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Abstract: Increasing the productivity of a knowledge

worker via intelligent applications requires the identification of

a user’s current work task, i.e. the current work context a user

resides in. In this work we present and evaluate machine learn-

ing based work task detection methods. By viewing a work task

as sequence of digital interaction patterns of mouse clicks and

key strokes, we present (i) a methodology for recording those

user interactions and (ii) an in-depth analysis of supervised clas-

sification models for classifying work tasks in two different sce-

narios: a task centric scenario and a user centric scenario. We

analyze different supervised classification models, feature types

and feature selection methods on a laboratory as well as a real

world data set. Results show satisfiable accuracy and high user

acceptance by using relatively simple types of features.

I. Motivation

Knowledge-intensive work plays an increasingly important

role in organizations of all types. Workdays are charac-

terized by processing and manipulating more and more

digitized information. So far, indexing and search tools have

been employed to make the stored information accessible.

However, people realized, that systems have to take the

knowledge worker’s context into account to be truly sup-

portive. As recently discussed in the information retrieval

community [1], the emphasis of future information retrieval

applications ought to be put on exploiting the user’s current

context in order to increase the accuracy of retrieval results.

Knowing the knowledge worker’s current work activities,

i.e., the work task the user resides in, allows various ways for

support. Search queries can be generated based on the user

context, submitted and the results can be ranked according

to the user’s profile and context. Furthermore, guidance

through the work process may be provided automatically

and declared experts may be suggested. Other research

groups have recently started to examine approaches that are

capable of identifying the current work task of a user. The

TaskTracer project [3] at Oregon State University monitors

human computer interactions with computer desktops and

provides data for the machine learning system TaskPredic-

tor [14]. Three major processing steps are incorporated

into the system: (i) feature selection by mutual information,

(ii) classification based on confidence threshold and (iii)

classification with hybrid Naı̈ve Bayes and SVM classifiers.

The SWISH [11] system, developed at Microsoft Research,

approaches user task predictions by clustering desktop

windows on (i) window titles and (ii) window sequence.

The basic assumption is that windows related to each other

belong to the same task and that relations can be found

by analyzing the window titles. Drezde et al. [4] applied

various, similarity based methods to categorize emails by

activities yielding promising results. Kellar et al. [9] noted

that the knowledge of a user’s current task type allows

information filtering systems to apply useful measures for

user interest. They focused on discovering features and

studying their predictability for specific task types in web

browsers. While previous work demonstrated the feasibility

of work task classification, important properties like differ-

ences among learning techniques, feature representation,

and predictable kinds of tasks are yet unclear.

In this work, we analyze different machine learning tech-

niques and feature types for work task classification and

compare them to results reported in literature. Due to miss-

ing standard and real world test data sets we present our

own data acquisition strategy and the underlying data model

which contains content and interaction based feature types.

Based on the recorded real world interaction patterns, we

• compare the accuracy of standard machine learning

techniques

• compare the impact of entropy based feature selection

• analyze the impact of content based and interaction

based feature types

• compare different scenarios for work task classification

The data sets used for evaluation reflect two different sce-

narios. In the first scenario, referred to as task centric sce-

nario, we defined a set of tasks users had to work on. After



a training phase, the system automatically identifies the cur-

rent work task from this set. Since task categories are given

a-priori, we refer to this scenario as task centric scenario.

This scenario allows us to analyze whether our approach is

capable to identify the same tasks over different groups of

users, if trained accordingly.

In scenario two, referred to as user centric scenario, work

tasks are guessed a-priori by the system and labeled by the

user afterwards. Our task here is to accurately predict the

user given label, if a similar task occurs again. Since the user

is allowed to give what ever label she wants, this scenario

allows us to evaluate whether our approach can capture the

work behavior of a single user.

Our results demonstrate to favor the Naı̈ve Bayes and

the k-Nearest Neighbor approaches over Support Vector

Machines and support findings of other groups, that window

title based features are the most suitable form of representa-

tion. Overall, our work shows the maturity and applicability

of work task classification in practical, real world scenarios.

The paper is structured as follows: The methodology that

we followed to create a resource for task classification is de-

scribed in Sections II. Data sets used, test design and ex-

perimental results for the task centric scenario are presented

in Section III, while results on the user-centric scenario are

presented in Section IV. The findings are discussed and

compared to two other task classification approaches in Sec-

tion V. Section VI contains concluding remarks and an out-

look on future work.

II. Work Pattern Acquisition

This section describes the steps that are necessary getting

from the recorded, raw data to the data that is used in our

experiments and which may be used in a real world appli-

cation. Therefore, we had to address that (i) the amount of

data quickly reaches a critical value, if every single click is

monitored, (ii) data is heterogeneous in nature, e.g., sequence

data, textual contents, nominal values, (iii) data is noisy and

(iv) interaction patterns tend to be very user specific. In or-

der to cope with these challenges, we introduce a data model

that allows data preprocessing, data aggregation and data ab-

straction.

A. Data Acquisition

Data acquisition starts on the lowest level on which the user

interaction context is automatically captured. The user in-

teraction context comprises all interactions of the user with

resources, applications and the operating system on the com-

puter desktop. The data about these interactions are re-

ferred to as events. Currently, monitored low level events

are keystrokes, mouse movements and mouse clicks. Fur-

thermore, for some applications it is possible to record the

content managed by the application. In utilizing these func-

tionality it is possible to access the content directly, when the

user focuses such a supported application. Filename, author,

organization, used template, document structure, whole doc-

ument content, page number, window title or even just the

content that the user currently sees on the screen are only

small pieces of the data we ground the context construction

on. For a more detailed description of the monitoring pro-

cess, we refer to [7, 12].

B. Data Model

Monitoring low level events results in massive amount data,

intractable to be analyzed by machine learning techniques

in near real time. So the question on how to cope with this

mass of data has to be addressed.

Figure 1 depicts our aggregation model and transforma-

tion techniques used for aggregating low level events to work

tasks. In a first step, a predefined static rule set aggregates

low level event sequences to so-called event blocks which

can be understood as intermediate representation form

which groups together interaction on the same resource. An

example of such a static mapping can be as follows: The

user opens MS Windows and writes a paragraph, yielding

numerous mouse click and keystroke events. This set of

events is combined to an event block called edit a word

document. The actual structure depends on the nature of an

event block, i.e., which types of events it was aggregated

over, whether an application provides particular data or not.

Especially application-independent event blocks, like for

example console events, rarely contain data at all.

In a second step before classifying work tasks, the event

blocks are automatically clustered based on their content re-

sulting in event block clusters. Event blocks that share a sig-

nificant amount of words are likely to end up in the same

cluster. The event block clusters are validated and labeled by

the user thus becoming task instances and the ground truth

for learning the users task model.

Figure. 1: Relationships between events, event blocks and

tasks for context detection.

C. Data Description

In our experiments we used following four fields for the

event blocks: Application Name, Content, Window Title

and Semantic Type. Besides the semantic representa-

tion of an event block, the interior structure of an event

block consists of 31 different fields, 13 general and 18

application-dependent ones. Taking only 4 out of 31 fields

into account needs explanation and justification. Analysis of

the field characteristics showed that fields containing content
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(non-empty fields) are unevenly distributed. The majority

of the empty fields are application dependent. Furthermore,

we opted for those fields providing data that is uniformly

distributed over all event blocks, so to say adequately

covering the entire data set.

The field Application Name, abbreviated as A, contains

the name of the application the user is working with. For

instance, if the user reads a document in Adobe Acrobat

Reader, the field will contain the value acrord. Sensors

for following applications have been implemented: MS

Word, MS PowerPoint, MS Excel, MS Internet Explorer.

In addition, a file system sensor, a clipboard sensor and a

generic Windows XP system sensor allow for 14 different

entries in the field Application Name.

The field Content, abbreviated as C, stores the language

dependent content of the current window, which can be the

text on the current MS PowerPoint slide or the content of

the website the user is viewing. In our data set German and

English content occurs, even mixed, e.g., a webpage with

German content and English navigation elements. The raw

Content field includes also special characters, markup and

end-of-line characters.

The field Window Title, abbreviated as W , contains the

title of the current window. Depending on the application

Window Title may (e.g. MS Word) or may not (e.g. Novel

Groupwise, new email window) include the name of the

application.

The field Semantic Type, abbreviated as S, stores a rule-

based generated type taking on three different values. The

values indicate whether a document is (i) read or (ii) edited

by the user, or whether the state is (iii) unknown. The assign-

ment of a semantic type is application dependent. Only MS

Word, MS PowerPoint and MS Excel sensors are capable of

allotting the semantic types (i) reading or (ii) writing. The

discrimination is based on simple rules. If one key stroke

is detected, the whole event block is classified as writing,

otherwise as reading. Event blocks generated by other appli-

cations receive the semantic type unknown.

D. Data Preprocessing

Textual raw contents in the fields A, C, and W have been pre-

processed by the following 4 steps (in this sequence): (i) re-

move EOL (end-of-line), (ii) remove markup, e.g., \&lg and

![CDATA, (iii) remove all characters but letters, (iv) remove

German and English stopwords. As stated above the fields

may contain words from mixed languages, so that stemming

algorithm are hardly applicable. Preliminary experiments did

not show any significant differences in classification perfor-

mance and thus we omitted stemming. For each event block

we formed a ’bag of words’ representation for all fields and

calculated the TF-IDF1 measure. We used the Information

Gain (IG) measure to rank features by their discriminative

power. Information Gain is among the most common mea-

sures for feature selection in machine learning.

1term frequency−inverse document frequency

E. Training Data Acquisition

Two different scenarios have been considered to acquire

training data. Scenario one utilizes a task centric point of

view. Herein, we defined a fixed set of tasks a controlled

user group has to work on. The user marks the begin of a

task and the end of the task after its completion. This allows

us to explore whether our system is capable to correclty

identify the same tasks over a different group of users, i.e.

that it generalizes over different working behaviours.

The second scenario, named user centric scenario, can

be seen from a single user’s perspective. To acquire our

test data set, the untrained systems starts to record user

interactions, aggregate them to event blocks, cluster those

event blocks and provide the cluster result as a-priori task

suggestion to the user. The user labels the task suggestions

and may manually rearrange event blocks via the user

interface. This experiment allows us to analyse whether

our approach can capture the work behaviour of a single user.

The following sections outline in detail the data set struc-

ture, analyse data set properties and provide accuracy results

for different machine learning techniques.

III. Task Centric Scenario

A. Data Set Structure

In the task centric scenario we selected five typical task mod-

els from our domain for the experiment. Three task models

were routine tasks (Task 1: “Filling in the official journey

form”, Task 2: “Filling in the cost recompense form for the

official journey”, Task 3: “Creating and handing in an appli-

cation for leave”) and two were knowledge-intensive tasks

(Task 4: “Planning an official journey”, Task 5: “Organizing

a project meeting”). Before we started the experiment we did

an online questionnaire to confirm that the descriptions of the

task models are clear to the users and that the routine task are

tasks that have already been executed by the employees sev-

eral times before. The dataset we gained by the methods and

techniques presented in the previous sections has 218 task

instances (Task 1: 55, Task 2: 45, Task 3: 51, Task 4: 52,

Task 5: 15) from 14 participants. Half of the task instances

were collected on a single laboratory computer common to

all users and the other half on the employees’ own work sta-

tion computers.

Our experiment was carried out in the knowledge-

intensive domain of the applied research. It was preceded

by an analysis phase, during which several requirements

were defined, by interviewing knowledge workers. Users re-

quired to know what kind of data was recorded to be able

to access and modify it and that the evaluation results were

anonymized. They could practice with the recording tool for

a week before the experiment in order to reduce the bias of

unfamiliarity during the experiment. This study/experiment

was exploratory, the comparison was within subjects and the

manipulations were achieved by the executed task (five dif-

ferent tasks).

Manipulation - Task: The manipulation resulted from

varying the tasks themselves. During a preliminary meet-

ing, the participants of the experiment agreed on a selec-
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tion of five tasks typical of the knowledge worker domain.

These tasks had different characteristics in terms of complex-

ity, estimated execution time, number of involved resources

or granularity. A short questionnaire was issued before start-

ing the experiment to make sure that the probands understood

the tasks they had to perform, and also to have them thinking

about the tasks before they actually executed them.

During the experiment, for capturing the users’ usage data,

we have used multiple sensors [13] that record the user in-

teractions with resources and applications on the computer

desktop. Table 1 gives an overview of the number of in-

stances, the number of attributes (the number of different

terms in the term vector) and the number of classes for se-

lected field combinations for the used dataset (Dataset T).

B. Experimental Data

Constructing training instances for the machine learning al-

gorithms is done on the task level. This means that each

task represents a training instance for a specific class to be

learned. A class corresponds to a specific task model. Hav-

ing multiple task models hence results in a multi-class classi-

fication problem. A training instance for a class is built from

features and feature combinations for a task. An example

for the window title feature is the construction of a ’bag of

words’ consisting of all window titles of applications the user

has interacted with during the execution of a task.

Table 1: Overview of the number of attributes, instances and

classes for all tasks for selected field combinations (columns)

for Dataset T of the task centric scenario.

f A C W ACW

#ATTRIB 25 1823 621 2923

#INST 218 218 218 218

#CLASSES 5 5 5 5

C. Experimental Design

In our experiment we evaluated the influence of three pa-

rameters on the task classification performance: (i) the num-

ber of features, (ii) the classification model and (iii) the fea-

ture category. The WEKA toolkit [15] and the WEKA in-

tegration [6] of the libSVM [2] provided us with the tool

set to study the performance of the Naı̈ve Bayes (NB), Lin-

ear Support Vector Machine (SVM) with cost parameter

c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}, and k-Nearest

Neighbor (KNN-k) with k ∈ {1, 5, 10} algorithm. The in-

terval for the cost parameter was chosen according to the lib-

SVM practical guide at [2].

For each classifier algorithm l ∈ L and each fea-

ture category f ∈ F we selected the g attributes hav-

ing the highest IG value to obtain our dataset. As

values for g 50 different measure points were used.

Half of them were equally distributed over the available

number of attributes with an upper bound of 5000 at-

tributes. The other half was defined by G = {3, 5, 10,

25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 500, 750, 1000,

1500, 2000, 2500, 3000, 3500, 4000, 5000, 7500, 10000}.

These measuring points were chosen because of two reasons:

(i) research in the task detection area reported that good re-

sults have been achieved for a lower number of attributes,

more specifically between 200-300 attributes [14, 10] and (ii)

to also investigate the task classification performance of the

learning algorithms for higher number of attributes as well.

Stratified 10-fold cross-validation was applied and statistical

values for each fold were computed. In addition, the mean

and standard deviation of all values were calculated across

all folds. We measured the accuracy (a) of the used algo-

rithms, the number of attributes (g), the micro precision (p)

and micro recall (r). In comparison to the user centric sce-

nario there was no evaluation of the Semantic Type feature.

D. Results of the Task Centric Scenario

Table 2 shows the results for the task centric scenario.

For each field combination/classifier pair we selected the

number of features, where the accuracy of the classifier

reached a maximum. If two values coincided at maximum,

the combination with fewer features was chosen. Table 2

displays the best results achieved in terms of accuracy and

corresponding features for each field combination/classifier

pair. Maximal performance values for each field combina-

tion are highlighted in boldface.

In Table 3 the three topmost values for each dataset are listed

allowing a better comparison of best-performing classifiers,

the field combination, the mean accuracy Â, the standard

deviation of the accuracy σ(A) and the number of features.

Table 3: Overview of the best results for the task centric sce-

nario. Showing the field combination (f ), the classifier (l),

the accuracy (Â), the standard deviation (σ(A)) and the num-

ber of features (g).

RANK f l Â σ(A) g

1 ACW NB 83.51 8.69 300

2 CW NB 82.58 6.69 750

3 AW KNN-5 79.33 5.52 76

4 W NB 78.87 7.25 100

5 AC KNN-10 64.72 7.85 126

6 C KNN-1 63.38 9.17 125

7 A SVM 42.16 11.21 25

IV. User Centric Scenario

A. Data Set Structure

In the user centric scenario we recorded the work behaviour

of a single user in a governmental domain over a period of

two months. The user was requested to label the clustered

event blocks with her current work task. If no label or an

incorrect label was automatically suggested the correct label

was assigned by the user. In this scenario task labelling is a

subjective matter; in contrast to our task centric scenario and

other approaches [11, 4, 3].

Such unrestricted labelling yields to syntactically different

tasks with the same semantic meaning. One such example is

author an article vs. write an article. To harmonise this syn-

tactical heterogeneity, we manually identified misspellings in
4



Table 2: Classifier Performance for all field combinations for Dataset T (task centric). The table shows the maximum

accuracy (averaged over all cross-validation runs) and the corresponding number of selected features.

KNN-1 KNN-5 KNN-10 NB SVM-lin

A 37.12% (5) 35.02% (24) 36.23% (24) 39.94% (24) 42.16% (24)

C 63.38(125) 62.88% (75) 63.23% (125) 62.79% (75) 60.15% (75)

W 73.92% (75) 73.98% (100) 77.53% (75) 78.87% (100) 74.37% (75)

AC 64.16% (200) 64.70% (150) 64.72% (125) 62.88% (2496) 62.97% (250)

AW 77.10% (75) 79.33% (75) 78.44% (75) 77.81% (200) 75.28% (75)

CW 76.13% (250) 75.76% (200) 75.28% (175) 82.58% (750) 76.19% (50)

ACW 74.81% (200) 74.78% (250) 75.17% (200) 83.51% (300) 76.60% (50)

a post processing step and aggregated user defined labels to

the task categories outlined below. Hence, four different task

sets have been created from the acquired data. Set UI is ac-

tivity driven, i.e., giving priority to the own tasks at hand and

reduces the user labelled tasks to the 5 most important task.

Set UII is process driven, i.e., a well defined step in a process

and incorporates a semantic division of the event blocks.

Set UI consists of the following 5 tasks:

1. email - writing, reading, archiving email messages

2. paper - writing papers and articles

3. research - research to a given field

4. documentation - writing project documentation and

protocols

5. information - collect information

Set UII consists of the following 4 sem antic tasks:

1. com - communication related event blocks, such as

reading and writing emails

2. org - organisational and administrative things, such as

writing timetables, make appointments

3. write - writing documents, articles, papers

4. read - reading internet pages, documents etc.

B. Data Set Analysis

We conducted experiments using different combinations of

event block fields (see Section II-C). Depending on the com-

binations, the necessary field contents are concatenated to

one string and preprocessing steps are applied. Further, the

user labels are mapped to task labels according to Section II-

E yielding Dataset UI and UII. There are cases in which event

blocks are removed from the data set. Firstly, if no mapping

from the user label to a task is found. Secondly, if the in-

stance contains no data at all. Hence, field combinations dif-

fer in the number of instances. Table 4 gives an overview of

the number of instances, the number of attributes (the num-

ber of different terms in the term vector) and the number of

classes for selected field combinations for the used datasets.

C. Experimental Design

In our experiments we evaluated the influence of three

parameters: (i) the number of features, (ii) the classification

Table 4: Dataset UI & UII: Overview of the number of at-

tributes, instances and classes for all event blocks for selected

field combinations (columns) for Dataset UI and UII (rows).

SET f A C S W ACSW

#ATTRIB 14 3601 4 253 3706

UI #INST 349 170 77 307 349

#CLASSES 5 5 5 5 5

#ATTRIB 14 3718 4 356 3827

UII #INST 406 196 77 266 406

#CLASSES 4 4 4 4 4

model and (iii) the field combination.

We compared three classification models - Naı̈ve Bayes

(NB), Support Vector Machines (SVM) and k-Nearest

Neighbour (KNN). A Naı̈ve Bayes classifier was chosen be-

cause of its simplicity and effectiveness. Furthermore, Naı̈ve

Bayes relies on the global data distribution, being robust and

therefore less prone to noise. SVMs, besides performing well

with textual data [8], put more weight to training data close

to the decision boundary. Here, a linear kernel was applied

- according to [5] the corresponding feature space possesses

enough discrimination power. As representative for a non-

linear, more local classifier, we opted for the KNN, and set

the number of neighbours k ∈ {1, 5, 10} to achieve differ-

ent complexities of the decision boundary. The WEKA ma-

chine learning library [15] provided the necessary tools. The

WEKA integration [6] of the libSVM [2] allowed the usage

of a SVM as well.

Cross-validation has been used to obtain statistical sound

experimental results for evaluating possible combinations of

fields, number of features and classification models. L repre-

sents the set of all classifiers, L = {KNN-1, KNN-5, KNN-

10, NB, SVM-lin}. Fifteen different field combinations P

were taken into account resulting from forming the power

set P ∈ Π(F ) \ ∅, where F = {A, C,S,W}. For each

classifier l ∈ L on each field combination f ∈ P we se-

lected the g attributes having the highest IG value to obtain

our dataset. The value g was set to g = 1, 2, 3, . . . , 100% of

all available attributes (the total number of attributes depends

on the field combination). Stratified 10-fold cross-validation

was applied and statistical values for each fold were com-

puted. We evaluated the accuracy of the used techniques and

for comparison with related work precision/recall measures.

In addition, mean and standard deviation of all values were

calculated across all folds.
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D. Results of the User Centric Scenario

Tables 5 and 6 show the results for the Dataset UI and UII.

For each field combination/classifier pair we selected the

number of features, where the accuracy of the classifier

reached a maximum. If two values coincided at maxi-

mum, the combination with fewer features was chosen.

Tables 5 and 6 display the best results achieved in terms

of accuracy and corresponding features for each field

combination/classifier pair. Maximal performance values for

each field combination are highlighted in boldface.

In Table 7 the three topmost values for each user centric

dataset are listed allowing a better comparison of best-

performing classifiers, the field combination, the mean

accuracy Â, the standard deviation of the accuracy σ(A) and

the number of features.

Table 7: Overview of the best results for the two user centric

datasets Dataset UI and Dataset UII. This table displays the

field combination (f ), the classifier (l), the accuracy (Â), the

standard deviation (σ(A)) and the number of features (g) for

the three topmost accuracy values.

SET RANK f l Â σ(A) g

1 SC KNN-1 74.51 9.51 108

UI 2 C KNN-5 74.12 7.94 144

3 W KNN-10 73.60 8.23 156

1 W KNN-1 76.42 7.90 188

UII 2 AW KNN-10 74.90 8.08 230

3 WS SVM-LIN 74.74 4.45 74

V. Discussion

The results of our experiments need to be interpreted in

order to be applicable in similar settings. Our analysis

concentrates on determining the impact of feature selection,

the field combination and the classification model.

A. Effect of Feature Selection

Ranking the features by discrimination capability and

handing them over allows to build classification models

that achieve high accuracies. In the evaluation of the task

centric secnario the best runs of the classifiers resulted from

only up to 10% (25 to 300 attributes) of the maximum

number of attributes. The only exception was the CW

feature combination which used 750 attributes (30% of all

attributes). The best performance in terms of accuracy has

been achieved with 300 attributes (see Table 3). The results

in Table 7 similarily reflect the effectiveness of feature

selection. Regarding the evaluation of the user centric

scenario only 2-6% of the total number of features sufficed

for achieving the highest accuracy values. Our findings

confirm the one of [14] and [10], that successful work task

classification requires rather few features.

B. Effect of Field Combination

Each field is capable of adding information that might be

valuable for separating the classes. Although the datasets

differ from each other in terms of task classes and semantics,

the single fields Content and Window Title performed best

in most runs. Consequently, the same fields occur in field

combinations that reached highest accuracies. In contrast,

fields that performed poorly as individuals, e.g., the Appli-

cation Name, seldom boost the classification in combination

with others. Considering the overall performance, we

conclude that accurate classification results can be achieved

by taking only the Window Title into account confirming

the outcomes of SWISH. We refer to the results of the

task and user centric scenario to the Tables 2, 3, 5 and 6

respectively. Our results reveal that nearly all classification

models reached top accuracies when using the window title

tield W .

C. Effect of Classifier

In case of the user centric scenario, KNN-5, KNN-1 and lin-

ear SVM’s had an advandtage over the Naı̈ve Bayes classifier

(see Table 7) with rather low differences. In the task centric

scenario, again KNN-5 achieves rather good results. In con-

trast to the user centric scenario however, linear SVM stay

behind to a large degree and Naı̈ve Bayes achieve the best re-

sults (see Table 3). Noteably, the differences between Naı̈ve

Bayes and SVM runs in the user centric scenario are smaller

compared to the differences in the task centric run. This is

especially true for runs where the SVM outperforms Naı̈ve

Bayes. In constrat to that, differences between Naı̈ve Bayes

and SVM are larger in the task centric scenario, especially in

the best performing runs.

Overall, our results point the conclusion that Naı̈ve Bayes

and k-NN classifiers are more robust than SVM’s regarding

work task classification.

D. Comparison with other Approaches

Firstly, we address the main differences to the TaskPredictor

project (see [14] for further detail). (i) The task labelling

is restricted by offering only choices coming from a drop

down box. In our user centric scneario the user was free

in labelling her tasks in her own, personal way. (ii) Only

window title, file path and URL are taken into account for

the prediction task. (iii) There are no experiments mentioned

considering different numbers of features, always used a

fixed number of features was used, i.e., 200 features. (iv)

The prediction results achieved a precision of 0.8 (see

Table 8). It is not determinable, whether micro or macro

precision was calculated. Furthermore, they introduced the

term coverage specifying the degree of discarding certain

test examples from being classified.

Secondly, we compare our approach to the SWISH system

(see [11]). The features in SWISH are restricted to the

terms obtained from window titles. When focusing on the

optimisation of the recall measure, they achieved a precision

of 0.49 and a recall of 0.72. In Table 8 the key data of both

evaluations is compared. The number of features used was
6



Table 5: Classifier Performance for all field combinations for Dataset UI. The table shows the maximum accuracy (averaged

over all cross-validation runs) and the corresponding number of selected features.

KNN-1 KNN-5 KNN-10 NB SVM-lin

A 55.06% (7) 55.03% (5) 55.03% (5) 55.03% (5) 55.02% (5)

C 72.35% (144) 74.12% (144) 73.53% (180) 65.29% (144) 69.41% (72)

S 44.29% (3) 44.29% (3) 44.64% (3) 44.46% (1) 42.86% (1)

W 73.30% (168) 73.26% (158) 73.60% (156) 69.68% (252) 71.95% (40)

AC 65.29% (864) 65.59% (720) 64.49% (1224) 65.62% (252) 65.04% (216)

AS 55.32% (13) 55.35% (10) 55.34% (6) 55.04% (4) 55.03% (5)

AW 70.81% (250) 71.06% (164) 71.08% (172) 67.36% (62) 71.07% (60)

SC 74.51% (108) 73.33% (108) 73.92% (72) 66.44% (144) 67.75% (108)

WC 69.25% (2232) 69.22% (2700) 68.94% (2988) 68.62% (108) 71.23% (360)

WS 72.02% (154) 72.66% (160) 71.97% (244) 70.39% (244) 72.39% (40)

AWC 67.61% (1813) 67.34% (629) 67.34% (1739) 66.18% (777) 68.79% (259)

AWS 69.95% (124) 69.66% (122) 69.90% (144) 63.91% (266) 71.66% (68)

ASC 64.20% (1368) 64.15% (720) 64.18% (1188) 63.30% (684) 65.92% (252)

WSC 70.59% (2232) 70.88% (3672) 71.18% (3312) 69.57% (288) 71.53% (360)

AWSC 69.03% (3404) 69.35% (3256) 68.80% (3404) 66.21% (185) 69.31% (296)

Table 6: Classifier Performance for all field combinations for Dataset UII. The table shows the maximum accuracy (averaged

over all cross-validation runs) and the corresponding number of selected features.

KNN-1 KNN-5 KNN-10 NB SVM-lin

A 57.17% (3) 57.18% (3) 57.16% (4) 57.18% (6) 57.16% (5)

C 72.95% (222) 73.05% (2516) 74.03% (2553) 67.89% (333) 65.82% (74)

S 74.46% (1) 73.93% (1) 74.29% (1) 74.46% (3) 74.46% (1)

W 76.42% (188) 75.89% (192) 76.17% (214) 70.27% (64) 74.44% (130)

AC 65.77% (703) 65.74% (2516) 65.79% (518) 65.27% (37) 64.32% (148)

AS 57.20% (7) 57.19% (14) 57.17% (8) 57.16% (3) 57.17% (10)

AW 74.65% (224) 74.40% (226) 74.90% (230) 69.24% (250) 73.62% (108)

SC 72.29% (3404) 71.24% (3404) 71.71% (3478) 70.29% (37) 66.43% (37)

WC 71.02% (2394) 71.32% (1672) 71.61% (2394) 63.23% (76) 69.33% (38)

WS 74.44% (86) 74.48% (96) 74.18% (188) 68.56% (158) 74.74% (74)

AWC 72.87% (266) 71.70% (304) 72.42% (266) 66.75% (76) 68.69% (76)

AWS 74.12% (194) 73.70% (184) 73.87% (174) 61.58% (106) 73.88% (102)

ASC 65.28% (629) 65.57% (1739) 64.79% (1702) 60.38% (148) 65.02% (111)

WSC 72.43% (2622) 72.98% (3154) 72.44% (1330) 62.69% (76) 68.82% (114)

AWSC 72.41% (3686) 71.95% (3420) 71.98% (2622) 63.57% (114) 68.73% (190)

not determinable. The clusters generated in SWISH such as

buying a book of Harry Potter do not seem to generalise

well. The keywords of this cluster are too specific to allow

an abstraction for other books. In our setting we emphasise

general task classes as for instance research and write.

Table 8: Comparing SWISH (S), participants FA and FB of

the TaskPredictor system, and the results for DataSet UI and

UII of our approach. Showing the field combinations (f ), the

classification model (l), the number of tasks (t), the number

of features (g) as well as the precision π and recall ρ values.

DATA f l t g π ρ

T ACW NB 5 300 0.95 0.85

UI W KNN 5 156 0.91 0.75

UII W KNN 4 188 0.90 0.74

SWI W PLSI 5 (ALL) 0.49 0.72

FA WPU3 NB/SVM 96 200 0.84
N.A.

FB WPU3 NB/SVM 81 200 0.85
N.A.

On the whole, we achieved significantly better preci-

sion/recall values (see Table 8). Partly responsible for the

performance decrease could be the differing granularity of

the task classes, being more general in our case. In contrast to

the other approaches, different field combinations and their

influences on the task categorisation were analysed. Based

on our findings, we confirm the field choice W of TaskPre-

dictor and SWISH.

VI. Conclusions and Future Work

Our contribution comprises three major statements that are

based on a thorough analysis of the conducted experiments.

• Task classification can be accurately performed by ap-

plying machine learning techniques to the captured user

interaction context. This we showed in two independent

scenarios (task and user centric) for different tasks and

users in which we reached a high accuracy in detecting

3W- window title, P - folder path, U - URI
4at a coverage of 0.1
5at a coverage of 0.2
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the user’s tasks with our approach.

• Our findings confirm the feature type choice of three

other research groups, which is the good discriminative

power of the window title feature.

• We highlighted that standard machine learning tech-

niques suffice to extract the context in order to support

the knowledge worker.

In the presented work we studied two domain independent

datasets for training and evaluation: (i) from a large scale lab-

oratory experiment with 14 participants in which we put the

focus on tasks and (ii) from a single user of a real world set-

ting who had complete freedom in labeling the tasks. Since

two datasets are not sufficient for reliably generalizing our

findings the acquisition of more data in other settings with

multiple tasks and users is currently in progress. We are go-

ing to evaluate our methodology on this enlarged data set.

Our design allows for extending the capability of the cur-

rently available sensors as well as easiliy adding further sen-

sors, if it is required. Still, it would be interesting to add sen-

sors that are capable of capturing telephone conversations or

meeting discussions. Monitoring the physical state of knowl-

edge workers to enrich the context by an additional dimen-

sion is not far fetched any more.

Finally, a reassessment of the feature creation process is

to be considered. Instead of mixing features of all fields,

a separating them in combination with different weighting

schemes could be conceivable. A second approach would be

to take structure into account and applying SVMs, where this

additional information can be embedded into the kernel.

Future work also has to consider general, user indepen-

dent task models and boostrapping methods. Both aspects

are central for high user satisfaction. Therefore, we are work-

ing on a ontology-based user interaction context model for

representing, automatically capturing and reasoning about

the user’s context. Exploiting the ontology peculiarities and

structure for feature engineering in order to enhance task de-

tection performance seems to be a fruitful extension in this

direction. Furthermore, exchanging classification models be-

tween knowledge workers, especially between those with

similar work styles and tasks may help to overcome the data

sparsity problem. Both extensions raise a number of inter-

esting questions and opportunities for further research in the

areas of knowledge work, personal information mangement

as well as in applied machine learning.
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