N

N

M-nets: A survey

Hanna Klaudel, Franck Pommereau

» To cite this version:

Hanna Klaudel, Franck Pommereau. M-nets: A survey. Acta Informatica, 2008, 45 (7-8), pp.537—564.
10.1007/s00236-008-0077-0 . hal-00870484

HAL Id: hal-00870484
https://hal.science/hal-00870484
Submitted on 8 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00870484
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Hanna Klaudel - Franck Pommereau

M-nets: a survey.

the date of receipt and acceptance should be inserted later

Abstract This paper surveys the research related to the model of M-nets
since it was introduced in 1995. M-nets are high-level labelled Petri nets which
can be composed, like process algebra terms, using various operators. We
present, the core model, several of its extensions and the main applications.

Keywords High-level Petri nets, compositions, action refinement, synchro-
nisation.

1 Introduction

The model of Petri nets [68] is based on concepts coming from automata
theory, linear algebra and graph theory. Besides the general advantages of a
formal model and the verification methods based on linear algebra, Petri nets
are additionally attractive since they have a simple graphical representation.
This characteristics is important already in the design process showing how a
concurrent system is built and distributed in space. It gives a clear image of
concurrency, sequentiality and conflict, both on the concrete visual level and
on the graph-theoretic level. In particular, such an explicit representation of
concurrency is suitable when studying non sequential (“true concurrency” or
partial order) semantics of concurrent systems.

On the other hand, the modular design of large systems allows to reduce
and manage their complexity. This is possible either in a bottom-up way
by composing smaller subsystems, or going top-down by refining parts of a
rough model by more detailed system descriptions. In both cases, systems

H. Klaudel
IBISC, Université d’Evry, 523 place des Terrasses, 91000 Evry, France, E-mail:
klaudel@ibisc.univ-evry.fr

F. Pommereau
LACL, Univ. Paris Est, 61 av. du général de Gaulle, 94010 Créteil, France, E-mail:
pommereau@Quniv-parisl2.fr

2 Hanna Klaudel, Franck Pommereau

are constructed from building blocks and a semantics should support the
modular construction of systems. Modularity has been a somewhat weak
point of Petri net theory: a Petri net is defined as a whole, and not in the
first instance obtained by composing subnets. This is totally different in
process algebras where systems are described by process terms, which are by
definition built from subterms. The semantics of a process term is obtained
from the semantics of its subterms and is compositional by nature. However,
the standard process algebras reduce concurrency to interleaving arguing
that interleaving is simpler than true concurrency and just as expressive. On
the other hand, interleaving based models are less suitable for a top-down
design, since they describe systems using actions that are assumed to be
instantaneous and indivisible.

Both Petri nets and process algebras approaches have increasingly influ-
enced each other, and considerable effort has been made to combine their
respective merits. The Petri Box Calculus (PBC) [4,5], which evolved later
to the Petri Net Algebra (PNA) [6], offers a very general solution to combine
process algebras and Petri nets. However, in practical situations, the stan-
dard low-level Petri net model on which PBC is based leads to huge nets
which are well defined mathematically but difficult to grasp intuitively. As a
consequence, the appreciated feature of Petri nets of representing graphically
system properties such as concurrency, sequentiality, conflicts, etc., vanishes
because of the size of Petri nets necessary to describe the considered system.
To address this problem, high-level Petri net models have been proposed,
such as predicate/transition nets [42], coloured Petri nets [47], or algebraic
nets [76].

In particular, the Calculus of Modular Multilabelled Nets (M-nets) [8,51]
was introduced in order to combine the compositionality of process algebras
and the explicit representation of concurrency of Petri nets in a common high-
level framework. Indeed, M-nets are considered as the coloured counterpart
of the PBC. Actually, M-nets and PBC are related through an operation of
unfolding which takes an M-net N and yields an equivalent low-level net V.
N can be seen as an abbreviation of Ny, and Ny as the semantics of N. M-nets
support various composition operations (parallel, sequence, choice, iteration,
synchronisation, restriction, etc.), which are essentially the same as in PBC.
Indeed, it was one of the main aims in the design of the M-net model to
ensure that the unfolding of a composed net coincides with the composition
of the unfoldings of its parts. The PBC and M-nets are implemented in the
PEP tool [41] which allows to edit, simulate and verify systems using model-
checking. Moreover, the SNAKES toolkit [73], a tool specifically dedicated
to work with variants of M-nets and PBC, allows to quickly implement new
operations for those models, thus providing a framework to prototype and
experiment with new variants.

This paper surveys the research related to M-nets since they were intro-
duced. The next section defines the Petri net aspects of the model, including
the refinement (meta-)operation which allows to substitute M-net transitions
by arbitrary M-nets. The low-level net model is also introduced in order to
state the consistency between high and low levels. Section 3 presents sev-
eral extensions of the core model: the parameterised refinement allowing to

M-nets: a survey. 3

exchange information between different abstraction levels of a system; re-
cursion which is like a repetitive refinement; and buffered communication
providing a simple scheme to share data between different parts of an M-net.
Section 4 shows how an algebra of M-nets is built using their annotations (for
synchronous and asynchronous communication) and the refinement (for the
control flow operations). The introduced operations are consistent with those
existing in PBC. Section 5 reviews several applications or further extensions
of the M-nets algebra. This includes a definition of an M-net semantics of the
parallel specification language B(PN)? and several other extensions like the
introduction of object oriented paradigms, the modelling of mobility, pre-
emption (suspend/resume and abort of subsystems) or timing constraints.
Finally, section 6 presents a case study using M-nets to model and verify a
timed railroad crossing system.

2 The model of M-nets
2.1 Basic definitions and notations

We start with the definition of multisets which are widely used in the fol-
lowing. Let E be a set. A multiset over F is a function p : E — N which
associates to each element of F its number of occurrences in . A multiset u
is finite if so is the set {x € F | u(x) # 0}. Sometimes, we will use for multi-
sets an extended set notation; for instance, {z,y,y} will denote the multiset
w such that p(z) =1, u(y) = 2 and p(z) =0 for all z € E\ {x,y}. We will
denote by () the empty multiset. We also introduce the following notations
for p, p1 and po multisets over £ and n € N:

— the symbols 4+, —, and * denote, respectively, the sum, the difference
of multisets and the multiplication of a multiset by a natural number;
formally, for = in E: (u1 + p2)(z) = (@) + pa(z), (m — po)(x) =
max(0, 11(2) — r2(2)) and (n+ 0)(x) £+ p(o);

— we write x € p if p(x) >0, and py C pg it Ve € E: py(x) < pa(z);

— we denote by mult(E) the set of all the multisets over E, and by mult;(E)
the set of the finite multisets over F.

A (low-level) Petri net is a directed bipartite graph whose nodes are places
or transitions. The places may be marked, i.e., may carry tokens. The input
arcs of a transition ¢ come from the set of pre-places of t and the output arcs
of t go to its post-places. A transition is activated if its pre-places are marked
by sufficiently many tokens. It may then be fired in which case some tokens
are removed from each pre-place and some other produced in each post-
place. The arcs are weighted, i.e., annotated by a natural number (where 0
corresponds to the absence of the arc) indicating the number of tokens which
are transported through the arc during the firing of a transition. Places and
transitions may also carry labels. Formally:

Definition 1 A (low-level) labelled Petri net N is a quadruple (S, T, W, \)
where:

— S is a set of places and T is a set of transitions, with SN T = {;

4 Hanna Klaudel, Franck Pommereau

- W:(SxT)U(T x S) — Nis the weight function on arcs;
— M\ is the labelling function on SUT.

A marking of N is a function M : S — N which associates to each place
the number of tokens it carries.

For a place or a transition z € SUT, we define % = {y € SUT | W (y, x) >
0} and z* = {y € SUT | W(x,y) > 0}. The marking of a place defines a
local state, in such a way that the global state of the net is represented by
the set of all such local states. The dynamic behaviour of such a net is given
by the transition rule:

Definition 2 Let N = (S,T, W, \) be a labelled Petri net and M its mark-
ing. A transition ¢t € T is activated at M iff Vs € S : M(s) > W (s,t). The
firing of ¢ produces the visible action A(¢) and gives rise to the new marking
M’ defined by Vs € S : M'(s) = M(s) — W (s, t) + W(t, s).

The transition rule illustrates the property of locality of nets: only the
part * U t® of the global state is involved in the firing of the transition t.
In concurrent systems, the actions (represented by the occurrences of tran-
sitions) may appear concurrently, i.e., independently of each other. If these
occurrences are described by an arbitrary interleaving of actions, then each
sequence of independent actions is a sequence of occurrences of the system
and the corresponding semantics is called a sequential or an interleaving
semantics. If the occurrence of a finite multiset of actions is allowed, then
the corresponding semantics is a step or a concurrent semantics [3,9,43,44].
If the occurrences of actions are partially ordered, then the corresponding
semantics is a partial order or true concurrency semantics [66,79,81].

The model based on low-level nets is particularly interesting because it
is supported by various implemented tools (see [69,80] for a presentation
of many tools) and may be analyzed using methods devoted to such nets or
using efficient algorithms of model checking. However, these nets are not often
used directly because the specifications of real size systems are in general
too large to be understandable. The designers often prefer to use high-level
versions of Petri nets which provide a better abstraction and which may be
automatically unfolded to low-level nets before being analysed.

Figure 1 represents two equivalent nets (in the sense that they describe
the same behaviours), the net on the left is high-level and the net on the
right is its unfolding (so, it is a low-level net).

The annotations used for the high-level nets have the following meanings:

— the places are typed, i.e., have associated sets of values (s has the type
{e}, s’ has the type {1,2,3} and s” has the type {2,3});

— the tokens are values respecting the types of the places (s’ carries the
token 2 and s carries the token 3);

— the arcs are annotated with values or variables; the scope for the variables
is bound to a transition and its adjacent arcs (so, the variables around a
transition have only a local meaning and may be consistently renamed);

— the transitions may carry Boolean expressions called guards playing the
role of firing conditions: a transition can fire only with tokens which make

M-nets: a survey. 5

T#y
x Yy
s/ S//
{1, 2,3} {2, 3}

Fig. 1 A high-level net (on the left) and its unfolding (on the right) whose labelling
has been omitted. The o;’s are the modes of ¢ in the high-level net, the indexes of
the s;’s and the s/’s correspond to the values in the types of s’ and s”.

the guard true (this is the case for the transition ¢ taking, for instance,
z = 2 and y = 3, but not for ¢ = y = 2). The guard is often used
in order to compute values during a firing. Here, since = and y are free
variables (not bound on an input arc), the transition actually computes
non-deterministically a number in {1, 2, 3} for z and another one in {2, 3}
for y, choosing them distinct (because of the guard).

The transition rule in a high-level net is more complicated than that used
at the low-level: in order to fire a transition ¢ it is necessary to take tokens in
the pre-places of ¢, to associate them to the variables around ¢ and to ensure
that the guard evaluates to true. Moreover, only values allowed by the types
of places may be produced. The mappings, called bindings, associating a
value to each variable exist independently of the marking of the net and of
the guard of t. (However, we shall only consider the variables involved in ¢
when showing a binding intended to be used for ¢.) For ¢ in figure 1, the
bindings are of the form (x +— 4,y — j) where ¢ and j are arbitrary values.
A binding is called a mode if it allows to evaluate the guard to true and if
the value corresponding to each variable appearing in an annotation of an
arc belongs to the type of the adjacent place. So, the modes of ¢ in figure 1
are 01 = (2 1,y — 2), 00 = (z — 1,y — 3), 03 = (z — 2,5 — 3) and
o4 = (z— 3,y +— 2), but not o} = (z +— 1,y — 1) nor o = (z — 2,y +— 2)
because they do not respect the guard of ¢, and neither o4 = (x—0,y—2)
because it does not respect the type of s'.

These high-level aspects are expressible in the low-level nets through the
operation of unfolding defined as follows:

— each high-level place is unfolded to as many low-level places as there are
values in its type (so, s’ gives rise to the low-level places s, s5 and s5);

— the marking is obtained in such a way that, for instance, the token 2 in
s’ leads to a (black) token in the place sb;

— each high-level transition is unfolded to as many low-level transitions as
there are modes associated to it (so, ¢ generates the low-level transitions
t<71 to t<74);

— the arcs are obtained consistently with the modes. So, according to the
mode o1 = (x — 1,y +— 2), t,, is connected to s}, with the weight 1

6 Hanna Klaudel, Franck Pommereau

corresponding to the multiplicity of x in the annotation of the high-level
arc, and to s§, with the weight 1 corresponding to the multiplicity of y
in the annotation of the high-level arc.

The unfolding allows to express systems in the high-level domain with
the guarantee that they have a representation in the low-level one, which is
needed for their automated analysis. (Notice, however, that allowing infinite
types for the high-level places gives rise to infinite low-level nets.)

2.2 Static and dynamic aspects of M-nets

We consider the following pairwise disjoint sets:

— Val is the set of values (in particular, Val contains the “black token” e,
natural numbers, Boolean values, etc.);

— Var is the set of variables (Var is assumed large enough to allow renaming
each time it is necessary in order to avoid name clashes);

— A is the set of high-level action symbols, provided with a bij(itition -,

called conjugation, such that for all act € A : act # act and act = act.
Each symbol act € A has an arity ar(act) and we have ar(act) = ar(act).
The terms act(x1, ..., Tar(act)) and c;c\t(:tl, <oy Tar(aet)) (Where x; € Val U
Var for 1 < ¢ < ar(act)) are (high-level) actions and they are said to be
elementary if all their arguments (the z;’s) are values;

— Ay corresponds to A in the low-level domain; it is the set of all elementary
actions constructed from A and Val. (Notice that A, is closed under ~.)

— X contains the hierarchical symbols, which will be used to denote abstract
actions used to label transitions to be refined;

— the symbols e, i and x denote the status of places used to label places in
order to guide net compositions; for a net N, we denote by N¢, N' and
N*, respectively, the set of its entry places (labelled by e), internal places
(labelled by i) and exit places (labelled by x).

The bozes are labelled low-level nets with some structural constraints:!
the entry places have no input arcs (symmetrically, the exit places have no
output arcs), there always exists entry and exit places and each transition
has at least one pre-place and one post-place.

Definition 3 A box N = (5,7, W, \) is a low-level labelled Petri net such
that:

— for each place s € S we have A(s) € {e,i,x};

— for each transition ¢ € T', we have A(t) € multy(Ay) (if ¢ is a communica-
tion transition) or \(¢) € X (if ¢ is a hierarchical transition);

— N is ex-restricted: N # () # N*;

— N is ex-oriented: Vt € T, Vs € N&,Vs' € N*: W (t,s) =0 A W(s',t) = 0;

— N is T-restricted: Vt € T, 3s,s' € S: W(s,t) >0 A W(t,s') > 0.

! These conditions were required in PBC [4] but relaxed in PNA [6]. We will use
the original definition which leads to a simpler, more intuitive, model.

M-nets: a survey. 7

With this definition, in particular, we are sure to have non-empty entry
and exit interfaces (N¢ and N*) in every box N. The communication and
the hierarchical interfaces, which are composed of transitions, may be empty.
These interfaces will be crucial for defining composition operations on boxes,
see section 4. The transition rule for boxes is that of low-level labelled Petri
nets.

M-nets are high-level boxes. In order to introduce them, we need essen-
tially to enrich the annotations of low-level nets.

Definition 4 An M-net is a triple N = (S, T,), where S is the set of places,
T is the set of transitions (with S N7 = @) and ¢ is the annotation function
on SUTU (S xT)U (T x S), such that:

— for each place s € S, «(s) is a pair A(s).a(s) where A(s) € {e,i,x} gives
the status of s and a(s) C Val, with a(s) # 0, gives its type;

— for each transition ¢ € T, «(t) is a pair A(t).y(t), where:

— either \(¢) is a finite multiset of high-level actions, or A(t) € X;

— 7(¢) is the guard of ¢, which is a Boolean expressions on Var and Val.
We denote by var(t) (a subset of Var) the set of variables appearing in
the annotations of ¢ and its arcs;

— for each arc (s,t), ¢(s,t) is a multiset of structured annotations on Var U
Val, representing the values consumed during a firing of ¢; similarly, the
values produced during a firing of ¢ are represented by the annotation
U(t, s);

— N is ex-restricted, ex-oriented and T-restricted (like for boxes, using
z,y) = 0 or v(z,y) # 0 instead of W(z,y) = 0 or W(z,y) > 0 re-
spectively).

The structured annotations are formalised in [37] and illustrated in the
following, see for instance figures 5 and 6. They include, depending on the
context, constants and variables, but also more complex terms (introduced
later on, possibly including distinguished symbols ¢ and ¢) that encode, for
each mode, different sets of values.

In the figures, the hierarchical transitions are represented using double
lines (the hierarchical symbols being the capital letters X, Y, etc.). En-
try places are depicted with an incoming double arrow, exit places with an
outgoing double arrow and internal places with no double arrow. Also, the
notations are often simplified: an empty communication label or an empty
(true) guard are generally omitted, arcs with empty annotations are never
represented, the singleton multisets are replaced by their unique element, the
places are not always named, etc. The purpose of these simplifications is to
alleviate the presentation in order to focus on the aspects serving directly
the understanding.

We will formalise now different notions allowing us to define the unfolding
and the transition rule of M-nets. This will allow us to state the property of
consistency of the behaviour of an M-net with respect to the behaviour of its
unfolding.

A binding of a transition t is a substitution o : var(t) — Val. If = is
an entity (expression, action, etc.) which depends on the variables in var(t),
we denote by o(z) the evaluation of z under o. A transition ¢ with a guard

8 Hanna Klaudel, Franck Pommereau

~(t) may be fired with a binding o only if, for all g € ~(¢), o(g) is true.
Moreover, if Vs € S : o(i(s,t)) € mult(a(s)) A o(u(t,s)) € mult(als)), i.e.,
if the annotations on the arcs evaluated under o respect the types of the
places, we say that o activates t, i.e., that o is a mode for ¢.

A marking of an M-net (S,T,:) is a function M : S — mult(Val) which
associates to each place s € S a multiset of values from «a(s). We distinguish
the entry marking for which M (s) = a(s) if A\(s) = e and M (s) = () otherwise,
and the exit marking for which M(s) = a(s) if A(s) = x and M(s) = 0
otherwise. The typical expected behaviour of an M-net is to start its execution
from its entry marking, finishing, if ever, with its exit marking.

The wunfolding operation, unf, associates a low-level labelled net unf(N)
to any M-net N and also the marking unf(M) of unf(N) to any marking M
of N. Examples are given in the figures 1 and 2.

Definition 5 Let N £ (S,T,:) be an M-net. The unfolding of N is the
low-level labelled net unf(N) = (unf(S),unf(T), W, \) such that:
— unf(S) = {s,]|s € S,v € a(s)}, and for all s, € unf(S) we have \(s,) =
Als);
— unf(T) = {t,|t € T,0 is a mode for t}, and for all t, € unf(T) we have
Ato) = a(A(t));
— W (sy,ts) = Z t(s,t)(z) and analogously for W (¢,, s,).
z€L(s,t)ANv=0c(x)
Let M be a marking of N. The marking unf(M) of unf(N) is defined as
follows: for all places s, € unf(S), unf(M)(s,) = M(s)(v). So, the number of
(black) tokens in s, is the number of occurrences of v in s.

Such a definition of the unfolding corresponds to the intuition presented
in figures 1 and 2: the places and the transitions are unfolded separately,
the arcs are derived from the corresponding bindings and the marking of the
low-level net reflects directly that of the M-net. We have the following static
property:

Proposition 1 The unfolding of an M-net N is a bo.

The dynamic aspects of the net are captured though to the following
definition of the transition rule.

Definition 6 A transition ¢ may fire at a marking M and for a mode o iff
for all places s € S, we have o(i(s,t)) < M(s). The firing of ¢t produces the
action o(A(t)) and leads to a new marking M’ defined by Vs € S : M'(s) =
M(s) —a(u(s,t)) + o(ilt, s)).

Like for low-level nets, it is possible to consider various kinds of seman-
tics (interleaving, step or truly concurrent). It is also possible to prove the

consistency property relating the behaviour of a high-level net with that of
its unfolding [8].

Proposition 2 A transition t may be fired in the M-net N at a marking
M for the mode o, leading to the marking M’ iff t, may be fired in unf(N)
at the marking unf(M), leading to the marking unf(M'). The elementary
actions corresponding to the executed transition in both nets are the same:

a(At)) = Alto)-

M-nets: a survey. 9

Fig. 2 An M-net with hierarchical and communication transitions (on the left)
and its unfolding (on the right). In the latter, thick arcs have the weight 2 (all the
other arcs having the weight 1); this corresponds to the modes of ¢’ that bind z
and y to the same value. The bottom-most transitions are all labelled by stop and
the top-most transitions are grouped according to their labels: start(1) for the two
left-most ones, start(2) for the two in the middle and start(3) for the two right-most
ones.

2.3 M-net refinement

One of the essential features of a modular Petri net model is the ability of
expressing various levels of abstraction, i.e., the possibility to specify systems
in an incremental way using successive refinements. It is also important to be
able to define the operations on the model in a simple and homogeneous way.
These features can be provided thanks to a transition refinement (substitu-
tion), allowing one to replace a transition (describing an abstract, simple,
behaviour) by a net (describing a concrete, detailed, behaviour). Approaches
like, for instance, [5,6], propose very general solutions for low-level (box-like)
nets. However, for a long time, a similar flexibility had not been obtained for
high-level nets. Indeed, the approaches introducing the concept of hierarchy
like for instance [46] or [12] in coloured nets, [25] in algebraic nets, or [45]
in M-nets, work only in very restricted cases. These results were generalised
in [37] which removed most of the previous restrictions.

The substitution of a hierarchical transition ¢ (labelled by X) in an M-net
N by an M-net N’ means that ¢ is replaced in N by a copy of N’; this is
denoted by N[X < N']. In order to do this, the transition ¢ is removed and
its pre-places are combined with the entry places of N’ while its post-places
are combined with the exit places of N’. In other words, * is identified with

10 Hanna Klaudel, Franck Pommereau

N'¢ while t* is identified with N’*. This is performed in such a way that any
execution of ¢, for any mode, in N is replaced in N[X «— N’] by an execution
of N’ from its entry marking to its exit marking. We wish also that all the
transitions labelled X can be replaced simultaneously, which allows the net
N’ to be executed (possibly concurrently) for each replaced transition.

The basic mechanism used here (see also [36,37,78]) in order to guarantee
the consistency with respect to the unfolding of the M-net refinement and
that of boxes, is that of labelled trees. It is a generalisation of the Cartesian
product used by other authors in order to define combinations of places.

In the case of boxes, the labelled trees are used in order to generate the
places combining the pre-places and the post-places of refined transitions
with the entry and exit places of the refining nets. The main difference in the
case of M-nets is that only one place is generated during each combination,
but its type is a set of labelled trees. These have at most two levels, one
level corresponds to what comes from the refined net N and the second
level corresponds to what comes from the refining net N’. Labelled trees like
that shown in figure 3 are used in order to generate new structured values
belonging to the types of interface places in the refined net (i.e., the places
which are connected to one or more hierarchical transitions).

Fig. 3 Illustration of the scheme of the value trees of the interface places.

This M-net refinement allows to overcome most of the restrictions present
in previous approaches. In particular, arbitrary types are allowed for the
places around hierarchical transitions and for the entry/exit places of refin-
ing nets. Moreover, arbitrary arc annotations and side-loops on hierarchical
transitions are also admitted.

Let N = (S,T,:) be an M-net, X € X be a hierarchical symbol, (N;)icr
be a family of M-nets and (X;);er be a family of hierarchical symbols. We
use the following notations:

— Xy = {X; | i € I} is the set of hierarchical symbols of N;

~ TX Z{t €T | A(t) = X} is the set of hierarchical transitions labelled by
X;

— T%v Z|J,.; T is the set of hierarchical transitions of N;

— for each set R C SUT, we consider the sets R® £ Uger 2%, °R £ Uyer
of successors and predecessors of the nodes in R;

~ NEN[X; — N, |ieI] £(S,T,7) is the net N in which each transition
labelled by X is replaced by a copy of N;, for all ¢ € I. All these substi-
tutions are simultaneous. We call N the refined net, the N;’s the refining

nets and N the resulting net.

The places of the resulting net N belong to one of two possible categories:

M-nets: a survey. 11

— either they are the places of the refined net N (some of them are the
interface places if they are connected to one or more hierarchical transi-
tions);

— or they are copies of internal places of the refining nets N;.

This way, each place s of N is also a place of the refined net, with the same
status. The only difference is in its type which is then the set of labelled trees
constructed from the values in the type of s and from the values coming from
the types of entry /exit places of the refining nets N;. The new type of s, &(s),
is the set of all labelled trees (up to isomorphism) of the form represented in
figure 3 where:

— the root is labelled by a value v € a(s);

— the edges are labelled by pairs (¢,0) where ¢ is a hierarchical transition
of N, adjacent to s and o is a mode for ¢;

— the direction of the edges corresponds to the direction of the arc between
t and s in N (down if there is an arc (s,t), up otherwise);

— the leaves are labelled by pairs (s;,w;) where s; is an entry or exit place
of the refining net NV; and w; is a value in the type of s;.

For example, the new values of an interface place connected as shown in
figure 4 in the refined net, are of the form depicted on the right. We assume
that the transition oy is a mode for ¢; that is refined by an M-net N7 having
a unique entry place e with the value e in the type of e. Respectively, o5 is a
mode for ¢, that is refined by an M-net N; having a unique exit place z with
the value e in the type of z. The root of the value is labelled by a value from
the original type of s and the leaves by the values of the places e and z.

(t1,01) (t2,02)

(e,;0) (z,0)

Fig. 4 An interface place in a refined net and an example of a value tree in the
type of this place in the refined net.

More precisely, as illustrated in figure 5, for all ¢ € I, for all ¢ € s* labelled
by X; and for all modes o of ¢ such that v belongs to o(t(s,t)), there is in
the tree an edge labelled (¢, 0) going down to a leaf labelled by (e, w) where
e € N;® and w € a(e). Symmetrically, for all ¢ € I, for all ¢’ € °s labelled by
X; and for all modes o’ of ¢’ such that v belongs to o’(¢(s,t’)), there is an edge
labelled (#',0") which goes up from a leaf labelled by (x,w’) where x € N;*
and w’ € a(z). Notice also, that for the places s in NV which are not connected
to any hierarchical transition to be refined (i.e., if 75~ N (*s U s®) = ()) the
trees are reduced to their roots and we have G(s) = a(s).

The internal places of the refining nets N; lead to the set S? of internal
places of the resulting net, with S* < {t.s; | t € T*i As; € N;'}. The status
of these places is still internal and their types are composed of values of the

12 Hanna Klaudel, Franck Pommereau

y S . X.0
{1,2}
e Si
N’ ¢O_.> . hd t;
{o} {o}

N , — (0.9)-0 A (x,5).(e,¢) b5 ¢ (0,81) —
[X — N'] E) O @ O—>t1
{i(t,(fl) 7 (t,Uz)} {(01,0), (02,0)}

*—1IN

Fig. 5 Place types and arc inscriptions, assuming that o1 and o2 are the only
modes for ¢ in N.

form o.v (trees reduced to their roots) where o is a mode for ¢ and v is a
value from o(s;).

The transitions of the resulting net N may be of two kinds:

— the transitions ¢t € T\ 7%~ from N which are not substituted and whose
inscriptions are unchanged, i.e., i(t) = 1(t); _

— the transitions copied from each N;, belonging to T & {tt; |t € TXint; €
T},

The arcs may be of three different kinds:

— those connecting places coming from N to transitions which are not sub-
stituted in V;

— those connecting places coming from N with transitions coming from N;;

— and finally, those connecting internal places and transitions both coming
from N;.

These three kinds of arcs are illustrated on the right hand side in figure 6:

— the transition ¢’ was untouched by the refinement, but the place s has now
a type composed of labelled trees. The firing of ¢’ has to produce in s one
instance of each tree belonging to the type of s. Each root corresponds
to one value produced in s by the firing of ¢’ in N. The notation (x, s).¢
corresponds to this case and the distinguished symbol ¢ means that the
matching leaves of the tree may be arbitrarily labelled;

— the transition t.r has to consume from s one instance of each tree whose
root is labelled by the value corresponding to the binding of x during the
firing of ¢ in N. Each tree has a leaf labelled by the value consumed (in
e1 or ez) via z during the firing of r in N’. The notations (z, s).(z,e1)
and (x, 8).(z,e2) correspond to this case;

— finally, the transition ¢.r has to produce in t.s’ one instance of each value
o.v where v is a value produced via v during the firing of in N’ and o is
a mode for ¢ in N. The notation (.(u, s") corresponds to this case and the

M-nets: a survey. 13

x # y|¢'|start(x) T # yl_t—’_l start(x)
T (z,9).¢

O O sO)
{(Z‘,S).(Z,(ﬁ),

(z,8).(2,e2)}
It

U ¢ (u,s")
(s Ot.s’

a fragment of N a fragment of N’ a fragment of N[X «— N’]

Fig. 6 Illustration of different kinds of structured annotations.

distinguished symbol ¢ denotes that the first part of the token matches
any value allowed by the place types.

The formal definition of the refinement, of the evaluation of arcs and
also of the transition rule of a refined net follows exactly this intuition. It
is presented in the next section in a more general context. It guarantees a
number of properties (cf. [37]), for instance:

Theorem 1 Let N, N;, N and N}/ (fori€ I, j € J, and k € K) be M-nets.
The following properties hold.

— Domain preservation: N[X; < N; | i € I] is an M-net.
— Consistency with the low-level model via the unfolding: up to isomorphism,

— Expansion law: if JCI, INK =0 and {Yy | k€ K} N{X; |i €I} =0,
then, up to isomorphism:

N[X; « N; |i € I][X; « N}, Yy — NJ' | j € J.k € K|
= N[X; « Ny[X; — N, Y, — N/ | j € J,h € K],
Y, — N/ |iel,keK].

The expansion law expresses the commutativity of refinements and is a
generalisation of the following property for M-nets N, N', N” and N":

N[X « N'|[X — N",Y — N"]
= N[X « N'[X « N")Y — N",Y « N"].

The refinement is very useful in the process of modelling a system in a
structured way. It is also essential for a uniform synthesis of the control-flow
operators in the algebra of M-nets as we will see in section 4.

14 Hanna Klaudel, Franck Pommereau

3 Extensions of M-nets
3.1 Parameterised substitution

In [39,53,64] the syntax of the parallel specification language B(PN)? [10]
having a Petri net semantics has been extended by procedures. The mech-
anism to manage the different instances of a procedure used in [39,53,64]
requires the usage of “net parameters” in the refinement in order to be able
to distinguish between different active instances. Indeed, if in a sequential
environment the instances of a procedure are always totally ordered and can
be managed by a stack, it is not the case in a parallel environment, where
several active instances of a procedure may be generated by concurrent calls
and may evolve concurrently. These instances are distinguished by differ-
ent modes of the same hierarchical transition, as for instance, the modes
o1 = (z+— 1) and o9 = (z — 2) of the transition ¢ in figure 7. The procedure
body is modelled by the parameterised M-net N’(id), where the parameter
id can take values in {1,2} and is used to identify the instances. The result
of the refinement is presented on the right of figure 7.

{1,2} {o} {i (t,o1) , i (t,Uz)}
x . (z,0)

P(x).0 act(id).0 act(z).0

O,2) o} Ofl o) T on)

N N'(id) N[P — N'(id)]

Fig. 7 Parameterised refinement: management of the instances of a procedure P
whose body is given by N'.

The parameterised refinement [37] introduces a mechanism that allows
to identify the variables from the environment of a hierarchical transition
(for instance, x in the net N in figure 7) with the corresponding parameters
(such as id in N’(id)). Moreover, the solution proposed in [37] is not limited
to this particular case but introduces a general scheme which works in all the
circumstances.

To start with, we introduce parameterised M-nets [37] in which we will
use the following extensions:

— Par denotes the set of net parameters, disjoint from Val and Var. Each
parameter ¢ € Par is assumed to have a non-empty type denoted set(1));

— W is a list of parameters of the form t1,...,,, where Vi € {1,...,n} :
¥; € Par (with ¢ # j = 1; # ;). The set of parameters {¢1,...,¢¥n}
associated to ¥ is denoted by Par(¥);

— a substitution k : Par — Var U Par U Val is denoted by (1 — 11, ..
Yy — Up); 1t is elementary if v; € set(1);), for all ¢ € {1,...,n};

)

M-nets: a survey. 15

— each action act(v1, ..., Var(act)) has arguments which are values, variables
or parameters, i.e., for all j € {1,...,ar(act)}, v; € Val U Var U Par(¥);

— each hierarchical symbol X € X has an arity ar(X) representing the
number of its arguments. The term X (v1,..., v, (x)) represents a hierar-
chical parameterised action where all the v; € Val U Var U Par(¥), for
jeA{l,...,ar(X)}, are the arguments of X.

Definition 7 A parametrised M-net N is a quadruple (S, T, ¢, ¥) (often de-
noted by N(¥)), where S, T and ¢ are as in definition 5 and satisfy the
following conditions:

— the net has an arity which is the size of the list Par(¥);

— for each transition ¢ € T, () is either a finite multiset of parameterised
actions or a hierarchical parameterised action. The parameters which ap-
pear in A(t) belong to Par(¥);

— the parameters never appear in guards nor in structured annotations of
arcs.?

For a given substitution, the dynamic behaviour of such a net is similar to
that without the parameters. Also, the semantics of a parameterised M-net
[37] does not depend on the names of the parameters nor on the variables
in the environment of each transition; they may be consistently renamed at
will.

The unfolding of a parameterised M-net is a family of low-level nets
(rather than one low-level net as in the case without the parameters) unf(N):
k — unf(N, k) where & is an elementary substitution such that each choice
of values of parameters specified by k leads to a (generally different) low-
level net. As for M-nets without parameters, we have the consistency of the
behaviour of a parameterised M-net with that of each low-level net corre-
sponding to it [37].

Proposition 3 A transition t can fire in a parameterised M-net N at a
marking M with the binding o and leads to a marking M’ iff t, can fire in
all unf(N, k) at unf(M) and leads to the marking unf(M'). The parameterised
or hierarchical actions produced during this firing are the same in the high-
level net N and in each low-level one unf(N, k).

'Using the concepts and the notations introduced in the previous section
(8%, T, a(s), ¢, ¢, etc.), the parameterised refinement is defined as follows:

Definition 8 Let N = (5,7, ¢,¥) and N; = (S;,T;, 3, ¥;), for i € I, be M-
nets. The refinement N[X; «— Ni(¥s1,...,Viar(x,)) | 7 € I] (with i # j =
X; # Xj) is defined as the M-net N £ (S,T,7,¥), with the same® set of
parameters as IV, such that:

- SE(USHus,

iel

% This last restriction were removed in [27].
3 The N;’s do not introduce new parameters in the refined net, as their parameters
are all instantiated by variables, values or parameters of V.

16 Hanna Klaudel, Franck Pommereau

-1 (_LGJITi) U (T \ TX1),

(
Wty ift=te (T\T*)
</ df Oi (>‘1 (ti));’}/(t) Ui (tz)
- ut)= ift=tt, €T At)=Xi(vin,---, Vi,ar(Xi)) and if p;
is a substitution (V1 = vi1,..., Yiar(x) = Viar(X,))

> usit)(a) *{(a,s).0}
w€=D i —seSandi=te (T\T%)
X X > usit)(a) x ti(ei, ti)(b) * {(a,s).(b, e:)}
a€u(s,t) ei€EN:® beEr;(ei,ts) _ .
- i(5,t) = ifs=seSandt=tt; €T foraniecl
> ulsita)(b) * {C.(b, si)}
bGLi(Si,ti)) 5)
ifs=ts;eS"andt=tt; c¢T"forani el
() otherwise,

The inscriptions i(Z, 3) of the arcs in T x S are defined analogously.

The main difference between the parameterised refinement and the non
parameterised one concerns the label of a transition in the refined net. It
contains an application of a substitution g; which defines the correspondence
between the arguments (v; 1, ..., Vi,ar(Xi)) of the hierarchical transition of NV
and the parameters (v;1, ..., ¥;ar(x,)) of Ni. The rest of the definition is
exactly the same as explained for the non parametrised case and illustrated
in figure 5: in particular, the values of the types of the places (labelled trees)
and the arc annotations are constructed exactly in the same way.

Theorem 2 The properties stated for the non parameterised refinement hold
in the parameterised context, in particular:

— domain preservation;
— consistency with the low-level domain via the unfolding;*
— expansion law.

3.2 Recursion

The recursion u{X;.N; | ¢ € I} N, means “replace in N all the X;’s by N;’s,
and restart on the result ad infinitum”. This operation has been defined
first for low-level nets [4,5], where the recursion u{X;.N; | i € I}N was
interpreted as a kind of “limit” of the refinements N[X; «— N;|[X; «— N;]---
or N[X; — N;[X; < N;[--]]]. This concept is formalised in [37] in the case of
M-nets, including the possibility of parametrised recursion. The semantics of
the recursion is given by expressing explicitly the form of the result instead
of as a limit like in [4,5].

* Remember that the unfolding of a parametrised M-net gives a family of low-
level nets.

M-nets: a survey. 17

There are several similarities between the refinement and the recursion,
but the latter is more complex. The transitions are here finite sequences
t.ty...t; of arbitrary length (but satisfying some constraints), instead of
sequences of length 1 or 2 like ¢ or t.t; as used in definition 8. Moreover, the
types of the places contain values which are labelled trees of arbitrary height,
possibly infinite, instead of the trees of height 1 or 2 as in definition 8.

Intuitively, a sequence of transitions ¢.t; ...¢;_1.t; expresses a sequence of
refinements which begins by the hierarchical transition ¢ in IV, continues with
the hierarchical transitions ¢, ..., t;_1 in M-nets Ny, ..., IV;,_, and finishes
with a transition ¢; (hierarchical with a label X; ¢ Xy or non-hierarchical) in
N;,. Each sequence of that form leads to a transition in the recursive M-net

N.
As for the refinement, the places § may be of the form 7.s and we distin-
guish two cases:

— the places coming from N, for which 7 is empty;
— internal places copied from the nets N; for which 7 s ti.to -+ ty—1 1S not
empty.

The new values of these places have the general shape shown in figure 8. The
root is labelled by 01.03 . ..0,—1.4 where u is a value from «(s) if 7 is empty
or from «;(s) if # = ty.t9---t,—1 and t,_; is labelled by X;. Each o; is a
mode for the hierarchical transition ¢; corresponding to a given depth of the
recursion. The other labels are analogous to that of refinement, their exact
description is given in [37].

As for the refinement, the definition of the recursion is complex, but
it has the advantage to work in any circumstance. In particular, it allows
hierarchical transitions to be connected to entry or exit places of the nets N;
(or both), which was not the case with previous attempts.

We have the following properties [37]:

Theorem 3
1. Domain preservation: if N and all the N;’s, for i € I, are M-nets, then

uw{X;.N; |i € I}N is also an M-net.
2. Consistency of the recursion with the low-level nets via the unfolding:
for M-nets N and N;, for i € I, and for all choices k of values for the

01.02...0p—-1.U

(€,0)* " (tn, o) (tyoly) (@ w)
(t7n7 U’VV‘L) (tlm«? U;n)
. (6/77.)/) . E (xlyw/) .
(tm+l7am+1) (t;n+lao-;n+1)
(e// 'U”) (x/l w//)

Fig. 8 The general shape of value trees in a recursive M-net.

18 Hanna Klaudel, Franck Pommereau

parameters, we have, up to isomorphism:

unf(u{X;.N;|[i€I}N, k) =
w{X;(k;).unf(N;, k;)|i €1, K; is elementary) }unf(N, k).

3. Substitution property: for M-nets N and N; (i € I), we have, up to
isomorphism:

/L{)(l]\/vZ | 1€ I}NZ J\/v[)(Z <—/L{Xj.Nj |j€ I}]\fZ | xS I]

In particular, the third property generalises the standard fix point equa-
tion u{ X.N}N = N[X « u{X.N}N].

This approach of the recursion produces potentially infinite nets, a finite
representation of which was investigated in [26].

3.3 Buffered communication

An extension introduced in [54,71] allows M-nets to support buffered com-
munication. The key of this extension is a new kind of places, called buffer
places, which are automatically merged when several M-nets are combined,
i.e., during the refinement.’> Consider for instance two M-nets N; and N be-
ing refined in a net N; if a transition ¢; from N; produces a token in a buffer
place and if a transition ¢t from N, consumes a token from its own buffer
place, after the refinement, the place merging ensures that these transitions
use the same buffer place, making possible the communication between ¢;
and tg, even if they are not originated from the same M-net.

More precisely, we consider a set B of buffer symbols such that each b €
B is associated with a type type(b) C Val. Each buffer place s is labelled
by a b € B and we have «(s) = b.type(b). Then, the refinement and the
recursion (parameterised or not) are redefined as follows: (1) we use the
original definition considering the buffer places as internal ones; (2) for all
b € B, we merge the buffer places sharing the same label b € B, their markings
being added.

The extension with buffered communication turns out to be very useful
and generally allows to express complex systems using smaller and simpler
parts. Many applications of M-nets rely on the buffered communication ex-
tension. In particular, we will see later on how the semantics of a parallel
specification language can be simplified, thanks to buffer places, by using
just combinations of basic nets having only one transition.

4 M-net algebra
The model by which M-nets are inspired, the Petri Box Calculus (PBC) [4,5]

and its more recent versions [6,34], is a process algebra provided with a low-
level Petri net semantics. It has a syntactical domain of box expressions and

5 As shown later on, various M-nets composition operations can be defined. Since
they are based on the refinement, they do not require any change to support buffered
communication.

M-nets: a survey. 19

a semantical domain of boxes. Each syntactical operator has a corresponding
operation (with the same name) in the net domain. The semantics can be
obtained by associating a box to a box expression and then through the
standard definition of concurrent evolutions (processes) [3,44] in order to
obtain, for instance, a partial order semantics. The semantics can also be
obtained directly from a box expression following the rules of the structured
operational semantics following the approach from [6].

4.1 M-expressions

Even though the model of M-nets has been developed first in the semantical
domain, it also has a syntactical domain, called the algebra of M-expressions
[58].

E:=Ex | E3E|EQE|E | E|[E+E«E]|E[X — E] | Elf]
| Etieb | Esya| Ersa| Esca

The syntax of the algebra of M-expressions F is presented above, where
a € A, b e€B, and f is a renaming function on actions, hierarchical and buffer
symbols. The operators comprise: sequence Ei§FE> (the execution of Fj is
followed by that of Es); choice Ey1 [Ey (either Ey or E2 can be executed);
parallel composition E1||Es (E7 and Es can be executed concurrently); iter-
ation [F1 * E9 x Es] (E is executed once (initialisation), Eo can be executed
an arbitrary number of times (loop), and then is followed by FE3 (termi-
nation)); refinement E1[X < Fs| (events labelled by hierarchical symbol
X in Ey are replaced by E»); renaming FEi[f] (elements of E; are consis-
tently renamed by f); buffer restriction Etieb (the buffer place b and the
related communications become private to F1); synchronisation Eqsya (all
multi-way synchronisations involving the actions a or @ are made possible);
restriction Firsa (events involving a or @ may no longer be executed) and
scoping E7sca (the synchonisation followed by the restriction w.r.t. a).

We assume that any M-net N has an associated constant expression E
in the M-expression domain. Often, this N is a very simple M-net composed
of only one transition, one entry and one exit place, and possibly connected
buffer places, as for instance in [18,53].

The correspondence between the syntactical domain of M-expressions and
that of M-nets is given compositionally through the semantical function mnet.
For the base case we define mnet(Ey) = N, and the semantics of the op-
erators is as follows, where bin stands for any binary operator in {g, ||, O}
and una stands for any unary operator in {sya,rsa,sca,tieb,[f]}, the net
operations appearing on the right being defined in the next sections:

mnet(F; bin F3) < mnet(E;) bin mnet(Ey)
mnet(F1[X «— E3)) mnet(E1)[X < mnet(E2)]
mnet(F; una) mnet(F1) una

mnet([Ey * Eg * E3]) = [mnet(E1) * mnet(Esy) * mnet(Es)]

e 1= e

20 Hanna Klaudel, Franck Pommereau

A fragment of the algebra of M-expressions has also been provided with a
structured operational semantics [18,58]. It was shown that, for a restricted
class of M-expressions (used for the semantics of the parallel specification
language B(PN)?), the semantics obtained using the operational rules from
the initial state of an M-expression was equivalent to the step semantics of
the corresponding M-net.

4.2 Control flow operations

Originally, at the level of boxes as well as at that of M-nets, the control flow
operations, such as sequence, parallel composition, choice or iteration, were
defined through auxiliary operations of net composition, see for instance [4,
8]. The refinement allows to define these operations in a uniform way. One
uses for that operator nets like those shown in figure 9.

N. N; {P

Ng X, X X, Xi Ny

P 999
Xy PXQ X, ()% Xs Xll?_l F)@

O O O

Fig. 9 The operator nets for the definition of the M-net control flow operations.

Definition 9 For arbitrary M-nets N1, N2 and N3, we define:

NiON;, S Np[X; « Ni, X5 — Ny choice
[Ny % No % N3] = N,[X; « Ny, Xy « Ny, X3 — N3] iteration
Ny s Ny £ Ny[X7 — N1, Xo — Noj sequence
Ny || Ny = N [X1 — Ny, X5 — N3] parallel

4.3 Synchronous communications

The formal definitions of the operations presented in this section may be
found in [8]; we give here an informal presentation.

The synchronisation N sya adds new transitions to the net N. It may
be seen as a CCS-like synchronisation extended to multi-sets of actions with
arbitrary arity. Intuitively, one can consider the operation of synchronisation
on an M-net as a result of an application, possibly repeatedly, of a certain
number of partial synchronisations between pairs of transitions having in

M-nets: a survey. 21

their labels conjugate actions a and a. The repetition of such binary syn-
chronisations with respect to a, for all pairs of transitions which contain
conjugate actions, and until no new transition can be added, results in the
synchronisation of N with respect to a, N sy a. For instance, the transitions
t1 and t9 in the fragment of the M-net NNV in figure 10 may synchronise to-
gether w.r.t. start. The corresponding basic synchronisation generates a new
transition ¢ via a renaming of the variables in the surrounding of ¢; and
t2 and a unification of the arguments of the actions start(z) and sm(z),
e.g., with {x — z}. The guard of this new transition is the disjunction of
the guards of t; and t2, and the multiset of synchronous actions is the sum
of those of ¢ and t5 minus start(z) and start(z), both substituted by the
unification discovered for the conjugated actions. The result of this binary
synchronisation is shown on the right in figure 10.

{e}
start(x) start(z),
T#y {get(z()})

T Y
{e}

{1,233 () (OfL2,

Fig. 10 A fragment of an M-net N and its synchronisation w.r.t. start (where z
has been substituted with).

The restriction of an M-net with respect to a removes from the net all the
transitions which contain in their labels actions involving a or a. For instance,
the result of (N sy start)rsstart removes from the net represented on the
right in figure 10 the transitions ¢; and ¢ (but preserves t); it corresponds
also to the scoping N sc start.

The algebraic properties of the restriction are stated by the theorem 4
(equality of nets being considered up to isomorphism). The same properties
are obtained in M-nets for the synchronisation (equality of nets being consid-
ered up to isomorphism and up to the equivalence which identifies duplicated
transitions [8,35]). This theorem is a corollary of a similar one for a version
of M-nets using algebraic data types [51].

Theorem 4 For an M-net N and a1,as € A, we have:

commutativity of sy: (Nsyay)syas = (N syas)sya;
— idempotence of sy: (Nsyaj)sya; = Nsyay

— commutativity of rs: (N rsaq)rsas = (N rsas)rsay
idempotence of rs: (Nrsaq)rsa; = Nrsaq

Thanks to the commutativity of sy and rs, we shall use the extended
notations Nsy A, Nrs A and NscA, for A C A.

22 Hanna Klaudel, Franck Pommereau

4.4 Buffered communication

The buffer restriction of an M-net N w.r.t. b € B is the M-net N tieb which
is obtained from N by replacing b by i in the place s; having this status.
This is to say that the buffer place b is made internal. This is illustrated in
figure 11. If NV has no such place sp, applying tie b leaves the net untouched.
We then obtain the following results.

Theorem 5 Let N be an M-net, a € A and by,by € B. Then:

— commutativity of tie: (N tieby) tiebs = (N tie by) tieby
— idempotence of tie: (N tieby) tieb; = N tieb;
— commutativity of tie and sy: (N tieb)sya = (N sya)tieb;

The last result, which holds up to isomorphism, shows the orthogonal-
ity between buffered and synchronous communication schemes. Moreover,
thanks to the commutativity of tie, we shall use the extended notation N tie B,
where B C B.

Fig. 11 A fragment of an M-net N with a buffer place b (depicted with a double
line) and its version with b removed by the buffer restriction N tieb.

4.5 Relabelling

The relabelling N[f] of an M-net N is like N where the action symbols, the
hierarchical symbols and the buffer names are consistently renamed using
the function f which must be a bijection on A UX UB such that f(A) = A,
fX)=Xand f(B) =B.

4.6 Consistency of the operations

The consistency of the operations of the M-net algebra with their low-level
counterparts is crucial. It means that the unfolding of an M-net N obtained
from a composition of M-nets IV;, ¢ € I, using operations of the M-net algebra,
is equivalent to the low-level net obtained by composing the unfoldings of the
N;’s using the corresponding operations in the low-level domain. It allows in
particular to model a concurrent system in the high-level framework (where it
is easier) and to obtain automatically (thanks to the unfolding) its low-level
equivalent where properties may be efficiently verified.

M-nets: a survey. 23

Theorem 6 The operations of the M-net algebra are consistent with the low-
level ones through the unfolding.

For the control-flow operations, this is a corollary of the consistency of
the refinement. For the synchronisation and the restriction, the consistency
with the low-level model is non-trivial to show, see [8]. It was obtained up to
an equivalence which identifies duplicated transitions (i.e., having the same
label, the same connectivity and same annotations, up to consistent renaming
of variables). Consistency of the buffer restriction was shown in [54,71].

The consistency of the M-nets operations was also studied in a more
general context allowing the presence of net parameters not only as arguments
of synchronous or hierarchical actions but also in the guards and in the arc
inscriptions [27].

5 Applications of M-nets
5.1 Semantics of parallel specification languages

The definition of M-nets was accompanied in [7,8] by their application to a
formal semantics of the parallel specification language B(PN)?: Basic Petri
Net Programming Notation [10]. B(PN)? comprises in a simple syntax most
traditional concepts of parallel programming including nested parallel compo-
sition, iteration, guarded commands, and communication via both handshake
and buffered communication channels, as well as shared variables. Originally,
B(PN)? incorporated no procedures, but this important feature was added
at the M-net level first in [39,64] and then in [53]. The main difficulty when
dealing with procedures consisted in the treatment of their parameters, which
may be passed by value or by reference. The approach from [53] was based
on M-net refinement and synchronisation operations inheriting in this way
all properties of the M-net model, in particular the consistency with the low-
level. Another semantics based on parameterised M-expressions was proposed
in [52,70] exploiting the introduction of the buffered communication and the
properties of the M-expression algebra. With the experience acquired with
the modelling of B(PN)?2, M-nets could also be used in [40] for a semantics
of SDL: Specification and Description Language [21].

5.2 Semantics of object orientation

The works in [61-63] provided first attempts in expressing object oriented
concepts using M-nets. They were improved in [16,17,20] by allowing the
definitions of classes with their own fields (attributes and methods), sin-
gle class inheritance, polymorphism and dynamic binding. This led to the
definition of an extension of B(PN)?2, called BOON (Basic Object Oriented
Notation), having a syntax inspired from Java and C++, and a fully com-
positional semantics in terms of M-nets. It may be seen as an alternative
to other Petri net based formalisms capable to express object oriented con-
cepts, which generally use more complex net classes. This is the case, for

24 Hanna Klaudel, Franck Pommereau

instance, for Object Petri Nets (OPN) [59], which uses net tokens, or for CO-
OPN [13] and CLOWN [22], which use algebraic Petri nets (nets extended
with algebraic data types).

5.3 Semantics of mobility

In order to be able to express mobility, dedicated process algebras have been
designed, among which one of the most popular is certainly the m-calculus
[67]. The basic device for expressing mobility in this framework is to pass
a reference (or a channel) to a process through a communication, allowing
the recipient to use then the new channel for further interactions with other
processes.

On the other hand, Petri nets are generally not considered as naturally
suitable for expressing processes with changing structure, such as commu-
nicating agents which can be dynamically linked to other agents, possibly
depending on previous communications. In this respect, the approaches from
[28,29,31,32] show that M-nets enriched with read arcs can be successfully
applied to the modelling of systems with such a mobility feature and thus
to emulate the m-calculus. The basic idea is to use buffer places to store the
current value of a channel and to update this value during the evolution. The
originality of this approach is that it allows to build a Petri net semantics
of a mobile system in a compositional way, using some simple composition
rules and only a few basic nets.

These ideas were applied in [14,15] to give a high-level net semantics to
the security protocol language (SPL) [23] inspired from m-calculus-like pro-
cess algebras. Subsequently, Needham-Schroder protocol was considered to
illustrate how this semantics could be used in order to establish the violation
of the authentication property

M-nets were also used in [30,33] for a semantics of various versions of
Klaim language [24] implementing the mobility using the features of multi-
ple data tuple spaces distributed over network nodes. This work has been
applied in a case study about the modelling and verification of multi-agents
systems [2].

5.4 Semantics of preemption

An extension of M-nets was proposed in [55,57] in order to provide them
with preemption capabilities. The preemption of a process is an interruption
of its execution. It is called a suspension when it is temporary and followed
by a resuming, while it is called an abortion when the process is killed. This
extension was applied in [56] to give a semantics of exceptions in B(PN)2.
Two unary operators were introduced: the first one, s, allows an M-net to
be suspended and the other, 7., to be aborted. It turned out that defining
these operators in the algebraic framework of M-nets required to introduce
priorities between the transitions. But it was showed that they were used
carefully enough to avoid obtaining the expressive power of Turing machines;
instead they allowed a logarithmic simplification of the expression of the

M-nets: a survey. 25

preemption operators. A similar compression was observed in Place Charts
Nets introducing abortion in Petri nets [48].

The M-nets extended with priorities and preemption operators are called
preemptible M-nets (PM-nets). A PM-net is a pair (N, p) where N is an
M-net and p is a binary relation over the transitions of N which is called
the priority relation, following the scheme from [11]. Having (t1,t2) € p is
denoted t; < to and means that the enabling of to disables t1, i.e., that ¢,
has the priority over ¢;. The refinement is then adapted in order to allow a
priority over a hierarchical transition tx, e.g., tx < t, to be propagated to all
the transitions of an M-net N’ refining ¢ x, which ensures that ¢x.t’ < ¢ holds
for all the transitions ¢ of N'. This allows to define the suspension operator
in a simple way as m,(N) = N,[X < N]scsleep where N, is the net shown
on the left of figure 12. Thanks to the priority tx < t2, all the transitions in
the net refining ¢ x are suspended as long as t; remains enabled. The abortion
operator is defined in a similar way using the net N, given on the right of
figure 12. The main difference is that the looping transition to is exploited to
remove the tokens in each place of the PM-net on which 7, is applied. This
is made possible by adding to these places emptying transitions (holding the
action empty) which are synchronised with t5. Finally, the abortion of N is
obtained thanks to the priority ¢35 < t2 in N,, which ensures that all the
tokens are removed before the net 7, (V) can produce its final marking.

X X
O O O]
. i
[——O——is
Jc;t CDmte
empty[t2]

Fig. 12 On the left, the operator net N used to define the suspension operator.
On the right, the operator net N, for the abortion operator.

Another approach to preemption has been proposed in [74], which con-
sists in a framework where a syntactic level (PBC-like) allows to restrict the
concurrency to communicating sequential threads of executions. Preemption
is here limited to an exception mechanism, but a thread cannot be suspended
or aborted from another thread. The simplification of the concurrency scheme
and the restricted preemption allows for a more simpler implementation with-
out priorities.

5.5 Semantics of time constrained specifications

The causal time approach is a way to introduce timing features in an oth-
erwise untimed model [38]. In particular, we shall consider coloured Petri
nets as in [77], or M-nets as in [19,54,71]. The idea behind causal time is to
use the expressive power of the model, this amounts to give an explicit rep-
resentation of clocks in the modelled systems. In the case of Petri nets, it is

26 Hanna Klaudel, Franck Pommereau

possible to introduce counters and a distinguished tick transition whose role
is to simultaneously increment the counters. Thus, they become the timing
reference and can be used as clock-watches by the processes. This is quite
similar to what exists, e.g., in timed automata [1] except that, in this later
case, clocks are real values which are continuously increased by a process
(the passing of time) external to the system. Using the features of M-nets
allows for a definition of a causal clock which acts like a server for the rest
of the system: each tick counter is associated with an identifier which can be
allocated or freed and may be used to set or check the current value of the
counter from any part of the system. Transmitting the counter identifiers is
made easy by using the buffer places.

Using the causal time approach has been further simplified in [72,74] by
using a PBC-like syntax allowing to specify time constrained system with-
out the need to manage the identifiers of counters. In particular, [74] allows
to define multiple independent clock ticks, each being associated to various
watch or timeout counters allowing respectively to measure or to constrain
the passing of time. This work also avoids to statically define boundaries to
some counters, which was used to model timeouts in the previous approaches.

It was shown in [19] that the causal time approach is highly relevant since
the model checking can be more efficient using a general purpose model-
checker for high-level Petri nets (MARIA [65]) than using well known tools
for timed automata (Kronos [82] and UPPAAL [60]). This case study was
performed on a railroad crossing problem which is presented in the next sec-
tion. A method to use the concurrent semantics of Petri nets with a notion of
time region was proposed in [72], allowing for more efficient model-checking
of causally timed systems. Another approach has been proposed in [75] to
handle counters of ticks using Petri nets equipped with integer variables. A
compact state space construction was provided in order to give a represen-
tation of the reachable states. This construction aggregates in one unique
symbolic state possibly infinitely many concrete states that differ only by
the values of the integer variables.

6 Example

This section presents an example of a specification using M-nets and causal
time in the version proposed in [19,71]. The system of interest is a railroad
crossing composed of n; track sections (each being occupied by only one
train) and of a pair of gates which can prevent cars from crossing the tracks
when a train is present.

The trains are independent and at the beginning none is present in the
crossing. Each of them starts far from the railroad crossing; it triggers a
signal app when it approaches close enough to the gates. From this point,
it reaches the gates after at least a,, and at most aps time units. Then, it
passes inside the gates during at least e, and at most ej; time units and
finally leaves the gates triggering a signal ezit.

The gates are initially open. They close in at least g,, and at most gy,
time units after receiving a signal down. We assume that they require the
same delay for opening after receiving a signal up. It may happen that the

M-nets: a survey. 27

gates receive the signal down when they are already going up; in this case
also, the time needed in order to close is within the same bounds.

A controller receives the signals from the trains and reacts by sending
signals to the gates in at least ¢, and at most cp; time units. It must ensure
the safety property which states that if a train is present at the crossing, then
the gates must be closed. (In this example, we do not address the availability
property, i.e., the gates are open as much as possible.)

These various parts of the system are modelled using the three M-nets
depicted at the top of figure 13. The M-net given at the bottom of this figure
is the causal clock Nj. The number n, £ 2n; + 1 of tick counters in clock
Ny, depends on the number n; of tracks in the system because we use two
counters for each train, with the following static allocation (which improves
the efficiency of the verification).

The counter 0 is reserved to the controller, and its maximal value is
mazo = cpr. This counter is reset when a train is approaching (see the
transition t13) and is used in order to ensure that the signal down is sent to
the gates after at least ¢, ticks (transition ¢14). The maximum number of
ticks allowed here, cpy, is enforced in the guard of the transition t¢ in the
clock. The same counter is also used when the last train leaves the crossing
(transitions ¢15 and t17). Notice that if we have had different constraints in
these two cases, we should have used two different counters. (This is not an
intrinsic limitation of causal time but rather a limitation of the simple clock
we use.)

The counter 1 is reserved to the gates and its maximal value is maz; =
gnm- It is reset when the gates receive the signal to go down (transition ts)
and it ensures that the gates are down after at least g,, and at most gps ticks
(see the transition ¢7 and the guard of ¢5). The same counter is used in order
to ensure the opening of the gates under the same timing constraints.

For each track i, for i€ {l,...,n}, we use two distinct counters: 2i and
2i + 1, with maze; = aps and male_ﬂ = ers. When a train approaches, at
least a,, and at most aps ticks can occur between the sending of the signal app
and the arriving of the train between the gates. This constraint is ensured by
the counter 2¢ (transitions t1 and ¢2). The counter 2¢ + 1 ensures that there
must be at least e,, and at most eps ticks between the crossing of the road
by a train and its leaving sending the signal exit (transitions to and ¢3). In
particular, ¢5 fires when the train enters the crossing; the counter 2i must
then indicate a value greater than a,, (thanks to t > a,, in the guard ¢5) and
the counter 2i 4+ 1 is set to zero.

The complete system is then specified as the parallel composition of its
constituting nets followed by a scoping w.r.t. all the visible actions. In par-
ticular, the actions i, i. and 74 are used to allow a simultaneous initialisation
of all the components. So we have:

Nye = (N[N || N[Ni) sc{is, ig,ic, app, exit, down, up, clock} .

This system can be modelled using the PEP toolkit [41] which allows for edit-
ing and composing M-nets. For the model checking of M-nets, PEP relies on
the unfolding, which is unfortunately intractable in this case because of the
infinite type of the place Time in Ni. Bounding the type, is not enough since

28 Hanna Klaudel, Franck Pommereau

it app,clock(y,t,0)

{1,...,n¢}
. Before
M)
Far P . P N\ B ;ne}
{1,...,n¢} exit, Inside clock(y,t,w),
clock(y’,t" w) {1,...,n¢} clock(y’,t’,0)
zAg Open @L,cluck(l,g,o) GoDown
O—Lu—O ' down

@,cluck(l,g,o)
clock(1,g,w)

k] doun

; GoUp up,clock(1,g,0) Closed

O

app,
clock(0,¢,0)

down, clock(0,c,w),c>cm

z+1 exit, clock(0,c,0)

ti6

exit [t17 /O
z>2 T Idlc‘o\. ExitUp

{0,...,n¢ }

up,clock(0,c,w),c>cm

{(0,0),...,(nc,0)}

{(0,c0+1),...,(nc,cn +1)}
(z,c1)

Ni<n, ci#maz;

m(z,cl,cg)

{(0,¢0);---s(ncsene)} Time (z,c2)
{0,...,nc} x{0,...,w}

Fig. 13 The nets Ni, Ny, N. and Nj (from top to bottom, if taken separately) or
their parallel composition (if taken as a single net).

M-nets: a survey. 29

it still has many values which do not correspond to actual markings but lead
to a huge unfolding, intractable as well. This explains why MARIA [65] was
used in [19] instead of PEP. After the publication of [19], the tool PUNF [49,
50] became available and integrated in PEP, allowing to overcome this limi-
tation.

7 Conclusion

We presented the model of M-nets, based on labelled high-level Petri nets
and provided with various composition operations. We shown that these fea-
tures make it suitable for bottom-up design by using its process algebra like
compositions, as well as for top-down design by using refinement allowing to
replace transitions by arbitrary M-nets. Thanks to the operation of unfolding,
M-nets are consistent with the Petri Box Calculus (PBC). This character-
istics offers a strong formal basis and allows for efficient model checking.
Indeed, PBC is based one safe (1-bounded) Petri nets for which optimised
techniques exist.

The main extensions of M-nets allow to express parameterised refine-
ment, recursion and buffered communication. The main applications are the
definitions of semantics for parallel specification languages, the modelling of
object oriented, mobile, preemptive or timed systems. A more detailed ex-
ample is developed for illustrating this last application. It concerns a railroad
crossing system and allows to show how M-net modularity may facilitate the
modelling of such time constrained critical systems.

Future works about M-nets will aim at improving the process algebraic
aspects, trying to introduce most of the high-level features of M-nets in PBC-
like algebras, exploiting, in particular, the possibilities of abstraction offered
by buffered communication (see, e.g., [72,74] as first steps). Moreover, work is
in progress concerning an efficient verification method for M-nets. The main
idea consists in avoiding going through the unfolding way; instead, staying
at the high-level allows to envisage approaches based on abstraction (like
in [75]) and exploiting the modular aspect of the verified systems.

Acknowledgements

The authors would like to warmly thank the anonymous referees who pro-
vided extremely detailed reports that where really useful in improving the

paper.

References

1. R. Alur and D. Dill. A theory of timed automata. TCS 126(2). Elsevier,
1994.

2. N. Benaissa, B. Djafri, G. Hutzler and H. Klaudel. Towards mod-
elling and verification of mobile agent systems. INADIS/IBERAMIA-SBIA-
SBRN’2006. Springer, 2006.

30

Hanna Klaudel, Franck Pommereau

10.
11.
12.

13.

14.

15.

16.

17.
18.
19.
20.
21.
22.
23.

24.

25.
26.

27.

28.

E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net
theory. TCS 55. Elsevier, 1987.

E. Best, R. Devillers and J.G. Hall. The boz calculus: o new causal algebra
with multi-label communication APN’92, LNCS 609. Springer, 1992.

E. Best, R. Devillers and J. Esparza. General refinement and recursion for
the boz calculus. STACS’93, LNCS 665. Springer, 1993.

E. Best, R. Devillers and M. Koutny. Petri net algebra. EATCS Monographs
on TCS. Springer, 2001.

E. Best, H. Fleischhack, W. Fraczak, R.P. Hopkins, H. Klaudel and E. Pelz.
An M-net semantics of B(PN)?. SCT’95. Springer, 1995.

E. Best, W. Fraczak, R.P. Hopkins, H. Klaudel and E. Pelz. M-nets: an
algebra of high level Petri nets, with an application to the semantics of con-
current programming languages. Acta Informatica 35. Springer, 1998.

E. Best and C. Fernandez. Nonsequential processes. EATCS Monographs on
TCS 13. Springer, 1988.

E. Best and R.P. Hopkins. B(PN)? — a basic Petri net programming notation.
PARLE 93, LNCS 694. Springer, 1993.

E. Best and M. Koutny. Petri net semantics of priority systems. TCS 96(1).
Elsevier, 1992.

E. Best and T. Thielke. Refinement of coloured Petri nets. FCT’97, LNCS
1279. Springer, 1997.

O. Biberstein, D. Buchs and N. Guelfi. Object-oriented Nets with algebraic
specifications: The CO-OPN/2 formalism. APN on Object-Orientation,
LNCS 2001. Springer, 2000.

R. Bouroulet, H. Klaudel and E. Pelz. A semantics of security protocol lan-
guage (SPL) using a class of composable high-level Petri nets. ACSD’04.
IEEE, 2004.

R. Bouroulet, H. Klaudel and E. Pelz. Modelling and verification of authen-
tication using enhanced net semantics of SPL (security protocol language).
ACSD’06. IEEE, 2006.

C. Bui Thanh and H. Klaudel. Encapsulation in an object oriented nota-
tion based on modular Petri nets. Workshop on Simulation with Petri nets
(satellite of ESMc’2003). Eurosis, 2003.

C. Bui Thanh and H. Klaudel. Object oriented modelling with high-level
modular Petri nets. IFM’04, LNCS 2999. Springer, 2004.

C. Bui Thanh, H. Klaudel and F. Pommereau. Boz calculus with coloured
buffers. DASD/ASTC’04. SCS, 2004.

C. Bui Thanh, H. Klaudel and F. Pommereau. Petri nets with causal time
for system wverification. MTCS’02, ENTCS 68.5. Elsevier, 2002.

C. Bui Thanh. Modéles Orientés-Objet pour la Vérification de Systémes
Concurrents. Ph.D. Thesis, Univ. Paris 12. Créteil, 2004.

CCITT. Specification and description language. CCITT Z.100. ICCTT,
1992.

A. Chizzoni. CLOWN: class orientation with nets. Master thesis, Univ. of
Milan, 1996.

F. Crazzolara and G. Winskel. Events in security protocols. ACM Conf. on
Computer and Communications Security. ACM Press, 2001.

R. De Nicola, G. Ferrari and R. Pugliese. Klaim: a kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24(5).
IEEE, 1998.

R. Devillers and H. Klaudel. Refinement and recursion in a high level Petri
boz calculus. STRICT 95, WiC. Springer, 1995.

R. Devillers and H. Klaudel. Solving Petri net recursions through finite rep-
resentation. ACST’2004. ACTA Press, 2004.

R. Devillers and H. Klaudel. Synchronous and asynchronous communica-
tions in composable parameterized high-level Petri nets. Fundamenta Infor-
maticae 3(66). IOS Press, 2005.

R. Devillers, H. Klaudel and M. Koutny. Contezt-based process algebras for
mobility. ACSD’04. IEEE, 2004.

M-nets: a survey. 31

29

30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.

49.
50.

51.

52.
53.
54.
55.
56.

. R. Devillers, H. Klaudel and M. Koutny. Petri net semantics of the finite
m-calculus. FORTE’2004, LNCS 3235. Springer, 2004.

R. Devillers, H. Klaudel and M. Koutny. A Petri net semantics of a sim-
ple process algebra for mobility. EXPRESS/CONCUR’05, ENTCS 154(3).
Elsevier, 2006.

R. Devillers, H. Klaudel and M. Koutny. Petri net semantics of the finite
m-calculus terms. Fundamenta Informaticae 70(2006)3. IOS Press, 2006.

R. Devillers, H. Klaudel and M. Koutny. A Petri net translation of w-calculus
terms. ICTAC’06, LNCS 4281. Springer, 2006.

R. Devillers, H. Klaudel and M. Koutny. Modelling mobility in high-level
Petri nets. ACSD’07. IEEE, 2007

R. Devillers, H. Klaudel, M. Koutny and F. Pommereau. Asynchronous box
algebra. Fundamenta Informaticae 54. IOS Press, 2003.

R. Devillers, H. Klaudel and E. Pelz. An algebraic box calculus. JALC 5(2).
Univ. of Magdeburg, 2000.

R. Devillers, H. Klaudel and R.-C. Riemann. General refinement for high
level Petri nets. FST-TCS’97, LNCS 1346. Springer, 1997.

R. Devillers, H. Klaudel and R.-C. Riemann. General parameterised refine-
ment and recursion for the M-net calculus. TCS 300. Elsevier, 2003.

R. Durchholz. Causality, time and deadlines. Data & Knowledge Engineer-
ing, 6. North-Holland, 1991.

H. Fleischhack and B. Grahlmann. A Petri net semantics for B(PN)? with
procedures. PDSE’97. IEEE, 1997.

H. Fleischhack and B. Grahlmann. A compositional Petri net semantics for
SDL. ATPN’98, LNCS 1420. Springer, 1998.

B. Grahlmann and E. Best. PEP — More than a Petri net tool. TACAS’96,
LNCS 1055. Springer, 1996.

H. Genrich and H.J. Lautenbach. System modelling with high-level Petri
nets. TCS 13. Elsevier, 1981.

H.J. Genrich, K. Lautenbach and P.S. Thiagarajan. Elements of general net
theory. ACGNTPS’80, LNCS 84. Springer, 1980.

U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Infor-
mation and Control 57/2-3. 1983.

B. Grahlmann. Parallel programs as Petri nets.. Ph.D. Thesis, Univ.
Hildesheim. Germany, 1999.

P. Huber, K. Jensen and R.M. Shapiro. Hierarchies in coloured Petri nets.
APN’90, LNCS 483. Springer, 1990.

K. Jensen. Coloured Petri nets. Basic concepts, analysis methods and prac-
tical use. EATCS Monographs on TCS 1. Springer, 1992.

M. Kishinevsky, J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin and
A. Yakovlev. Coupling asynchrony and interrupts: place chart nets and their
synthesis. ICATPN’97, LNCS 1248. Springer, 1997.

V. Khomenko. Punf documentation and wuser guide. 2002. http://
homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/tools/punf

V. Khomenko and M. Koutny. Branching processes of high-level Petri nets.
TACAS’2003, LNCS 2619. Springer, 2003.

H. Klaudel. Modéles algébriques, basés sur les réseaur de Petri, pour la sé-
mantique des langages de programation concurrents. Ph.D. Thesis, Univ.
Paris 11. Orsay, 1995.

H. Klaudel. Parameterized M-ezpression semantics of parallel procedures.
DAPSYS’00. Kluwer, 2000.

H. Klaudel. Compositional high-level Petri net semantics of a parallel pro-
gramming language with procedures. SCP 41(3). Elsevier, 2001.

H. Klaudel and F. Pommereau. Asynchronous links in the PBC and M-nets.
ASTAN’99, LNCS 1742. Springer, 1999.

H. Klaudel and F. Pommereau. A concurrent and compositional Petri net
semantics of preemption. IFM’00, LNCS 1945. Springer, 2000

H. Klaudel and F. Pommereau. A concurrent semantics of static exceptions
in a parallel programming language. ICATPN’01, LNCS 2075. Springer, 2001

32

Hanna Klaudel, Franck Pommereau

57.

58.
59.
60.

61.

62.
63.
64.
65.

66.
. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes. Part I

68.
69.

70.
71.

72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.

H. Klaudel and F. Pommereau. A class of composable and preemptible high-
level Petri nets with an application to multi-tasking systems. Fundamenta
Informaticae, 50(1). IOS Press, 2002.

H. Klaudel and R.-C. Riemann. High level expressions and their SOS se-
mantics. CONCUR’97, LNCS 1243. Springer, 1997.

C. Lakos. Object oriented modelling with object Petri nets. APN’97, LNCS
2001. Springer, 1997.

K.G. Larsen, P. Pettersson and W. Yi. UPPAAL in a nutshell. International
Journal on Software Tools and Technology Transfer, 1(1-2). Springer, 1997.
J. Lilius. OOB(PN)?: an object-oriented Petri net programming notation.

2"% Workshop on Object-Oriented Programming and Models of Concur-
rency, 1996.

J. Lilius. OB(PN)?: An object based Petri net programming notation. Euro-
Par’96, LNCS 1123. Springer, 1996.

J. Lilius. OB(PN)?: an object based Petri net programming notation.
APN’01, LNCS 2001. Springer, 1997.

J. Lilius and E. Pelz. An M-net semantics for B(PN)? with procedures. IS-
CIS’96, 1. Middle East Technical Univ., 1996.

M. Mékela. MARIA: modular reachability analyser for algebraic system nets.
Ounline manual, http://www.tcs.hut.fi/maria, 1999.

A. Mazurkiewicz. Trace theory. APN’87, Part II, LNCS 255. Springer, 1987.

and II. Information and Computation 100. Elsevier, 1992.

C.A. Petri. Kommunikation mit Automaten. Schriften des Instituts fiir in-
strumentelle Mathematik. Universitdt Bonn, 1962.

The CPN group, University of Aarhus, Denmark. The Petri net world, Petri
nets tool database. http://www.daimi.au.dk/PetriNets/tools/db.html
F. Pommereau. FIFO buffers in tie sauce. DAPSYS’00. Kluwer, 2000.

F. Pommereau. Modéles composables et concurrents pour le temps-réel.
Ph.D. Thesis, Univ. Paris 12. Créteil, 2002.

F. Pommereau. Causal time calculus. FORMATS’03. LNCS 2791. Springer,
2004.

F. Pommereau. SNAKES is the net algebra kit for editors and simulators.
http://wuw.univ-paris12.fr/lacl/pommereau/soft/snakes

F. Pommereau. Versatile bozes: a multi-purpose algebra of high-level Petri
nets. DADS/SCSC’07, SCS/ACM, 2007.

F. Pommereau, R. Devillers and H. Klaudel. Efficient reachability graph
representation of Petri nets with unbounded counters. Infinity’07. ENTCS.
Elsevier, to appear.

W. Reisig. Petri nets and algebraic specifications. TCS 80. Elsevier, 1991.
G. Richter. Counting interfaces for discrete time modeling. Tech. report 26,
GMD. September 1998.

R-C. Riemann. Modelling of concurrent systems: structural and semantical
methods in the high-level Petri net calculus. Ph.D. Thesis, Univ. Paris 11.
Orsay, 1999.

P. H. Starke. Processes in Petri nets. EIK 17/8-9. 1981.

H. Storrle. An evaluation of high-end tools for Petri-nets. Tech. Report
Bericht 9802. Ludwig Maximilians Univeritdt Miinchen, 1998.

W. Vogler. Modular construction and partial order semantics of Petri nets.
LNCS 625. Springer, 1992.

S. Yovine. Kronos: A verification tool for real-time systems. International
Journal of Software Tools for Technology Transfer 1(1/2). Springer, 1997.

