Diffusion Weighted Image Denoising Using Overcomplete Local PCA

Abstract : Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00871777
Contributeur : Pierrick Coupé <>
Soumis le : jeudi 10 octobre 2013 - 14:33:40
Dernière modification le : mercredi 12 octobre 2016 - 01:21:41
Document(s) archivé(s) le : samedi 11 janvier 2014 - 04:20:47

Fichier

Manjon2013_LPCA_plos_one.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

José Manjón, Pierrick Coupé, Luis Concha, Antoni Buades, Louis Collins, et al.. Diffusion Weighted Image Denoising Using Overcomplete Local PCA. PLoS ONE, Public Library of Science, 2013, 8 (9), pp.e73021. <10.1371/journal.pone.0073021>. <hal-00871777>

Partager

Métriques

Consultations de
la notice

134

Téléchargements du document

365