ−γ(b−z)

γ(b−z)

Ecdt

≤ c1

∫ τ

0

‖(Lx)‖2
R
dt+ 2

∫ τ−γ(b−z)

γ(b−z)

Ecdt

where c1 = (b − a)‖L−1(b)‖eκ(b−a). On other hand it is

always true that
∫ τ−γ(b−z)

γ(b−z)

Ecdt ≤ (τ − 2γ(b− a))Emax′

c

where Emax′

c is the maximum value of Ec(t) for γ(b−z) ≤
t ≤ τ − γ(b − z). Denote by Emax

c the maximum value of

Ec(t) for all t ≥ 0, then it is true that Emax′

c ≤ Emax
c and

we obtain that for τ ≫ 0

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)‖2
R
dt+ Emax

c , (11)

with c(τ) = c1
2(τ−2γ(b−a)) . The second limit is obtained

similarly by using the function

F (z) =

∫ τ−γ(a−z)

γ(a−z)

x⊤(t, z)L(z)x(t, z)dt

to develop the proof. �

Theorem 15. Consider the BCS defined by Theorem 11 with

r(t) = 0, for all t ≥ 0. If the linear finite dimensional

control system is strictly passive, then the BCS system is

exponentially stable.

Proof: By Theorem 11 the energy of the infinite

dimensional system fulfils (dE/dt) = u⊤(t)y(t), or in

integral form

E(τ) =

∫ τ

0

u⊤(t)y(t)dt+ E(0).

The energy of the closed loop system is given by the sum of

the energies of the infinite and finite dimensional subsystems

and since the finite dimensional system is strictly passive it

satisfies (7) and thus

Ẽ(τ) = E(τ) + Ec(τ)

=

∫ τ

0

u⊤(t)y(t)dt+

∫ τ

0

u⊤

c (t)yc(t)−
∫ τ

0

s(t)dt

+ E(0) + Ec(0).

The subsystems are interconnected in a power conserving

way, i.e., u⊤y + u⊤
c yc = 0, hence the total energy is given

by

Ẽ(τ) = −
∫ τ

0

s(t)dt+ Ẽ(0). (12)

with Ẽ(0) = E(0) + Ec(0). From (4) we have that

|u⊤y| =
∣
∣
∣
∣
∣

[
(Lx)(t, b)
(Lx)(t, a)

]⊤

M

[
(Lx)(t, b)
(Lx)(t, a)

]
∣
∣
∣
∣
∣

≥ ǫ1

∥
∥
∥
∥

[
(Lx)(t, b)
(Lx)(t, a)

]∥
∥
∥
∥

2

≥ ǫ1‖(Lx)(t, b)‖2,

(≥ ǫ1‖(Lx)(t, a)‖2, )

(13)

for some ǫ1 > 0 since M =
[
P1 0
0 −P1

]
is symmetric and

full rank [13]. From (6), (7), (8) and the definition of the

dissipation rate we can always find a sufficiently small ǫ2 > 0
such that

∫ τ

0
s(t)dt ≥ ǫ2

∫ τ

0
|u⊤

c yc|dt. Recalling once again

that u⊤y + u⊤
c yc = 0 and combining with (13) and (10) we

have
∫ τ

0

s(t)dt ≥ ǫ

∫ τ

0

‖(Lx)(t, b)‖2dt ≥ ǫ

c(τ)
(Ẽ(τ)− Emax

c )

with ǫ = ǫ1ǫ2. Inserting this expression in (12) we deduce

that

Ẽ(τ) ≤ ǫ

c(τ)
(Emax

c − Ẽ(τ)) + Ẽ(0).

Notice that due to the contraction property of the semigroup

Emax
c < Ẽ(0) (equality would imply E(0) = 0 which in

turn implies that the system is already at a stable equilib-

rium), so it is possible to write Emax
c ≤ ǫ3Ẽ(0), for some

ǫ3 < 1. Hence we finally have

Ẽ(τ) ≤ cẼ(0),

with c =
((

ǫ3ǫ
c(τ) + 1

)/(
ǫ

c(τ) + 1
))

< 1. From this the

semigroup generated by Ae (see Theorem 11) satisfies

‖T (τ)‖ < 1, from which exponential stability follows. �

The effect of the finite dimensional strictly passive con-

troller is the injection of damping to the global system. In [4]

it has already been addressed that the exponential stability

of the BCS is related to the injection of damping through

the boundaries. It is interesting to do the remark that the

BCS described by Theorem 11 is always exponentially stable

provided that the finite dimensional subsystem is strictly

passive.

V. EXAMPLE: CONTROL OF A MICROGRIPPER

A simplified model of a micro-gripper used for DNA

manipulation [14] is presented to illustrate the previous result

(cf Figure 1).
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Fig. 1. DNA manipulation through port Hamiltonian control



The trapped DNA bundle is approximated by a mass spring

system attached at the tip of the tweezer. The arm is actuated

by using electrostatic forces generated by a comb drive

actuator attached to a suspension system. We assume that it is

only possible to measure the transversal velocity at the point

a and act by controlling the transversal force. We also assume

that the beam is clamped with respect to angular movement

at the point a. The control strategy consists in applying

a constant force F ∗
a to drive the system to the desired

equilibrium configuration v∗. The control is completed with

the transversal velocity feedback loop in order to stabilize the

system around the equilibrium v∗. The problem is similar to

the one solved in [7], [8] using energy shaping methods, but

we will exploit the port Hamiltonian structure of the global

system to define a BCS and use Theorem 15 to guarantee

exponential stability. The total system, may be divided into

three subsystems: The suspension mechanism at the base of

the gripper, the flexible arm and the DNA-bundle at the tip

of the gripper. The flexible arm is modelled as a Timoshenko

beam (infinite dimensional system) while the suspension

mechanism and the DNA-bundle may be modelled as finite

dimensional mechanical systems.

A. The Timoshenko beam

The Timoshenko beam has been widely studied as a

distributed parameter port Hamiltonian system [7] and as

BCS [2] and the exponential stability of the system has been

proved for static boundary feedback [3], [4]. The BCS is

defined as

∂

∂t







x1

x2

x3

x4






=







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







︸ ︷︷ ︸

P1

∂

∂z







Kx1
1
ρ
x2

EIx3
1
Iρ
x4







+







0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0







︸ ︷︷ ︸

P0







Kx1
1
ρ
x2

EIx3
1
Iρ
x4







where the following state (energy) variables have been

defined: x1 = ∂w
∂z

(z, t) − φ(z, t) the shear displacement,

x2 = ρ(z)∂w
∂t

(z, t) the transverse momentum distribution,

x3 = ∂φ
∂z

(z, t) the angular displacement, and x4 = Iρ
∂φ
∂t
(z, t)

the angular momentum distribution, for z ∈ (a, b), t ≥ 0,

where w(t, z) is the transverse displacement of the beam

and φ(t, z) is the rotation angle of a filament of the beam.

The coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the

mass per unit length, the rotary moment of inertia of a

cross section, Youngs modulus of elasticity, the moment of

inertia of a cross section, and the shear modulus respec-

tively. The matrices P1 and P0 defines the skew-symmetric

differential operator of order 1 acting on the state space

X = L2(a, b,R
4), J = P1

∂
∂z

+P0. The energy of the beam

is expressed in terms of the energy variables,

E =
1

2

∫ b

a

(

Kx2
1 +

1

ρ
x2
2 + EIx2

3 +
1

Iρ
x2
4

)

dz

=
1

2

∫ b

a

x(z)⊤(Lx)(z)dz =
1

2
‖x‖2L

The boundary port variables are given by [2], [3]

[
f∂,Lx

e∂,Lx

]

=















(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)
(Kx1)(b) + (Kx1)(a)

(I−1
ρ x4)(b) + (I−1

ρ x4)(a)
(EIx3)(b) + (EIx3)(a)















.

The control objective is to control the translational and

angular velocity of the DNA-bundle. However the physical

ports are given by the translational force acting at the base of

the beam (input), and the translational velocity at the base

of the beam (output). All physical ports are hence located

on the point a of the beam and directly associated with the

dynamic of the suspension mechanism and/or base of the

beam. In order to achieve that the input and output variables

of the flexible arm coincide with the physical ones we define

the following input and outputs for the beam:

u =
[
v(b) ω(b) −v(a) −ω(a)

]
,

y =
[
F (b) T (b) F (a) T (a)

]
,

which is achieved by defining

W =







1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1






,

W̃ =







0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0






.

Notice that with this choice of input and output the BCS

fulfils Theorem 11 since PW,W̃ = [ 0 I
I 0 ].

B. Suspension mechanism and DNA-bundle

The suspension mechanism and the DNA-bundle may be

modelled as ideal mass-spring-damper systems, and thus

both admit similar PHS representations. Let us denote by

the sub-index i = a the system representing the suspension

mechanism and by the sub-index i = b the system repre-

senting the DNA-bundle. Then we may write the following

PHS

v̇i = (Ji −Ri)
dEi

dvi
+ giui

yi = g⊤i
dEi

dvi
, i = a, b

where vi = [qi1 , qi2 , pi1 , pi2 ]
⊤, qi1 , qi2 are the generalized

coordinates, with qi1 the distance from the equilibrium



configuration and qi2 the rotation angle, pi1 , pi2 are the

transversal and rotational generalized momenta respectively,

Ji = −J⊤
i , Ri = R⊤

i > 0 ∈ R
4 × R

4, the interconnection

and damping matrices respectively, defined as

Ji =

[
0 I
−I 0

]

, Ri =

[
0 0
0 Ci

]

,

with Ci =
[
ci1 0
0 ci2

]

∈ R
2 × R

2, where ci1 , ci2 ∈ R are the

scalar damping coefficients corresponding to the transversal

and rotational translation respectively. The Hamiltonian of

the system is given by the kinetic and elastic energy:

Ei =
1

2

(
ki1q

2
i1
+ ki2q

2
i2

)
+

1

2

(
p2i1
mi

+
p2a2

mIi

)

where ki1 , ki2 are the translational and rotational spring coef-

ficients respectively and mi,mIi are the mass and moment of

inertia respectively. The total force acting on the suspension

mechanism, respectively the DNA bundle, is completed with

the contribution of the transversal and angular force on the

point a, respectively point b, of the beam. Hence the input

maps are gi ∈ R
4 × R

2, gi =
[
0 I

]⊤
and the inputs

ui = [ui1 , ui2 ]
⊤ ∈ R

2 may be identified with the boundary

variables of the beam at the point a, respectively b

ui =

[
ui1

ui2

]

=

[ ∂E
∂x2

(i)
∂E
∂x4

(i)

]

=

[
F (i)
T (i)

]

.

The outputs correspond to the transversal and angular veloc-

ity of the mass at the point a, respectively the point b, and

as it has seen they correspond to the inputs at the point a,

respectively point b, for the flexible arm.

The complete finite dimensional PHS may hence be

written by combining the PHS representing the suspension

mechanism and DNA-bundle,

v̇ =







0 I
−I −Cb

0

0
0 I
−I −Ca







dEc

dv
+







0 0
I 0
0 0
0 I






uc

yc =

[
0 I 0 0
0 0 0 I

]
dEc

dv

The finite dimensional PHS is a strictly passive system with

state v = [va, vb]
⊤, Hamiltonian (storage) function Ec =

Ea + Eb, input uc = [ua, ub]
⊤, supply rate w = ucyc and

quadratic dissipation rate s = dEa

dva

⊤

Ca
dEa

dva
+ dEb

dvb

⊤

Cb
dEb

dvb
.

Hence the microgripper i.e., the interconnection of the

flexible arm, suspension mechanism and DNA-bundle is a

exponentially stable system by Theorem 15.

Let us in addition assume that we include a static feedback

loop for the translational velocity of the suspension mecha-

nism. This is equivalent to the injection of damping at the

point a, which implies that the matrix Ca is changed:

C ′

a =

[
(ca1

+ α) 0
0 ca2

]

where α is the gain of the feedback loop. Hence the static

feedback loop shapes the dissipation rate s = dEa

dva

⊤

C ′
a
dEa

dva
+

dEb

dvb

⊤

Cb
dEb

dvb
implying specifically that we can increase the

damping of the system.

In [7], [8] a port-Hamiltonian controller that exploits the

Casimir functions of the system to guarantee asymptotic

stability is proposed. By Theorem 15 the controller expo-

nentially stabilizes the system if it includes some dissipation

term.

VI. CONCLUSION

Theorem 15 shows that a large class of boundary control

system are exponentially stable if they are interconnected

in a power preserving manner with a strictly passive finite

dimensional linear controller. This result adapts the expo-

nential stability proof of [4] for static control of BCS for the

case of dynamic boundary control of BCS. The approach

has been illustrated on the physical example of a partially

actuated micro-gripper for DNA manipulation. Here the BCS

is given by the model of a Timoshenko beam and the finite

dimensional controller is given by the finite dimensional

subsystems: the suspension mechanism and the DNA bundle.

Future work will deal with the experimental implementa-

tion of the present example.
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