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ABSTRACT

One of the strength of Eclipse, the well-known open platform
for software development, is its extensibility made possi-
ble by the built-in pluggability mechanisms. However those
pluggability mechanisms only reveal their full potential when
extensions created by others are made easy to distribute and
obtain. The purpose of Eclipse p2 project is to build a plat-
form addressing the challenges of distribution and obtention
of Eclipse and its extensions, which poses the same depen-
dency management issues than for component based sys-
tems. This paper focuses on the dependency management
aspect of p2. It describes the metadata used to express
dependencies, the overall functioning of our resolver and a
description of our propositional constraints based encoding.
To conclude we describe the challenges to address in future
releases.

Categories and Subject Descriptors

D.2.7 [ Distribution, Maintenance, and Enhancement]:
Extensibility; D.2.13 [Reusable Software]|: Reusable li-
braries; F.4.1 [Mathematical Logic]: Logic and constraint
programming

General Terms

Algorithms, Design, Experimentation

Keywords

OSGi, dependency management, boolean encoding

1. INTRODUCTION

Eclipse is a very popular open platform mainly written in
Java and designed from the ground up as an integration plat-
form for software development tools but also for rich client
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applications [13]. As the Eclipse ecosystem becomes more
and more important, the Eclipse platform itself and the ver-
tical platforms built on Eclipse all rely on the concept of
extensibility, and as such the necessity of a mechanism to
acquire those extensions is primordial. To that end, almost
since its inception, Eclipse featured an extension acquisition
mechanism named Update Manager. However over time, as
inter plug-in dependencies became more complex and ex-
pressed at a finer grain, and more versions of each compo-
nent was made available, limitations were being discovered
in Update Manager which were hindering the adoption and
retention of Eclipse. The term “plug-in hell” was coined. It
is at that time that we started to work on Eclipse p2 with
the goal of building a “right-grained” provisioning platform
attempting to address the challenges that Update Manager
had been faced with.

One of the first challenge was heterogeneity in the set of
things being deployed since over time it had become clear
that most OSGi- and Eclipse-based applications needed to
have a manageable way to interact with their environment
(e.g JRE, Windows registry keys, etc.).

Second was the need to address in one platform the diver-
sity of provisioning scenarios and offer a solution that would
work against controlled repositories -similar to the case of
linux packages managed by a specific Linux distribution- or
uncontrolled repositories, would allow for fully automated
solutions or user-driven ones, or would sport the delivery of
extensions as well as complete products.

Finally, and the most important challenge, was to solve
the “plug-in hell” that was partially rooted in the non mod-
ular way of acquiring components since Update Manager
forced extensions to be installed by a special abstraction
one level above the actual extension itself. The term “right-
grained” provisioning is a response to this problem and in-
dicates that p2 is not an obstruction to the granularity of
what a user would want to make available or obtain.

In order to achieve this goal of “right-grained” provision-
ing, the efficiency, reliability and scalability of the depen-
dency resolver was key. Having learnt from our experi-
ence of authoring the OSGi runtime resolver for Equinox,
it was obvious that we would need to base our dependency
analysis mechanism on proven solver techniques. Coinciden-
tally, later that year, the work of OPIUM[16] and EDOSJ[12]
backed up our intuition on the usability and maturity of
a SAT-based approach to address the problem. The depen-
dency problem for Eclipse is closer to the problem addressed
by the follow-up to EDOS project, the Mancoosi Project[1,
15], that is the problem of updating complex open source en-



vironments. Nevertheless, dependency constraints[3] stud-
ied in both cases are significantly different. In this paper
we are presenting the p2 metadata and the motivation for
some of these constructs, detail the implementation of our
resolver and conclude by the challenges we are interested in
addressing in future releases.

2. P2 METADATA

Core to the majority of installers that deal with compos-
able systems (e.g RPM, Debian, etc.) lies a concept of meta-
data. One of the goals of this metadata, and the point of
focus of this paper, is to capture the dependencies that ex-
ist between the components of the system and thus to find
missing dependencies or to validate dependencies of a sys-
tem before it is being modified. As described previously, p2
is intended to deal with more than just the typical Eclipse
constructs of OSGi bundles. As such, despite the presence
of dependency information in the OSGi bundles composing
most of Eclipse applications, p2 abstracts dependencies from
the elements being delivered in an entity called an Installable
Unit (also referred to as IU). We now introduce the three
kinds of installable units that p2 defines.

2.1 Anatomy of an installable unit

An installable unit, the simplest construct, has the follow-
ing attributes:

An identifier A string naming the installable unit.

A version The version of the installable unit. The combi-
nation identifier and version is treated like a unique ID.
We will refer to versions of an installable unit to mean
a set of installable unit sharing the same identifier but
a different version attribute.

A set of capabilities A capability is the way for the in-
stallable unit to expose to the rest of the world what
it has to offer. This is just a namespace, a name and a
version. Namespace and name are strings. The names-
pace is here to prevent name collision and avoid having
everyone adhere to name mangling conventions.

A set of requirements A conjunction of requirements. A
requirement is the way for the IU to express its needs.
Requirements are satisfied by capabilities. A require-
ment is composed of a namespace, a name and a ver-
sion range . In addition to these usual concepts, a
requirement can have a filter (under the form of an
LDAP filter [8]) which allows for its enablement or
disablement depending on the environment where the
IU will be installed, and it can also be marked op-
tional meaning that failing to satisfy the requirement
does not prevent the IU from being installable. Fi-
nally there is a concept of greed discussed later in this
section.

An enablement filter An enablement filter indicates in
which contexts an installable unit can be installed.
Here again the filter will pass or fail depending on the
environment in which the IU will be installed.

LA version range is expressed by two version number sep-
arated by a comma, and surrounded by an angle bracket,
meaning value included, or a parenthesis, meaning value ex-

cluded.

Greed | Optional | Semantics

true false this is a “strong” requirement.

true true this is a “weak” requirement.

false true this is a “weakest” requirement,
where the match will not be brought
in.

false false this indicates a case where the re-
quirement has to be satisfied but the
IU with this requirement wants this
to be brought in by another one.
Such a need will be presented in 2.3.

Table 1: Greed and optional interaction.

A singleton flag This flag, when set to true, will prevent
a system to contain another version of the installable
unit with the same identifier.

An update descriptor The identifier and a version range
identifying predecessors to this IU. Making this rela-
tionship explicit allows to deal with IUs being renamed
or avoid undesirable update paths.

An example of an Installable unit representing the SWT
bundle is given in Figure 1. The few things to notice are
the usage of namespace to avoid clashes between the Java
packages and the IU identifier; the usage of singleton be-
cause no two versions of this bundle can be installed in the
same eclipse instance; the “typing” of the IU as being a bun-
dle (see namespace org.eclipse.equinox.p2.type valued
to bundle); and the identification of the IU by providing a
capability in the org.eclipse.equinox.p2.iu namespace.

Now, let’s come back on requirements and detail the se-
mantics of greed and optional. By default, a requirement
is “strong”® (optional is false, greed is true). This means
that the IU can only be installed if the requirement is met.
If a “strong” requirement is guarded by a filter that does
not pass, the requirement is ignored. When the optional
flag is set to true, then a requirement becomes “weak” and
it does not have to be satisfied for the IU to be installed.
However any IU potentially satisfying this requirement will
be considered, and a best effort will be made to satisfy the
requirement.

When it comes to greed, this is a rather atypical concept
that we have added to control the addition of IUs as part
of the potential IUs to install in order to satisfy the user
request. When the greed is true (default case, and the case
for strong requirements), the IU satisfying the dependen-
cies are added to the pool of potential candidates. However
when the greed is set to false, such a requirement relies on
other dependencies from its own IU or others to bring in
what is necessary for its satisfaction. This is used in Figure
1 to capture the fact that even though we have an optional
dependency on org.mozilla.xpcom we don’t want to try to
satisfy it eagerly. As such, this optional and non greedy
requirement is weaker than a typical optional dependency.
Table 1 reviews the four combinations of greed and option-
ality.

2Strong is weaker in our context than the notion of strong
dependency introduced in [3]



id=org.eclipse.swt, version=3.5.0, singleton=true
Capabilities:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt, version=3.5.0}
{namespace=org.eclipse.equinox.p2.eclipse.type name=bundle version=1.0.0}
{namespace=java.package, name=org.eclipse.swt.graphics, version=1.0.0}
{namespace=java.package, name=org.eclipse.swt.layout, version=1.2.0}

Requirements:

{namespace=java.package, name=org.eclipse.swt.accessibility2, range=[1.0.0,2.0.0), optional=true, filter=(&(os=linux))}

{namespace=java.package, name=org.mozilla.xpcom, range=[1.0.0, 1.1.0), optional=true, greed=false}

Updates:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt, range=[0.0.0, 3.5.0)}

Figure 1: An IU representing the SWT bundle

2.2 Installable unit patch

2.2.1 The need for patches

So far, the concept of IU is pretty much on par with what
most package managers are offering. However what is inter-
esting is the different usage we have observed of this meta-
data and the implication it has on the rest of the system.
Indeed, most people building on top of Eclipse are delivering
“products” or “subsystems” and as such they want to guar-
antee that their customer is getting what has been tested.
Failing to do this could result in a non stable product, main-
tenance nightmare and unsatisfied customers. However in an
ecosystem where products can be mixed and where reposito-
ries can not be used as control points 3, guaranteeing a func-
tional system is harder. Consequently, to palliate to these
possible problems, product producers are using installable
units as a grouping mechanism (also referred to as group)
serving three goals:

1. Facilitate the reusability of a set of functionality by
aggregating under one group a set of installable units.

2. Capture a particular configuration of the system, and
thus group under one IU an extensible element and a
default implementation.

3. Lock down the dependencies on installable units be-
ing used, which limits the variability of what can be
installable and thus guarantees reproducibility of an
installation independently of the content of the repos-
itory.

These three goals are visible in the abridged version of the
Platform group shown in Figure 2. It shows the grouping of
a set of unrelated functions together to facilitate reuse; how
the default setup of the help system is being delivered using
the org.eclipse.help. jetty IU?; and finally the ranges ex-
pressed all show the desire to precisely control a particular
version of each IU being delivered.

The counter part of the lock down which is used exten-
sively throughout Eclipse, is that it makes the delivery of
service (e.g. the replacement of a particular IU by another
one) complex for the following reasons:

1. Products are often made of groups, themselves recur-
sively composed of other groups (in the Figure 2, the
Platform group includes the RCP group), which can

3Controlled repository is the approach taken by a majority
of linux distributions.

4The Eclipse help system allows different web-servers to be
used.

make for a rather vast ripple on effect all throughout
the system when a low level component needs to be
serviced.

2. Not all groups deployed on the user’s machine are in
the control of the same organization. For example,
someone can be running a composition of IBM and
Artois University products (both including the Eclipse
Platform group), but the Platform group is controlled
by the Eclipse open source community. Therefore when
the Platform team needs to deliver a fix to a user, it
simply can not require all the referring groups to be
updated.

3. Not all the dependencies onto a particular IU are known
ahead of time.

2.2.2  Anatomy of an Installation Unit Patch

To palliate to these problems, p2 provides the concept
of installable unit patch (referred to as patch). The simplest
way to think of a patch is as a mechanism that can reach into
any IU and change any requirement. A patch is a regular
installable unit to which three concepts have been added:

Requirement change It represents the changes made to
installable units. It is a set of requirement pairs where
each pair represents a rewriting rule. In the rewriting
rule, the left part captures the original requirement
that needs to be replaced and the right part captures
the resulting requirement. No constraints are applied
to the capturing requirement or the new value, the
replacement could widen the range, or narrow it, or
completely change the requirement (e.g. remove a fil-
ter, change optionality, etc.). In order to provide flexi-
bility, the capturing requirement applies on an original
requirement if the ranges expressed on the two require-
ments intersect.

Applicability scope It identifies the installable units to
which the patch should be applied. It has enough flex-
ibility to patch all the IUs of the system where a re-
quirement change is applicable, or target just a few
1Us. The IUs to patch are identified by requirements.

Lifecycle It indicates when the installable unit patch can
be applied. This can be seen as a precondition that has
to be satisfied for the patch to be applied. It represents
the “when” to apply the patch whereas the applicability
scope represents the “what” to patch. It takes the form
of a non greedy requirement.



id=org.eclipse.platform.feature.group, version=3.5.

Capabilities:

{namespace=org.eclipse.equinox.

Requirements:

{namespace=org.eclipse.
{namespace=org.eclipse.
{namespace=org.eclipse.
{namespace=org.eclipse.
{namespace=org.eclipse.

Updates:

{namespace=org.eclipse.

equinox.
equinox.
equinox.
equinox.
equinox.

equinox.

p2.iu, name=org.

.iu,
.iu,
.iu,
.iu,
.iu,

.iu,

name=org.
name=org.
name=org.
name=org.
name=org.

name=org.

0.v2009
eclipse.

eclipse.
eclipse.
eclipse.
eclipse.
eclipse.

eclipse.

platform.feature.group, version=3.5.0.v2009}

rcp.feature.group, range=[3.1.0.v2009,3.1.0.v2009]}
ant.core, range=[3.2.0.v2009,3.2.0.v2009]}

ant.ui, range=[1.0.0.v2008,1.0.0.v2008]%}

help, range=[4.0.0.v2009,4.0.0.v2009]}

help.jetty, range=[4.0.0.v2009,4.0.0.v2009]}

platform.feature.group, range=(3.4.0, 3.5.0.v2009]}

Figure 2: An IU representing the Plaform subsystem of Eclipse

The example in Figure 3 shows a patch replacing the
IUs org.eclipse.ant.core and org.eclipse.ant.ui. This
patch will only try to replace the references to these two IUs
from the Platform group (see applicability scope) and will
only be applied if the my.product IU is installed.

We have shown how installable unit patches avoid a large
ripple-on change across metadata by “rewriting” require-
ments and also how updates to an IU could be delivered
without knowing all the dependencies on it. Given the al-
teration possibilities, another possible use of patches is to
add or remove dependencies in an installable unit you would
want to reuse but had unsatisfactory dependencies.

2.3 Installable unit fragment

The third and last concept of p2 metadata is the instal-
lable unit fragment. This concept inspired from the OSGi
fragment concept [2] aims at providing a mechanism to aug-
ment an installable unit by adding to it properties or con-
figuration information ®. The need for this stems from the
desire to make installable units as reusable as possible and
thus to extract out of an installable unit the configuration
information that would otherwise bind it to a particular en-
vironment. The canonical example of this is how p2 chose
to handle the delivery of OSGi start levels. Some of the
OSGi bundles delivered by p2 need to be configured with an
information indicating when they can be started. Because
the IU for OSGi bundles can be reused in different applica-
tions with different configuration needs, they can not carry
the start level information so that information is separated
out into an installable unit fragment. This fragment is then
attached to the IU(s) it is augmenting (referred to as host)
at resolution time and treated as part of the host during the
installation. Fragments also offer the ability to attach to sev-
eral IUs and thus deliver default configuration information
to all of them, thus reducing the configuration burden.

An installable unit fragment augments the concept of in-
stallable unit by adding the concept of host requirement.
This identifies the host or hosts to which the fragment ap-
plies and is expressed by a set of requirements. These re-
quirements have to be satisfied for the fragment to be in-
stallable.

What is interesting in the expression of host requirement
is the importance of the concept of greed, especially when
dealing with a fragment delivering default configuration in-
formation. Indeed, in those cases, even though you have a
fragment that can apply to multiple IUs does not mean that
you want to install all the IUs to which it applies. To indi-

5These are not detailed in this paper because their content
and representation is irrelevant to the discussion

cate this, the host requirement is set to be non greedy. This
is the case described in the fourth line of Table 1. It is used in
Eclipse by the IU fragment responsible for the delivery of the
default start level to every OSGi bundles installed in the sys-
tem (see Figure 4). To perform its job, the host requirement
of this fragment requires “IUs that are bundles” (names-

pace=org.eclipse.equinox.p2.eclipse.type, name=bundle,

range=[1.0.0], greed=false) which matches the capabil-
ities of the same namespace and name provided by IUs like
the SWT one (see Figure 1). If the greed attribute had been
set to true, then the resolver would have brought in all the
IUs delivering bundles thus growing unnecessarily the set of
1Us that would have been added to the pool of potential IUs
for the solution, whereas what is intended is to have this
IU only attach to the bundles that will be brought through
other dependencies. To be pedantic, in the case of the cur-
rent Eclipse release, the size of the problem would have been
multiplied by a factor 10 since the Eclipse SDK is made of
about 380 IUs and the Galileo repository ¢ contains about
3800 IUs.

3. RESOLVER OVERVIEW

This section describes the overall functioning of our re-
solver. However the discussion on the propositional con-
straints encoding and explanation support appears in the
next section.

Before detailing the overall solver, it is worth mentioning
how p2 manages the installed software. p2 has a concept of
profile which keeps track of two key information: the list of
all the Installable Units installed, and the set of root instal-
lable units. The root IUs are not a new kind of installable
units, they are installable units that are remembered as hav-
ing been explicitly asked for installation. These roots are es-
sential for installation, uninstallation and update, since they
are used as strict constraints that can’t be violated, thus for
example avoiding the uninstallation of an IU when installing
another one.

3.1 Resolution
p2 resolution process is logically organized in 5 phases:

Change request processing Given a change request cap-
turing the desire to install or uninstall an installable
unit, a future root set representing the application of
this request over the initial root set is produced.

Slicing For each element in the future root set, the slicing
produces a transitive closure of all the IUs (referred as

Shttp://download.eclipse.org/releases/galileo



id=org.eclipse.ant.critical.fix,version=1.0.0
Capabilities:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.ant.core.critical.fix, version=3.5.0.v2009}

Requirement Changes:

{ from={namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.ant.core, range=[3.1.0, 3.4.0)},
to={namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.ant.core, range=[3.4.3,3.4.3]1}}

{ from={namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.ant.ui, range=[1.0.0.v2008,1.0.0.v2008]},
to={namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.ant.ui, range=[1.1.0.v2009,1.1.0.v2009]}}

Applicability Scope:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.platform.feature.group, range=[3.5.0.v2009,3.5.0.v2009]}

Lifecycle:

{namespace=org.eclipse.equinox.p2.iu, name=my.product, range=[1.0.0,1.0.0], greed=false}

Updates:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.platform.feature.group, range=[0.0.0, 3.5.0.v2009)}

Figure 3: Example of installable unit patch, patching the Platform group.

id=osgi.bundle.default.startlevel, version=1.0.0
Hosts:

{ {namespace=org.eclipse.equinox.p2.eclipse.type, name=bundle, range=[1.0.0], greed=false} }

Capabilities:

{namespace=org.eclipse.equinox.p2.iu, name=osgi.bundle.default.startlevel, version=1.0.0}

Figure 4: Installable unit fragment attaching to any bundle.

slice) that could potentially be part of the final solution
of the resolution process by consulting all repositories
also passed in. This transitive closure is done with
only taking into account enough context’ to evaluate
the various filters but without worrying if any IU be-
ing added could be colliding with any others. For each
1U, it looks at each requirement, queries the reposito-
ries for matches, and add the results of the query to a
set of IU to process. In the case of fragment 1Us, the
host requirement is also treated and for patches the re-
placement value contained in the requirement changes
are as well. If the requirement greed is set to false, or
if the requirement enablement filter is not evaluating
to true, the process is short-circuited and the next re-
quirement is considered. The slicing phase reduces the
dependency problem to the only IUs applicable to a
given setting (the OS for instance). Another solution
would have been to encode everything into constraints.
Our approach here is to use the constraints solver only
for non trivial matters.

Projection/encoding The goal of the projection phase is
to transform all the installable units of the slice and
their dependencies into a system of propositional con-
straints (see section 4 for details). For each IU, each
requirement ® is queried against the slice and each re-
sulting IU is encoded. In contrast to the slicing phase,
the greed flag is ignored and every requirement, ex-
cept when filtered, is processed since at that point the
slicing has isolated the elements that will be part of
the solution. It is also during this phase that patches
are applied. For this, for each IU being processed, ap-
plicable patches (matching the applicability scope) are
searched for in the slice and applied. Since patches
may or may not be part of the final solution but logi-

"The context can be seen as a map of key/value pair
8Here again, requirement host of IU fragments, replacement
values in requirement changes of patches as well as applica-
bility scope are treated.

cally “modifies” the original requirements, special care
has to be taken to have a variable representing the ini-
tial IU with the patch applied on it, and another one
with the patch not applied on it. This is detailed in sec-
tion 4.3. In addition to this transformation, this phase
also fills in a data structure keeping track of every po-
tential hosts for each fragment IU. Finally for each
root the corresponding variable in the SAT encoding
is set to true to capture the intent of the solution be-
ing searched. The generation of the propositional con-
straints completed, the optimization function is being
generated.

PBO-solving The result of the projection is passed to the
pseudo boolean solver SAT4J[10] which is responsible
for finding an assignment.

Solution extraction From the assignment returned by the
solver, a solution is extracted and the final attachment
of IU fragment to their host(s) is concretized. In case of
failure the solver is invoked to produce an explanation
(see section 4.4).

3.2 Updating

In p2, the detection and installation of all applicable up-
dates is not a completely automated process and no simple
function in the p2 API is provided to perform this opera-
tion. Instead, the only mechanism provided is a function
which given a root IU and a set of repositories returns a set
of candidates IUs that are updates of the given IU°. This
allows for selectively searching for updates or looking for an
update of everything that is installed. Once all the candi-
dates have been gathered, a subset of the matches are picked
and a change request is created and passed to the resolver
for validation. Because p2 is a platform, the picking respon-
sibility is left to code outside of the scope of the core of p2.
For example, the graphical interface available in the Eclipse

9Fach candidate has its update descriptor match the IU it
is an update of.



SDK performs filtering and the user is only presented with
the most recent version of each IU to select from. The user
input obtained, a corresponding profile change request is
created and passed to the resolver for validation.

The obvious drawback of this approach is that the user
may have to go through several iterations of selection to find
a suitable alignment of IUs to update to. However, even if
p2 could provide some logic to return the most pertinent
and up-to-date set of IUs using techniques like MAX-SAT
[4], the results would only be relevant in case of a completely
automated update mechanism, since giving the opportunity
to the user to pick something from the set of updates avail-
able could invalidate the solution initially returned and thus
potentially lead to similar problems.

4. CONSTRAINTS ENCODING

In the following, we describe the encoding of p2 installa-
tion problem into propositional constraints, i.e. clauses or
cardinality constraints. We also provide some examples of
problems generated with that encoding.

prov(IU) denotes the set of capabilities provided by the
installable unit IU and req(IU) denotes the set of capabili-
ties required by the installable unit IU. alt(cap) = {IUk|cap €
prov(IUy)} denotes the set of IUs providing a given capabil-
ity. Finally, optReq(IU) denotes the optional requirements
of a given 1U, and versions(IU,) denote the ordered set of
IUs sharing the same identifier as IU, but having different
version attribute (IU, € versions(IU,)), from the latest to
the oldest.

4.1 Basic encoding

Each requirement of the form “IU; requires capability
cap;” is represented by a simple binary (Horn) clause

1U; — cap;

So, for each IU; the requirements are expressed by a con-
junction of binary clauses

/\ 1U; — cap;

capj€req(1U;)
The alternatives for a given capability is given by the clause
cap; — IU;, V1U;, V...V 1U;,
where 1U;, € alt(cap;).
Since we are only interested in the IUs to install, the above

two constraints can be aggregated into a conjunction of con-
straints:

favy = N\

capj€req(IU;),

(IU; — Vo) ()

IU; €alt(capy)

Note that there is the specific case of alt(cap;) = 0 which
means that IU; cannot be installed due to missing require-
ments. In that case, the unit clause —~IU; is generated.

Some installation units cannot be installed together (e.g.
because of the singleton attribute set to true). This can be
modeled either with a conjunction of binary negative clauses

A (~IUy, V ~IU,,)

versions(IUy)={IU},... . IU?},1<i<j<n

v

or equivalently with a single cardinality constraint:

( > ;) <1 (2)

IUE eversions(IUy)

We use the second option because our solver manages
those constraints natively and because it makes the expla-
nation support easier to implement (see 4.4 for details).

Finally, the user wants to install the installable units iden-
tified by the roots. This is modeled with unit clauses:

N\ UL (3)

Ul;€rootiUs

Summing up, the constraints (1), (2) and (3) altogether
form an instance of a classical NP- complete SAT prob-
lem. That encoding is basically the encoding presented in
Edos[12] and Opium [16] and used more recently in Open-
Suse 1110,

4.2 Encoding of optionality

One of the specificity of p2 is the semantic of “weak”
dependencies expressed using the greed and optional at-
tributes. We do not have to worry here about greedy de-
pendencies since there are simply ignored during the slicing
stage. An IU IU; may have optional dependencies to IU
1U; means that IU; is not mandatory to use IU;, so IU;
can be installed successfully if IU; is not available. How-
ever, it is expected that p2 should favor the installation of
optional packages if possible, i.e. that all optional packages
that could be installed are indeed installed. In Figure 1,
one can see that SWT has two optional dependencies on
SWT accessibility2 and Mozilla XPCOM. The encoding of
optional packages is done by creating two specific proposi-
tional variables: Abscqp denotes the fact the capability cap
is optional, and Noopry, is a variable to be satisfied in case
none of the optional capabilities of IU; can be installed. The
first set of constraints expresses how to satisfy the required
capabilities:

/\ (Abscapj — \/ IU:):) (4)

cap; €optReq(IU;) IU; €alt(cap;)

The second set of constraints expresses that if Noopry, is
true then all the abstract capability variables must be false,
i.e. that Noopyr, can only be set to true when none of the
optional dependencies could be installed.

/\ (Noopry, — = Abscap;) (5)

cap;€optReq(IU;)

Note that such set of constraints could also have been ex-
pressed equivalently by a single pseudo boolean constraint:

C >

cap;€optReq(IU;)

Absmpj) +n x Noopru;, <n

where n = |optReq(IU;)|.

We used the first option in our encoding since it looked
easier to understand. The second option could be used in
order to reduce the number of constraints used in the solver.
Contrariwise to the encoding of the singleton attribute, there
is no need to use a single constraint here because optionality

http://en.opensuse.org/Package_Management/Sat_
Solver/Basics



encoding constraints cannot prevent an IU to be installed,
thus cannot be part of an explanation.

Finally, we express that IU; has optional dependencies us-
ing a disjunction ending with the Noop;y, variable. That
way, even if none of the optional requirements can be in-
stalled, the constraint can still be satisfied by setting Noopru,

to true.

cap;€optReq(IU;)

Abscap; V Noopru, (6)

EXAMPLE 1. Let’s see how to encode the optional depen-
dencies of SWT on accessibility2 and zpcom shown in Figure
1:

AbSaccessibility2 — IU;;gessibimw

_‘Absaccessibility2 \ ﬁNOOpIUSWT

Abszpcom — IUzlplcom

= AbSzpcom V T NoopswT

IUSWT - Absacessibility2 V Abszpcom V NOOPSWT
An alternative encoding would be:

Absaccessivitityz = [Ugiocssibitity

Abs:cpcom i IUzlplcom

AbsaccessibilityQ + Abszpcom +2 X NOOPIUSWT S 2
IUSWT - Absacessibility2 V Abszpcom \ NOOPSWT

That encoding of optionality was the original one that shipped
with Eclipse 3.4. The encoding has evolved since then. This
will be discussed in section 4.5.

4.3 Encoding of patches

Applying a patch from the encoding point of view only
applies to requirements changes (see section 2.2), i.e. it
means to enable or disable some dependencies according
to the application or not of a given patch. We denote by
patchedReqs(IU, p) the set of pairs < old, new > of the in-
stallable unit /U denoting the rewriting rules of patch p in
the requirements of IUs.

We associate to each patch a new propositional variable.
We introduce that variable in dependency constraints (1)
and (4) the following way:

e Negatively when the patch introduces a new depen-
dency.

e Positively when the patch removes an existing depen-
dency.

It can be summarize that way:

/\ (p — encode(new))A(encode(old)Vp)

<old,new>€EpatchedReqs(1U,p)

where encode(x) denote the encoding of a regular or an op-
tional dependency. The patch encoding changes only the
encoding of the requirements affected by a patch.

EXAMPLE 2. The patch shown in Figure 8 would lead to
the following encoding of the dependencies for the IU Plat-
form:

IUPlatform g IUsﬁlt.Ecore Vv patCh’ (CL)
patCh A IUPlatfon - IUS;LAltEcore (b)
IUPllltf()’!'TfL - IUal,nOtEu'L \ patCh (a)
patch A IUpratform — TUaiy i (b)
[UPlatform - IU;teOlp (C)
IUPlatform g IU;le?ty (C)

IUPlatform - IUEcgl) (C)

If the patch is enabled (i.e. the propositional variable patch is
set to true) then the initial constraints (a) are disabled while
the new dependencies (b) are enabled. If the patch is not
enabled (i.e. the propositional variable patch is set to false),
then the new dependencies (b) are disabled and the original
optional dependencies (a) apply. Note that the requirements
untouched by the patch (c) do not see their encoding changed.

4.4 When things go wrong: explanation

Explanation is key to help the user understands why a
change request cannot be fulfilled. In the above encoding,
one can note that there are only two reasons that could
prevent a request to succeed:

e At least one of the required IUs is missing.

e The request requires two IUs sharing the same identi-
fier but with different versions that cannot be installed
together due to the singleton attribute on at least one
of those IUs (see for instance Figure 5).

As a consequence, it is not hard to check why a request can-
not be completed. However users expect the explanation
to be returned in terms of IUs they know about, the root
IUs and the IUs that they are trying to install, and would
be confused if provided with just the low level dependency
errors. In practice, it means that knowing why a problem
occurred is not sufficient. It is important to be able to detail
the whole dependencies from the root to the actual cause of
the problem. For instance, in Figure 5, the user cannot in-
stall the Eclipse Platform IU version 3.5.0.20090528 because
the Eclipse SDK version 3.5.0.20090430 is already installed
and both of them rely on different versions of Eclipse RCP
that is a singleton.

Let S be the set of the constraints encoding presented
in the previous sections. From a logical point of view, it is
possible to compute one minimal subset S’ of the constraints
that cannot be satisfied altogether: S’ C S, 8’ = L, 35" C
S’|S"” = L. Such set of constraints is often called a MUS
(minimal unsatisfiable subformula). S’ is an explanation of
the impossibility to fulfill the request. If the subset contains
a negated literal (specific case of Equation (1), ~UT, € S)
then the global explanation is a missing requirement, i.e. the
request cannot be completed because IU, cannot be found
in the user’s repositories. If the subset contains a cardinality
constraints (> IUY < 1 € '), then the global explanation
is a singleton attribute violation, i.e. the request cannot be
completed because it requires several versions of IU,. Note
that if we decided to use a clausal encoding instead of the
cardinality constraints encoding, we would have lost the one
to one mapping between the original dependencies and the
constraints of our encoding.

There are several ways in practice to compute S’ from S.
The ones based on local search algorithms[14] detect con-
straints that are likely to be part of S’ among the most
falsified ones during the search and compute S’ in a second
step using a complete SAT solver. A more recent and widely
used approach is based on the analysis of the last conflict
found by a conflict driven SAT solver[17]. Such approach
requires some changes in the SAT solver to keep track of
all resolutions steps and does not ensure that the computed
subset S” C S is minimal. A third approach is to rely on a
new encoding of the problem into an optimization problem



using selector variables [11]: it is possible to use an opti-
mization function on selector variables to compute a set S’
of minimal size. Finally, a generic approach to explanation
in constraints solvers was proposed in [9] and implemented
in Ilog solver: QuickXplain. The main advantage of such
approach is to be independent of the underlying solver, and
to work with any kind of constraints.

Our approach inherits some ideas from all those approaches.
We decided to implement the QuickXplain algorithm in our
framework because it is non intrusive (does not require any
change to the solver) and works perfectly with mixed con-
straints (clauses and cardinality constraints in our case). We
use selector variables in our encoding to allow the QuickX-
plain algorithm to enable/disable the constraints when com-
puting S’. Finally, the constraints given to the QuickXplain
algorithm are ordered in decreasing order of their activity in
the spirit of the local search approaches.

More precisely, we translate S into S by adding a new
selector variable sel; to each constraint in S: S = {sel; V
si|si € S}. Let SEL denotes the set of all added selector
variables. Instead of looking for an assignment satisfying
S, we are looking for an assignment satisfying S” under
the assumption that all variables in SEL are set to false,
8" Neet,espL —sel;*!. If such assignment exists, it is an as-
signment satisfying S, so we are done. If it is not the case,
then we use a tailored version of the QuickXplain algorithm
that makes use of the selector variables to enable/disable
constraints in order to compute S’.

4.5 From decision to optimisation

When all the constraints can be satisfied, there are usually
many possible solutions, that are not of equal quality for the
end user. Here are a few remarks regarding the quality of
the expected solution:

1. An IU should not be installed if there is no dependency
to it.

2. If several versions of the same bundle exist, the latest
one should preferably be used.

3. When optional requirements exist, the optional require-
ments should be satisfied as much as possible.

4. User installed patches should be applied independently
of the consequences of its application (i.e. the version
of the IUs forced, the number of installable optional
dependencies, etc.).

We are now looking for the “best” solution, not just any
solution, i.e. we moved from providing a certificate for the
answer to a decision problem (NP-complete from a complex-
ity theory point of view) to return the solution of an opti-
mization problem (NP-hard). Furthermore, we need to solve
a multi-criteria optimization problem since it is likely that
several IUs do have optional requirements and that several
IUs are available in multiple versions.

To solve our problem, we build a linear optimization func-
tion to minimize in which the propositional variables are
either given a penalty (positive integer) or a reward (neg-
ative integer) to prevent or favor their appearance in the
computed assignment.

11 Assumption based satisfiability testing is available in all
Minisat[7] inspired solvers (including SAT4J).

e Each version of an IU gets a penalty as a power of 2
proportional to its age, the older it is the more penal-
ized it is:

> 2" x IU; (7)
IU} eversions(I1Uy)
That way, each installation of an IU raises at least a

penalty equals to one, thus expressing that only re-
quired IUs should be installed.

e Each Noop, variable gets a penalty to favor the instal-
lation of optional IU.

Z 2% x Noop. (8)

where K is a constant such that 2% is greater than the

maximum penalty for a version (i.e. K > maz(|versions(I1U,)

e FEach Abs, variable gets a reward to favor the instal-
lation of optional dependencies

> 2% < Abs, 9)

e Each patch variable gets a reward of n x —2K+3 if it is
applicable (where n denotes the number of applicable
patches), else a penalty of of+2

Z n><—2K+3p¢+ Z oK +2,

p;€applicablePatches() p;Zapplicable Patches()

(10)

The objective function of our optimization problem is thus
to minimize (7) + (8) + (9) + (10).

The weights in (7) are not satisfactory since they do not
provide a total order on the final solution. Suppose that we
have two IUs IU, and IU, that are available in respectively
3 and 2 versions (namely IUZ, IUZ, IU} and IUZ, IU}).
The objective function for those IUs is thus

U +2x TU? + 4 x IU! + TUZ + 2 x TU}

The best solution for such objective function if both IU, and
IU, must be installed is obviously to install JTU2 and TUZ.
However, if those two IUs cannot be installed together, the
solver will answer that the best option is either to install
IU2 and IU} or IU? and TUZ.

The common approach to solve this problem is to rank
each IUs in a total order, IU; < IUz < ... < IU,,, meaning
that IU; is more important than IU; iff IU; < IU;. Then
the coefficients of the optimization function should be gen-
erated in such a way that the sum of the coefficients of IUj;
should be smaller than the smallest coefficient of IU;. In
our example, it would mean for instance to use the follow-
ing optimization function:

TU2 +2x TU? +4 x IU! + 8 x IUZ + 16 x IU}

In that case, the best option is still to install JTU2 and TUZ,
but the second best option is to install IUZ? and TUZ.
Unfortunately, as noted before, we are in the context of
uncontrolled repositories, so there is no obvious/easy way to
order the IUs in a total order, so it was decided to keep the
initial solution (7) instead of ranking arbitrarily the IUs.
Another drawback of our objective function appeared re-
cently when new IUs got added to the release repository.
The part (9) of the optimization function has the undesir-
able effect to favor the installation of optional requirements



Cannot complete the install because of a conflicting dependency.
Software being installed: org.eclipse.platform.sdk 3.5.0.I20090528
Software currently installed: org.eclipse.sdk.ide 3.5.0.120090430
Only one of the following can be installed at once:

org.eclipse.rcp.configuration_root.gtk.linux.x86 1.0.0.I20090430
org.eclipse.rcp.configuration_root.gtk.linux.x86 1.0.0.I20090528

Cannot satisfy dependency:

From: org.eclipse.platform.sdk 3.5.0.I120090528-2000

To: org.eclipse.rcp.configuration.feature.group [1.0.0.I20090528]

Cannot satisfy dependency:

From: org.eclipse.rcp.configuration.feature.group 1.0.0.I20090430
To: org.eclipse.rcp.configuration_root.gtk.linux.x86 [1.0.0.I20090430]

Cannot satisfy dependency:

From: org.eclipse.rcp.configuration.feature.group 1.0.0.I20090528
To: org.eclipse.rcp.configuration_root.gtk.linux.x86 [1.0.0.I20090528]

Cannot satisfy dependency:
From: org.eclipse.sdk.ide 3.5.0.I120090430-2300

To: org.eclipse.rcp.configuration.feature.group [1.0.0.I20090430]

Figure 5: Example of explanation

of an IU even if such IU is not installed. A contextualization
of the reward is necessary to fix such problem:

In the constraints our first solution to this problem has
been to contextualize (4):

A (Abscap; N IU; — V1)

cap; €optReq(IU;) IU €alt(capy)
(11)

That way, the variable Abs;y, can be forced to true
by the objective function but it will not fire the in-
stallation of the dependencies if the IU; is not to be
installed. However, that solution has an unexpected
behavior in the following test case: suppose that IU,
has an optional dependency on capability b provided
by IU, that has in turn an optional dependency on
the capability ¢ provided by IU. for which we have
alt(IU;) = 0. We would generate the following con-
straints:

Abs. N1U, — L = —Abs. VvV —1IU, (a)
Absy AN 1TU, — IU,

1U, — IU, V Noopru,

Since we would like to satisfy as many Abs, variables
as possible, the solver would force Abs. and Abs, to
be set to true. As a consequence, IU, has to be set
to false to satisfy (a). This is possible because the de-
pendency to IU, is optional, else a strong dependency
would force IU, to be set to true. Such unexpected
behavior is a direct consequence of changing the con-
straints because of a wrong behavior of the objective
function. The fix should not change the constraints
but the objective function itself.

In the objective function The other option is to use a
non linear optimization function in our problem, i.e.
to make the reward a function of both the abstract
variable Abscqp, and IU; where cap; € optReq(IU;):

> =25 X Abscap, x TU; (12)

The problem is that our solver does not propose yet an
easy way to work with non linear optimization func-
tions. A solution based on the introduction of new

variables yr <+ Abscap; X IU; where yy, replaces Abscap, X
1U; in the objective function and with the additional
constraints yr — Abscap; V IU;,AbScap; — yr,IU; —
yr should fix that issue.

That last issue was discovered late in the release cycle of
Eclipse 3.5 Galileo. Considering the fact that meeting the
scenario of the issue of the first option was less likely than
introducing a new issue by integrating a barely untested
implementation of the second option in SAT4J, the former
has been adopted for Eclipse 3.5.

5. CONCLUSION AND PERSPECTIVE

We presented Eclipse p2, a “right-grained” provisioning
platform aimed at solving the diversity of provisioning re-
quirements in a componentized world. We focused on pre-
senting the three metadata constructs which allow the as-
sembly of complex products from components:

e Installable unit, to capture dependencies among com-
ponent at their lowest level, but also to capture lock
downs and ease reusability by grouping;

e Installable unit patch, to tweak dependencies of instal-
lable units that can’t be changed;

e Installable unit fragment, to “augment” an installable
unit and as such allow for installable units to be as
reusable as possible by staying context free from their
used one deployed.

From there we presented the overall functioning of our re-
solver and gave a description of our SAT-based encoding
that is resolved by the SAT4J Pseudo Boolean solver.

We can report that this approach that has been live for more
than one year has proven to be reliable, efficient and scal-
able even when faced with repositories containing more than
10000 installable units and solution involving about 3000
installable units. Furthermore, a direct consequence of our
work is the integration of the very same technology to man-
age dependencies in other Java related products, namely the
upcoming major release of Maven (Maven3) and the repos-
itory manager Nexus.



[4] Josep Argelich, Ines Lynce, and Joao Marques-Silva.
On solving boolean multilevel optimization problems.
In Twenty-First International Joint Conferences on
Artificial Intelligence (IJCAI), page to appear,

That said, we are looking to further improve the metadata
and the resolver to facilitate composition and to address the
challenges encountered so far. For the metadata, the main
changes we want to investigate are:

1. The ability for the line-up information that is usually
expressed in groups to be extracted out into a new kind
of installable units. Once extracted, this information
would no longer be directly encoded as propositional
constraints but would instead be used to drive the opti-
mization function. We hope that such a change would
facilitate the serviceability by avoiding the need to cre-
ate patches, but the biggest challenge with this feature
would be composability of several of these new IUs.

2. The ability to express capabilities and requirements on
other domains than just version and version ranges.
For example we are thinking about adding scalars to
describe the amount of memory available.

3. Add negation and disjunction to improve the expres-
siveness of the requirements.

On the resolver, the main changes planned surround:

1. Stability of resolution to not cause updates of IUs that
are not directly related to the change request being
performed. The canonical example is where require-
ments toward an IU tolerate several possibilities and
the installation of something new cause the update of
the IU because a newer version is available in the repos-
itories. We hope that the concept of line-up previously
described will help there.

2. Resolution over a set of profiles, in order to perform the
coordinated management of several applications meant
to work together (e.g. the client needs to be in sync
with the server).

3. Speed up the explanation process. Depending on the
size of the set of constraints, it can take several min-
utes to provide the answer which is not ideal in an
interactive tool. This is caused by the n x log(n) satis-
fiability tests used by the explanation algorithm used
(QuickXplain) where n is the size of the input of the
algorithm in number of constraints. n can be as big as
the number of constraints in the encoding in the worst
case.The idea is to ask more information to the SAT
solver instead of using a purely external approach as
currently in order to minimize n in the spirit of [6, 5].
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