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Noname manus
ript No.(will be inserted by the editor)
Hanna Klaudel · Fran
k PommereauM-nets: a survey.
the date of re
eipt and a

eptan
e should be inserted laterAbstra
t This paper surveys the resear
h related to the model of M-netssin
e it was introdu
ed in 1995.M-nets are high-level labelled Petri nets whi
h
an be 
omposed, like pro
ess algebra terms, using various operators. Wepresent the 
ore model, several of its extensions and the main appli
ations.Keywords High-level Petri nets, 
ompositions, a
tion re�nement, syn
hro-nisation.1 Introdu
tionThe model of Petri nets [68℄ is based on 
on
epts 
oming from automatatheory, linear algebra and graph theory. Besides the general advantages of aformal model and the veri�
ation methods based on linear algebra, Petri netsare additionally attra
tive sin
e they have a simple graphi
al representation.This 
hara
teristi
s is important already in the design pro
ess showing how a
on
urrent system is built and distributed in spa
e. It gives a 
lear image of
on
urren
y, sequentiality and 
on�i
t, both on the 
on
rete visual level andon the graph-theoreti
 level. In parti
ular, su
h an expli
it representation of
on
urren
y is suitable when studying non sequential (�true 
on
urren
y� orpartial order) semanti
s of 
on
urrent systems.On the other hand, the modular design of large systems allows to redu
eand manage their 
omplexity. This is possible either in a bottom-up wayby 
omposing smaller subsystems, or going top-down by re�ning parts of arough model by more detailed system des
riptions. In both 
ases, systemsH. KlaudelIBISC, Université d'Evry, 523 pla
e des Terrasses, 91000 Evry, Fran
e, E-mail:klaudel�ibis
.univ-evry.frF. PommereauLACL, Univ. Paris Est, 61 av. du général de Gaulle, 94010 Créteil, Fran
e, E-mail:pommereau�univ-paris12.fr



2 Hanna Klaudel, Fran
k Pommereauare 
onstru
ted from building blo
ks and a semanti
s should support themodular 
onstru
tion of systems. Modularity has been a somewhat weakpoint of Petri net theory: a Petri net is de�ned as a whole, and not in the�rst instan
e obtained by 
omposing subnets. This is totally di�erent inpro
ess algebras where systems are des
ribed by pro
ess terms, whi
h are byde�nition built from subterms. The semanti
s of a pro
ess term is obtainedfrom the semanti
s of its subterms and is 
ompositional by nature. However,the standard pro
ess algebras redu
e 
on
urren
y to interleaving arguingthat interleaving is simpler than true 
on
urren
y and just as expressive. Onthe other hand, interleaving based models are less suitable for a top-downdesign, sin
e they des
ribe systems using a
tions that are assumed to beinstantaneous and indivisible.Both Petri nets and pro
ess algebras approa
hes have in
reasingly in�u-en
ed ea
h other, and 
onsiderable e�ort has been made to 
ombine theirrespe
tive merits. The Petri Box Cal
ulus (PBC ) [4,5℄, whi
h evolved laterto the Petri Net Algebra (PNA) [6℄, o�ers a very general solution to 
ombinepro
ess algebras and Petri nets. However, in pra
ti
al situations, the stan-dard low-level Petri net model on whi
h PBC is based leads to huge netswhi
h are well de�ned mathemati
ally but di�
ult to grasp intuitively. As a
onsequen
e, the appre
iated feature of Petri nets of representing graphi
allysystem properties su
h as 
on
urren
y, sequentiality, 
on�i
ts, et
., vanishesbe
ause of the size of Petri nets ne
essary to des
ribe the 
onsidered system.To address this problem, high-level Petri net models have been proposed,su
h as predi
ate/transition nets [42℄, 
oloured Petri nets [47℄, or algebrai
nets [76℄.In parti
ular, the Cal
ulus of Modular Multilabelled Nets (M-nets) [8,51℄was introdu
ed in order to 
ombine the 
ompositionality of pro
ess algebrasand the expli
it representation of 
on
urren
y of Petri nets in a 
ommon high-level framework. Indeed, M-nets are 
onsidered as the 
oloured 
ounterpartof the PBC. A
tually, M-nets and PBC are related through an operation ofunfolding whi
h takes an M-net N and yields an equivalent low-level net Nℓ.
N 
an be seen as an abbreviation ofNℓ, andNℓ as the semanti
s ofN . M-netssupport various 
omposition operations (parallel, sequen
e, 
hoi
e, iteration,syn
hronisation, restri
tion, et
.), whi
h are essentially the same as in PBC.Indeed, it was one of the main aims in the design of the M-net model toensure that the unfolding of a 
omposed net 
oin
ides with the 
ompositionof the unfoldings of its parts. The PBC and M-nets are implemented in thePEP tool [41℄ whi
h allows to edit, simulate and verify systems using model-
he
king. Moreover, the SNAKES toolkit [73℄, a tool spe
i�
ally dedi
atedto work with variants of M-nets and PBC, allows to qui
kly implement newoperations for those models, thus providing a framework to prototype andexperiment with new variants.This paper surveys the resear
h related to M-nets sin
e they were intro-du
ed. The next se
tion de�nes the Petri net aspe
ts of the model, in
ludingthe re�nement (meta-)operation whi
h allows to substitute M-net transitionsby arbitrary M-nets. The low-level net model is also introdu
ed in order tostate the 
onsisten
y between high and low levels. Se
tion 3 presents sev-eral extensions of the 
ore model: the parameterised re�nement allowing to



M-nets: a survey. 3ex
hange information between di�erent abstra
tion levels of a system; re-
ursion whi
h is like a repetitive re�nement; and bu�ered 
ommuni
ationproviding a simple s
heme to share data between di�erent parts of an M-net.Se
tion 4 shows how an algebra of M-nets is built using their annotations (forsyn
hronous and asyn
hronous 
ommuni
ation) and the re�nement (for the
ontrol �ow operations). The introdu
ed operations are 
onsistent with thoseexisting in PBC. Se
tion 5 reviews several appli
ations or further extensionsof the M-nets algebra. This in
ludes a de�nition of an M-net semanti
s of theparallel spe
i�
ation language B(PN)2 and several other extensions like theintrodu
tion of obje
t oriented paradigms, the modelling of mobility, pre-emption (suspend/resume and abort of subsystems) or timing 
onstraints.Finally, se
tion 6 presents a 
ase study using M-nets to model and verify atimed railroad 
rossing system.2 The model of M-nets2.1 Basi
 de�nitions and notationsWe start with the de�nition of multisets whi
h are widely used in the fol-lowing. Let E be a set. A multiset over E is a fun
tion µ : E → N whi
hasso
iates to ea
h element of E its number of o

urren
es in µ. A multiset µis �nite if so is the set {x ∈ E | µ(x) 6= 0}. Sometimes, we will use for multi-sets an extended set notation; for instan
e, {x, y, y} will denote the multiset
µ su
h that µ(x) = 1, µ(y) = 2 and µ(z) = 0 for all z ∈ E \ {x, y}. We willdenote by ∅ the empty multiset. We also introdu
e the following notationsfor µ, µ1 and µ2 multisets over E and n ∈ N:� the symbols +, −, and ∗ denote, respe
tively, the sum, the di�eren
eof multisets and the multipli
ation of a multiset by a natural number;formally, for x in E: (µ1 + µ2)(x)

df
= µ1(x) + µ2(x), (µ1 − µ2)(x)

df
=

max(0, µ1(x)− µ2(x)) and (n ∗ µ)(x)
df
= n ∗ µ(x);� we write x ∈ µ if µ(x) > 0, and µ1 ⊆ µ2 if ∀x ∈ E : µ1(x) ≤ µ2(x);� we denote by mult(E) the set of all the multisets over E, and by multf (E)the set of the �nite multisets over E.A (low-level) Petri net is a dire
ted bipartite graph whose nodes are pla
esor transitions. The pla
es may be marked, i.e., may 
arry tokens. The inputar
s of a transition t 
ome from the set of pre-pla
es of t and the output ar
sof t go to its post-pla
es. A transition is a
tivated if its pre-pla
es are markedby su�
iently many tokens. It may then be �red in whi
h 
ase some tokensare removed from ea
h pre-pla
e and some other produ
ed in ea
h post-pla
e. The ar
s are weighted, i.e., annotated by a natural number (where 0
orresponds to the absen
e of the ar
) indi
ating the number of tokens whi
hare transported through the ar
 during the �ring of a transition. Pla
es andtransitions may also 
arry labels. Formally:De�nition 1 A (low-level) labelled Petri net N is a quadruple (S, T,W, λ)where:� S is a set of pla
es and T is a set of transitions, with S ∩ T = ∅;



4 Hanna Klaudel, Fran
k Pommereau� W : (S × T ) ∪ (T × S)→ N is the weight fun
tion on ar
s;� λ is the labelling fun
tion on S ∪ T .A marking of N is a fun
tion M : S → N whi
h asso
iates to ea
h pla
ethe number of tokens it 
arries.For a pla
e or a transition x ∈ S∪T , we de�ne •x
df
= {y ∈ S∪T |W (y, x) >

0} and x• df
= {y ∈ S ∪ T | W (x, y) > 0}. The marking of a pla
e de�nes alo
al state, in su
h a way that the global state of the net is represented bythe set of all su
h lo
al states. The dynami
 behaviour of su
h a net is givenby the transition rule:De�nition 2 Let N = (S, T,W, λ) be a labelled Petri net and M its mark-ing. A transition t ∈ T is a
tivated at M i� ∀s ∈ S : M(s) ≥ W (s, t). The�ring of t produ
es the visible a
tion λ(t) and gives rise to the new marking

M ′ de�ned by ∀s ∈ S : M ′(s)
df
= M(s)−W (s, t) +W (t, s).The transition rule illustrates the property of lo
ality of nets: only thepart •t ∪ t• of the global state is involved in the �ring of the transition t.In 
on
urrent systems, the a
tions (represented by the o

urren
es of tran-sitions) may appear 
on
urrently, i.e., independently of ea
h other. If theseo

urren
es are des
ribed by an arbitrary interleaving of a
tions, then ea
hsequen
e of independent a
tions is a sequen
e of o

urren
es of the systemand the 
orresponding semanti
s is 
alled a sequential or an interleavingsemanti
s. If the o

urren
e of a �nite multiset of a
tions is allowed, thenthe 
orresponding semanti
s is a step or a 
on
urrent semanti
s [3,9,43,44℄.If the o

urren
es of a
tions are partially ordered, then the 
orrespondingsemanti
s is a partial order or true 
on
urren
y semanti
s [66,79,81℄.The model based on low-level nets is parti
ularly interesting be
ause itis supported by various implemented tools (see [69,80℄ for a presentationof many tools) and may be analyzed using methods devoted to su
h nets orusing e�
ient algorithms ofmodel 
he
king. However, these nets are not oftenused dire
tly be
ause the spe
i�
ations of real size systems are in generaltoo large to be understandable. The designers often prefer to use high-levelversions of Petri nets whi
h provide a better abstra
tion and whi
h may beautomati
ally unfolded to low-level nets before being analysed.Figure 1 represents two equivalent nets (in the sense that they des
ribethe same behaviours), the net on the left is high-level and the net on theright is its unfolding (so, it is a low-level net).The annotations used for the high-level nets have the following meanings:� the pla
es are typed, i.e., have asso
iated sets of values (s has the type

{•}, s′ has the type {1, 2, 3} and s′′ has the type {2, 3});� the tokens are values respe
ting the types of the pla
es (s′ 
arries thetoken 2 and s′′ 
arries the token 3);� the ar
s are annotated with values or variables ; the s
ope for the variablesis bound to a transition and its adja
ent ar
s (so, the variables around atransition have only a lo
al meaning and may be 
onsistently renamed);� the transitions may 
arry Boolean expressions 
alled guards playing therole of �ring 
onditions: a transition 
an �re only with tokens whi
h make
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{•}

s

tx 6= y

2
{1, 2, 3}

s′

3
{2, 3}

s′′

•

x y

s•

tσ1
tσ2

tσ3
tσ4

s′1

•
s′2 s′3 s′′2

•
s′′3Fig. 1 A high-level net (on the left) and its unfolding (on the right) whose labellinghas been omitted. The σi's are the modes of t in the high-level net, the indexes ofthe s′i's and the s′′j 's 
orrespond to the values in the types of s′ and s′′.the guard true (this is the 
ase for the transition t taking, for instan
e,

x = 2 and y = 3, but not for x = y = 2). The guard is often usedin order to 
ompute values during a �ring. Here, sin
e x and y are freevariables (not bound on an input ar
), the transition a
tually 
omputesnon-deterministi
ally a number in {1, 2, 3} for x and another one in {2, 3}for y, 
hoosing them distin
t (be
ause of the guard).The transition rule in a high-level net is more 
ompli
ated than that usedat the low-level: in order to �re a transition t it is ne
essary to take tokens inthe pre-pla
es of t, to asso
iate them to the variables around t and to ensurethat the guard evaluates to true. Moreover, only values allowed by the typesof pla
es may be produ
ed. The mappings, 
alled bindings, asso
iating avalue to ea
h variable exist independently of the marking of the net and ofthe guard of t. (However, we shall only 
onsider the variables involved in twhen showing a binding intended to be used for t.) For t in �gure 1, thebindings are of the form (x 7→ i, y 7→ j) where i and j are arbitrary values.A binding is 
alled a mode if it allows to evaluate the guard to true and ifthe value 
orresponding to ea
h variable appearing in an annotation of anar
 belongs to the type of the adja
ent pla
e. So, the modes of t in �gure 1are σ1
df
= (x 7→ 1, y 7→ 2), σ2

df
= (x 7→ 1, y 7→ 3), σ3

df
= (x 7→ 2, y 7→ 3) and

σ4
df
= (x 7→ 3, y 7→ 2), but not σ′

1
df
= (x 7→ 1, y 7→ 1) nor σ′

2
df
= (x 7→ 2, y 7→ 2)be
ause they do not respe
t the guard of t, and neither σ′

3
df
= (x 7→ 0, y 7→ 2)be
ause it does not respe
t the type of s′.These high-level aspe
ts are expressible in the low-level nets through theoperation of unfolding de�ned as follows:� ea
h high-level pla
e is unfolded to as many low-level pla
es as there arevalues in its type (so, s′ gives rise to the low-level pla
es s′1, s′2 and s′3);� the marking is obtained in su
h a way that, for instan
e, the token 2 in

s′ leads to a (bla
k) token in the pla
e s′2;� ea
h high-level transition is unfolded to as many low-level transitions asthere are modes asso
iated to it (so, t generates the low-level transitions
tσ1

to tσ4
);� the ar
s are obtained 
onsistently with the modes. So, a

ording to themode σ1 = (x 7→ 1, y 7→ 2), tσ1

is 
onne
ted to s′1, with the weight 1
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orresponding to the multipli
ity of x in the annotation of the high-levelar
, and to s′′2 , with the weight 1 
orresponding to the multipli
ity of yin the annotation of the high-level ar
.The unfolding allows to express systems in the high-level domain withthe guarantee that they have a representation in the low-level one, whi
h isneeded for their automated analysis. (Noti
e, however, that allowing in�nitetypes for the high-level pla
es gives rise to in�nite low-level nets.)2.2 Stati
 and dynami
 aspe
ts of M-netsWe 
onsider the following pairwise disjoint sets:� Val is the set of values (in parti
ular, Val 
ontains the �bla
k token� •,natural numbers, Boolean values, et
.);� Var is the set of variables (Var is assumed large enough to allow renamingea
h time it is ne
essary in order to avoid name 
lashes);� A is the set of high-level a
tion symbols, provided with a bije
tion ̂ ,
alled 
onjugation, su
h that for all act ∈ A : âct 6= act and ̂̂
act = act.Ea
h symbol act ∈ A has an arity ar(act) and we have ar(âct) = ar(act).The terms act(x1, . . . , xar(act)) and âct(x1, . . . , xar(act)) (where xi ∈ Val ∪

Var for 1 ≤ i ≤ ar(act)) are (high-level) a
tions and they are said to beelementary if all their arguments (the xi's) are values;� Aℓ 
orresponds to A in the low-level domain; it is the set of all elementarya
tions 
onstru
ted from A and Val . (Noti
e that Aℓ is 
losed under ̂ .)� X 
ontains the hierar
hi
al symbols, whi
h will be used to denote abstra
ta
tions used to label transitions to be re�ned;� the symbols e, i and x denote the status of pla
es used to label pla
es inorder to guide net 
ompositions; for a net N , we denote by N e, N i and
N x, respe
tively, the set of its entry pla
es (labelled by e), internal pla
es(labelled by i) and exit pla
es (labelled by x).The boxes are labelled low-level nets with some stru
tural 
onstraints:1the entry pla
es have no input ar
s (symmetri
ally, the exit pla
es have nooutput ar
s), there always exists entry and exit pla
es and ea
h transitionhas at least one pre-pla
e and one post-pla
e.De�nition 3 A box N = (S, T,W, λ) is a low-level labelled Petri net su
hthat:� for ea
h pla
e s ∈ S we have λ(s) ∈ {e, i, x};� for ea
h transition t ∈ T , we have λ(t) ∈ multf (Aℓ) (if t is a 
ommuni
a-tion transition) or λ(t) ∈ X (if t is a hierar
hi
al transition);� N is ex-restri
ted: N e 6= ∅ 6= N x;� N is ex-oriented: ∀t ∈ T, ∀s ∈ N e, ∀s′ ∈ N x : W (t, s) = 0 ∧ W (s′, t) = 0;� N is T -restri
ted: ∀t ∈ T, ∃s, s′ ∈ S : W (s, t) > 0 ∧ W (t, s′) > 0.1 These 
onditions were required in PBC [4℄ but relaxed in PNA [6℄. We will usethe original de�nition whi
h leads to a simpler, more intuitive, model.



M-nets: a survey. 7With this de�nition, in parti
ular, we are sure to have non-empty entryand exit interfa
es (N e and N x) in every box N . The 
ommuni
ation andthe hierar
hi
al interfa
es, whi
h are 
omposed of transitions, may be empty.These interfa
es will be 
ru
ial for de�ning 
omposition operations on boxes,see se
tion 4. The transition rule for boxes is that of low-level labelled Petrinets.M-nets are high-level boxes. In order to introdu
e them, we need essen-tially to enri
h the annotations of low-level nets.De�nition 4 An M-net is a triple N = (S, T, ι), where S is the set of pla
es,
T is the set of transitions (with S ∩ T = ∅) and ι is the annotation fun
tionon S ∪ T ∪ (S × T ) ∪ (T × S), su
h that:� for ea
h pla
e s ∈ S, ι(s) is a pair λ(s).α(s) where λ(s) ∈ {e, i, x} givesthe status of s and α(s) ⊆ Val , with α(s) 6= ∅, gives its type;� for ea
h transition t ∈ T , ι(t) is a pair λ(t).γ(t), where:� either λ(t) is a �nite multiset of high-level a
tions, or λ(t) ∈ X;� γ(t) is the guard of t, whi
h is a Boolean expressions on Var and Val .We denote by var(t) (a subset of Var) the set of variables appearing inthe annotations of t and its ar
s;� for ea
h ar
 (s, t), ι(s, t) is a multiset of stru
tured annotations on Var ∪

Val , representing the values 
onsumed during a �ring of t; similarly, thevalues produ
ed during a �ring of t are represented by the annotation
ι(t, s);� N is ex-restri
ted, ex-oriented and T -restri
ted (like for boxes, using
ι(x, y) = ∅ or ι(x, y) 6= ∅ instead of W (x, y) = 0 or W (x, y) > 0 re-spe
tively).The stru
tured annotations are formalised in [37℄ and illustrated in thefollowing, see for instan
e �gures 5 and 6. They in
lude, depending on the
ontext, 
onstants and variables, but also more 
omplex terms (introdu
edlater on, possibly in
luding distinguished symbols ζ and ϕ) that en
ode, forea
h mode, di�erent sets of values.In the �gures, the hierar
hi
al transitions are represented using doublelines (the hierar
hi
al symbols being the 
apital letters X , Y , et
.). En-try pla
es are depi
ted with an in
oming double arrow, exit pla
es with anoutgoing double arrow and internal pla
es with no double arrow. Also, thenotations are often simpli�ed: an empty 
ommuni
ation label or an empty(true) guard are generally omitted, ar
s with empty annotations are neverrepresented, the singleton multisets are repla
ed by their unique element, thepla
es are not always named, et
. The purpose of these simpli�
ations is toalleviate the presentation in order to fo
us on the aspe
ts serving dire
tlythe understanding.We will formalise now di�erent notions allowing us to de�ne the unfoldingand the transition rule of M-nets. This will allow us to state the property of
onsisten
y of the behaviour of an M-net with respe
t to the behaviour of itsunfolding.A binding of a transition t is a substitution σ : var(t) → Val . If x isan entity (expression, a
tion, et
.) whi
h depends on the variables in var(t),we denote by σ(x) the evaluation of x under σ. A transition t with a guard
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γ(t) may be �red with a binding σ only if, for all g ∈ γ(t), σ(g) is true.Moreover, if ∀s ∈ S : σ(ι(s, t)) ∈ mult(α(s)) ∧ σ(ι(t, s)) ∈ mult(α(s)), i.e.,if the annotations on the ar
s evaluated under σ respe
t the types of thepla
es, we say that σ a
tivates t, i.e., that σ is a mode for t.A marking of an M-net (S, T, ι) is a fun
tion M : S → mult(Val) whi
hasso
iates to ea
h pla
e s ∈ S a multiset of values from α(s). We distinguishthe entry marking for whi
hM(s) = α(s) if λ(s) = e andM(s) = ∅ otherwise,and the exit marking for whi
h M(s) = α(s) if λ(s) = x and M(s) = ∅otherwise. The typi
al expe
ted behaviour of an M-net is to start its exe
utionfrom its entry marking, �nishing, if ever, with its exit marking.The unfolding operation, unf, asso
iates a low-level labelled net unf(N)to any M-net N and also the marking unf(M) of unf(N) to any marking Mof N . Examples are given in the �gures 1 and 2.De�nition 5 Let N df

= (S, T, ι) be an M-net. The unfolding of N is thelow-level labelled net unf(N)
df
= (unf(S), unf(T ),W, λ) su
h that:� unf(S)

df
= {sv|s ∈ S, v ∈ α(s)}, and for all sv ∈ unf(S) we have λ(sv) =

λ(s);� unf(T )
df
= {tσ|t ∈ T, σ is a mode for t}, and for all tσ ∈ unf(T ) we have

λ(tσ) = σ(λ(t));� W (sv, tσ)
df
=

∑

x∈ι(s,t)∧v=σ(x)

ι(s, t)(x) and analogously for W (tσ, sv).Let M be a marking of N . The marking unf(M) of unf(N) is de�ned asfollows: for all pla
es sv ∈ unf(S), unf(M)(sv)
df
= M(s)(v). So, the number of(bla
k) tokens in sv is the number of o

urren
es of v in s.Su
h a de�nition of the unfolding 
orresponds to the intuition presentedin �gures 1 and 2: the pla
es and the transitions are unfolded separately,the ar
s are derived from the 
orresponding bindings and the marking of thelow-level net re�e
ts dire
tly that of the M-net. We have the following stati
property:Proposition 1 The unfolding of an M-net N is a box.The dynami
 aspe
ts of the net are 
aptured though to the followingde�nition of the transition rule.De�nition 6 A transition t may �re at a marking M and for a mode σ i�for all pla
es s ∈ S, we have σ(ι(s, t)) ≤ M(s). The �ring of t produ
es thea
tion σ(λ(t)) and leads to a new marking M ′ de�ned by ∀s ∈ S : M ′(s)

df
=

M(s)− σ(ι(s, t)) + σ(ι(t, s)).Like for low-level nets, it is possible to 
onsider various kinds of seman-ti
s (interleaving, step or truly 
on
urrent). It is also possible to prove the
onsisten
y property relating the behaviour of a high-level net with that ofits unfolding [8℄.Proposition 2 A transition t may be �red in the M-net N at a marking
M for the mode σ, leading to the marking M ′ i� tσ may be �red in unf(N)at the marking unf(M), leading to the marking unf(M ′). The elementarya
tions 
orresponding to the exe
uted transition in both nets are the same:
σ(λ(t)) = λ(tσ).
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{•}⇐

t′x 6= y start(x)

2{1, 2, 3} 3 {1, 2, 3}

tX t′′ Y

{1, 2, 3}

t′′′ stop

⇒ {•}

x y

x y

x y

x, y

⇐

start(1)

start(2)

start(3)

• •

X X X Y Y Y

stop stop

⇒Fig. 2 An M-net with hierar
hi
al and 
ommuni
ation transitions (on the left)and its unfolding (on the right). In the latter, thi
k ar
s have the weight 2 (all theother ar
s having the weight 1); this 
orresponds to the modes of t′′′ that bind xand y to the same value. The bottom-most transitions are all labelled by stop andthe top-most transitions are grouped a

ording to their labels: start(1) for the twoleft-most ones, start(2) for the two in the middle and start(3) for the two right-mostones.2.3 M-net re�nementOne of the essential features of a modular Petri net model is the ability ofexpressing various levels of abstra
tion, i.e., the possibility to spe
ify systemsin an in
remental way using su

essive re�nements. It is also important to beable to de�ne the operations on the model in a simple and homogeneous way.These features 
an be provided thanks to a transition re�nement (substitu-tion), allowing one to repla
e a transition (des
ribing an abstra
t, simple,behaviour) by a net (des
ribing a 
on
rete, detailed, behaviour). Approa
heslike, for instan
e, [5,6℄, propose very general solutions for low-level (box-like)nets. However, for a long time, a similar �exibility had not been obtained forhigh-level nets. Indeed, the approa
hes introdu
ing the 
on
ept of hierar
hylike for instan
e [46℄ or [12℄ in 
oloured nets, [25℄ in algebrai
 nets, or [45℄in M-nets, work only in very restri
ted 
ases. These results were generalisedin [37℄ whi
h removed most of the previous restri
tions.The substitution of a hierar
hi
al transition t (labelled by X) in an M-net
N by an M-net N ′ means that t is repla
ed in N by a 
opy of N ′; this isdenoted by N [X ← N ′]. In order to do this, the transition t is removed andits pre-pla
es are 
ombined with the entry pla
es of N ′ while its post-pla
esare 
ombined with the exit pla
es of N ′. In other words, •t is identi�ed with
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N ′e while t• is identi�ed with N ′x. This is performed in su
h a way that anyexe
ution of t, for any mode, in N is repla
ed in N [X ← N ′] by an exe
utionof N ′ from its entry marking to its exit marking. We wish also that all thetransitions labelled X 
an be repla
ed simultaneously, whi
h allows the net
N ′ to be exe
uted (possibly 
on
urrently) for ea
h repla
ed transition.The basi
 me
hanism used here (see also [36,37,78℄) in order to guaranteethe 
onsisten
y with respe
t to the unfolding of the M-net re�nement andthat of boxes, is that of labelled trees. It is a generalisation of the Cartesianprodu
t used by other authors in order to de�ne 
ombinations of pla
es.In the 
ase of boxes, the labelled trees are used in order to generate thepla
es 
ombining the pre-pla
es and the post-pla
es of re�ned transitionswith the entry and exit pla
es of the re�ning nets. The main di�eren
e in the
ase of M-nets is that only one pla
e is generated during ea
h 
ombination,but its type is a set of labelled trees. These have at most two levels, onelevel 
orresponds to what 
omes from the re�ned net N and the se
ondlevel 
orresponds to what 
omes from the re�ning net N ′. Labelled trees likethat shown in �gure 3 are used in order to generate new stru
tured valuesbelonging to the types of interfa
e pla
es in the re�ned net (i.e., the pla
eswhi
h are 
onne
ted to one or more hierar
hi
al transitions).

v

(e,w) · · · · · · (x, w′)

· · ·
(t, σ) (t′, σ′)Fig. 3 Illustration of the s
heme of the value trees of the interfa
e pla
es.This M-net re�nement allows to over
ome most of the restri
tions presentin previous approa
hes. In parti
ular, arbitrary types are allowed for thepla
es around hierar
hi
al transitions and for the entry/exit pla
es of re�n-ing nets. Moreover, arbitrary ar
 annotations and side-loops on hierar
hi
altransitions are also admitted.Let N df

= (S, T, ι) be an M-net, X ∈ X be a hierar
hi
al symbol, (Ni)i∈Ibe a family of M-nets and (Xi)i∈I be a family of hierar
hi
al symbols. Weuse the following notations:� XN
df
= {Xi | i ∈ I} is the set of hierar
hi
al symbols of N ;� TX df
= {t ∈ T | λ(t) = X} is the set of hierar
hi
al transitions labelled by

X ;� TXN
df
=

⋃
i∈I T

Xi is the set of hierar
hi
al transitions of N ;� for ea
h set R ⊆ S∪T , we 
onsider the sets R• df
= ∪x∈R x•, •R

df
= ∪x∈R

•xof su

essors and prede
essors of the nodes in R;� Ñ
df
= N [Xi ← Ni | i ∈ I]

df
= (S̃, T̃ , ι̃) is the net N in whi
h ea
h transitionlabelled by Xi is repla
ed by a 
opy of Ni, for all i ∈ I. All these substi-tutions are simultaneous. We 
all N the re�ned net, the Ni's the re�ningnets and Ñ the resulting net.The pla
es of the resulting net Ñ belong to one of two possible 
ategories:



M-nets: a survey. 11� either they are the pla
es of the re�ned net N (some of them are theinterfa
e pla
es if they are 
onne
ted to one or more hierar
hi
al transi-tions);� or they are 
opies of internal pla
es of the re�ning nets Ni.This way, ea
h pla
e s ofN is also a pla
e of the re�ned net, with the samestatus. The only di�eren
e is in its type whi
h is then the set of labelled trees
onstru
ted from the values in the type of s and from the values 
oming fromthe types of entry/exit pla
es of the re�ning nets Ni. The new type of s, α̃(s),is the set of all labelled trees (up to isomorphism) of the form represented in�gure 3 where:� the root is labelled by a value v ∈ α(s);� the edges are labelled by pairs (t, σ) where t is a hierar
hi
al transitionof N , adja
ent to s and σ is a mode for t;� the dire
tion of the edges 
orresponds to the dire
tion of the ar
 between
t and s in N (down if there is an ar
 (s, t), up otherwise);� the leaves are labelled by pairs (si, wj) where si is an entry or exit pla
eof the re�ning net Ni and wj is a value in the type of si.For example, the new values of an interfa
e pla
e 
onne
ted as shown in�gure 4 in the re�ned net, are of the form depi
ted on the right. We assumethat the transition σ1 is a mode for t1 that is re�ned by an M-net N1 havinga unique entry pla
e e with the value • in the type of e. Respe
tively, σ2 is amode for t2 that is re�ned by an M-net N2 having a unique exit pla
e x withthe value • in the type of x. The root of the value is labelled by a value fromthe original type of s and the leaves by the values of the pla
es e and x.

{1, . . .}

t1. . . t2 . . .

1

(e, •) (x, •)

(t1, σ1) (t2, σ2)Fig. 4 An interfa
e pla
e in a re�ned net and an example of a value tree in thetype of this pla
e in the re�ned net.More pre
isely, as illustrated in �gure 5, for all i ∈ I, for all t ∈ s• labelledby Xi and for all modes σ of t su
h that v belongs to σ(ι(s, t)), there is inthe tree an edge labelled (t, σ) going down to a leaf labelled by (e, w) where
e ∈ Ni

e and w ∈ α(e). Symmetri
ally, for all i ∈ I, for all t′ ∈ •s labelled by
Xi and for all modes σ′ of t′ su
h that v belongs to σ′(ι(s, t′)), there is an edgelabelled (t′, σ′) whi
h goes up from a leaf labelled by (x,w′) where x ∈ Ni

xand w′ ∈ α(x). Noti
e also, that for the pla
es s in N whi
h are not 
onne
tedto any hierar
hi
al transition to be re�ned (i.e., if TXN ∩ (•s ∪ s•) = ∅) thetrees are redu
ed to their roots and we have α̃(s)
df
= α(s).The internal pla
es of the re�ning nets Ni lead to the set Si of internalpla
es of the resulting net, with Si df

= {t.si | t ∈ T
Xi ∧ si ∈ Ni

i}. The statusof these pla
es is still internal and their types are 
omposed of values of the
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t′. . .

{1, 2}

s

t

X.∅
. . .

y x
N

⇐

{•}

e

ti
. . .

{•}

si

. . . t′i . . .• •
N ′

t′. . .
s

n 1
↓ (t, σ1) ,
•

2
↓ (t, σ2)
•

o

t.ti
. . .

t.si

· · ·

{(σ1, •), (σ2, •)}

t.t′i . . .
(y, s).ϕ (x, s).(•, e) ζ.(•, si)

N [X ← N ′]Fig. 5 Pla
e types and ar
 ins
riptions, assuming that σ1 and σ2 are the onlymodes for t in N .form σ.v (trees redu
ed to their roots) where σ is a mode for t and v is avalue from α(si).The transitions of the resulting net Ñ may be of two kinds:� the transitions t ∈ T \ TXN from N whi
h are not substituted and whoseins
riptions are un
hanged, i.e., ι̃(t) df
= ι(t);� the transitions 
opied from ea
hNi, belonging to T i df

= {t.ti | t ∈ TXi∧ti ∈
Ti}.The ar
s may be of three di�erent kinds:� those 
onne
ting pla
es 
oming from N to transitions whi
h are not sub-stituted in N ;� those 
onne
ting pla
es 
oming from N with transitions 
oming from Ni;� and �nally, those 
onne
ting internal pla
es and transitions both 
omingfrom Ni.These three kinds of ar
s are illustrated on the right hand side in �gure 6:� the transition t′ was untou
hed by the re�nement, but the pla
e s has nowa type 
omposed of labelled trees. The �ring of t′ has to produ
e in s oneinstan
e of ea
h tree belonging to the type of s. Ea
h root 
orrespondsto one value produ
ed in s by the �ring of t′ in N . The notation (x, s).ϕ
orresponds to this 
ase and the distinguished symbol ϕ means that themat
hing leaves of the tree may be arbitrarily labelled;� the transition t.r has to 
onsume from s one instan
e of ea
h tree whoseroot is labelled by the value 
orresponding to the binding of x during the�ring of t in N . Ea
h tree has a leaf labelled by the value 
onsumed (in
e1 or e2) via z during the �ring of r in N ′. The notations (x, s).(z, e1)and (x, s).(z, e2) 
orrespond to this 
ase;� �nally, the transition t.r has to produ
e in t.s′ one instan
e of ea
h value
σ.v where v is a value produ
ed via u during the �ring of r in N ′ and σ isa mode for t in N . The notation ζ.(u, s′) 
orresponds to this 
ase and the
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t′

...
x 6= y start(x)

s

t X...
x

x

a fragment of N

e1

⇐

e2

⇐

r

s′...
z z

ua fragment of N ′

t′

...
x 6= y start(x)

s

t.r

t.s′...
(x, s).ϕ

{(x, s).(z, e1),
(x, s).(z, e2)}

ζ.(u, s′)a fragment of N [X ← N ′]Fig. 6 Illustration of di�erent kinds of stru
tured annotations.distinguished symbol ζ denotes that the �rst part of the token mat
hesany value allowed by the pla
e types.The formal de�nition of the re�nement, of the evaluation of ar
s andalso of the transition rule of a re�ned net follows exa
tly this intuition. Itis presented in the next se
tion in a more general 
ontext. It guarantees anumber of properties (
f. [37℄), for instan
e:Theorem 1 Let N , Ni, N ′
j and N ′′

k (for i ∈ I, j ∈ J , and k ∈ K) be M-nets.The following properties hold.� Domain preservation: N [Xi ← Ni | i ∈ I] is an M-net.� Consisten
y with the low-level model via the unfolding: up to isomorphism,
unf(N [Xi ← Ni | i ∈ I]) = unf(N)[Xi ← unf(Ni) | i ∈ I].� Expansion law: if J ⊆ I, I ∩K = ∅ and {Yk | k ∈ K} ∩ {Xi | i ∈ I} = ∅,then, up to isomorphism:
N [Xi ← Ni | i ∈ I][Xj ← N ′

j , Yk ← N ′′
k | j ∈ J, k ∈ K]

= N [Xi ← Ni[Xj ← N ′
j , Yh ← N ′′

h | j ∈ J, h ∈ K],
Yk ← N ′′

k | i ∈ I, k ∈ K].The expansion law expresses the 
ommutativity of re�nements and is ageneralisation of the following property for M-nets N , N ′, N ′′ and N ′′′:
N [X ← N ′][X ← N ′′, Y ← N ′′′]

= N [X ← N ′[X ← N ′′, Y ← N ′′′], Y ← N ′′′].The re�nement is very useful in the pro
ess of modelling a system in astru
tured way. It is also essential for a uniform synthesis of the 
ontrol-�owoperators in the algebra of M-nets as we will see in se
tion 4.



14 Hanna Klaudel, Fran
k Pommereau3 Extensions of M-nets3.1 Parameterised substitutionIn [39,53,64℄ the syntax of the parallel spe
i�
ation language B(PN)2 [10℄having a Petri net semanti
s has been extended by pro
edures. The me
h-anism to manage the di�erent instan
es of a pro
edure used in [39,53,64℄requires the usage of �net parameters� in the re�nement in order to be ableto distinguish between di�erent a
tive instan
es. Indeed, if in a sequentialenvironment the instan
es of a pro
edure are always totally ordered and 
anbe managed by a sta
k, it is not the 
ase in a parallel environment, whereseveral a
tive instan
es of a pro
edure may be generated by 
on
urrent 
allsand may evolve 
on
urrently. These instan
es are distinguished by di�er-ent modes of the same hierar
hi
al transition, as for instan
e, the modes
σ1 = (x 7→ 1) and σ2 = (x 7→ 2) of the transition t in �gure 7. The pro
edurebody is modelled by the parameterised M-net N ′(id), where the parameterid 
an take values in {1, 2} and is used to identify the instan
es. The resultof the re�nement is presented on the right of �gure 7.

⇐ {1, 2}

t P (x).∅

x

⇒ {1, 2}

x

N

⇐ {•}

act(id).∅

•

⇒ {•}

•

N ′(id)

⇐

n 1
↓ (t, σ1) ,
•

2
↓ (t, σ2)
•

o

act(x).∅

(x, •)

⇒

n 1
↑ (t, σ1) ,
•

2
↑ (t, σ2)
•

o

(x, •)

N [P ← N ′(id)]Fig. 7 Parameterised re�nement: management of the instan
es of a pro
edure Pwhose body is given by N ′.The parameterised re�nement [37℄ introdu
es a me
hanism that allowsto identify the variables from the environment of a hierar
hi
al transition(for instan
e, x in the net N in �gure 7) with the 
orresponding parameters(su
h as id in N ′(id)). Moreover, the solution proposed in [37℄ is not limitedto this parti
ular 
ase but introdu
es a general s
heme whi
h works in all the
ir
umstan
es.To start with, we introdu
e parameterised M-nets [37℄ in whi
h we willuse the following extensions:� Par denotes the set of net parameters, disjoint from Val and Var. Ea
hparameter ψ ∈ Par is assumed to have a non-empty type denoted set(ψ);� Ψ is a list of parameters of the form ψ1, . . . , ψn, where ∀i ∈ {1, . . . , n} :
ψi ∈ Par (with i 6= j ⇒ ψi 6= ψj). The set of parameters {ψ1, . . . , ψn}asso
iated to Ψ is denoted by Par(Ψ);� a substitution κ : Par → Var ∪ Par ∪ Val is denoted by (ψ1 7→ ν1, . . . ,
ψn 7→ νn); it is elementary if νi ∈ set(ψi), for all i ∈ {1, . . . , n};
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h a
tion act(ν1, . . . , νar(act)) has arguments whi
h are values, variablesor parameters, i.e., for all j ∈ {1, . . . , ar(act)}, νj ∈ Val ∪ Var ∪ Par(Ψ);� ea
h hierar
hi
al symbol X ∈ X has an arity ar(X) representing thenumber of its arguments. The term X(ν1, . . . , νar(X)) represents a hierar-
hi
al parameterised a
tion where all the νj ∈ Val ∪ Var ∪ Par(Ψ), for
j ∈ {1, . . . , ar(X)}, are the arguments of X .De�nition 7 A parametrised M-net N is a quadruple (S, T, ι, Ψ) (often de-noted by N(Ψ)), where S, T and ι are as in de�nition 5 and satisfy thefollowing 
onditions:� the net has an arity whi
h is the size of the list Par(Ψ);� for ea
h transition t ∈ T , λ(t) is either a �nite multiset of parameteriseda
tions or a hierar
hi
al parameterised a
tion. The parameters whi
h ap-pear in λ(t) belong to Par(Ψ);� the parameters never appear in guards nor in stru
tured annotations ofar
s.2For a given substitution, the dynami
 behaviour of su
h a net is similar tothat without the parameters. Also, the semanti
s of a parameterised M-net[37℄ does not depend on the names of the parameters nor on the variablesin the environment of ea
h transition; they may be 
onsistently renamed atwill.The unfolding of a parameterised M-net is a family of low-level nets(rather than one low-level net as in the 
ase without the parameters) unf(N):

κ → unf(N, κ) where κ is an elementary substitution su
h that ea
h 
hoi
eof values of parameters spe
i�ed by κ leads to a (generally di�erent) low-level net. As for M-nets without parameters, we have the 
onsisten
y of thebehaviour of a parameterised M-net with that of ea
h low-level net 
orre-sponding to it [37℄.Proposition 3 A transition t 
an �re in a parameterised M-net N at amarking M with the binding σ and leads to a marking M ′ i� tσ 
an �re inall unf(N, κ) at unf(M) and leads to the marking unf(M ′). The parameterisedor hierar
hi
al a
tions produ
ed during this �ring are the same in the high-level net N and in ea
h low-level one unf(N, κ).Using the 
on
epts and the notations introdu
ed in the previous se
tion(Si, T i, α̃(s), ζ, ϕ, et
.), the parameterised re�nement is de�ned as follows:De�nition 8 Let N = (S, T, ι, Ψ) and Ni = (Si, Ti, ιi, Ψi), for i ∈ I, be M-nets. The re�nement N [Xi ← Ni(ψi,1, . . . , ψi,ar(Xi)) | i ∈ I] (with i 6= j ⇒

Xi 6= Xj) is de�ned as the M-net Ñ df
= (S̃, T̃ , ι̃, Ψ), with the same3 set ofparameters as N , su
h that:� S̃

df
=

( ⋃
i∈I

Si
)
∪ S,2 This last restri
tion were removed in [27℄.3 The Ni's do not introdu
e new parameters in the re�ned net, as their parametersare all instantiated by variables, values or parameters of N .
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df
=

( ⋃
i∈I

T i
)
∪ (T \ TXI ),� ι̃(s̃)

df
=

{
λ(s̃).α̃(s̃) if s̃ ∈ S,
i.α̃(s̃) if s̃ = t.si ∈ Si,� ι̃(t̃)

df
=





ι(t) if t̃ = t ∈ (T \ TXN )
̺i(λi(ti)).γ(t) ∪ γi(ti)if t̃ = t.ti ∈ T i, λ(t) = Xi(νi,1, . . . , νi,ar(Xi)) and if ̺iis a substitution (ψi,1 7→ νi,1, . . . , ψi,ar(Xi) 7→ νi,ar(Xi)),

� ι̃(s̃, t̃)
df
=






∑
a∈ι(s,t)

ι(s, t)(a) ∗ {(a, s).ϕ}if s̃ = s ∈ S and t̃ = t ∈ (T \ TXN )
∑

a∈ι(s,t)

∑
ei∈Ni

e

∑
b∈ιi(ei,ti)

ι(s, t)(a) ∗ ιi(ei, ti)(b) ∗ {(a, s).(b, ei)}if s̃ = s ∈ S and t̃ = t.ti ∈ T i for an i ∈ I
∑

b∈ιi(si,ti)

ιi(si, ti)(b) ∗ {ζ.(b, si)}if s̃ = t.si ∈ Si and t̃ = t.ti ∈ T i for an i ∈ I
∅ otherwise,The ins
riptions ι̃(t̃, s̃) of the ar
s in T̃ × S̃ are de�ned analogously.The main di�eren
e between the parameterised re�nement and the nonparameterised one 
on
erns the label of a transition in the re�ned net. It
ontains an appli
ation of a substitution ̺i whi
h de�nes the 
orresponden
ebetween the arguments (νi,1, . . . , νi,ar(Xi)) of the hierar
hi
al transition of Nand the parameters (ψi,1, . . . , ψi,ar(Xi)) of Ni. The rest of the de�nition isexa
tly the same as explained for the non parametrised 
ase and illustratedin �gure 5: in parti
ular, the values of the types of the pla
es (labelled trees)and the ar
 annotations are 
onstru
ted exa
tly in the same way.Theorem 2 The properties stated for the non parameterised re�nement holdin the parameterised 
ontext, in parti
ular:� domain preservation;� 
onsisten
y with the low-level domain via the unfolding;4� expansion law.3.2 Re
ursionThe re
ursion µ{Xi.Ni | i ∈ I}N , means �repla
e in N all the Xi's by Ni's,and restart on the result ad in�nitum�. This operation has been de�ned�rst for low-level nets [4,5℄, where the re
ursion µ{Xi.Ni | i ∈ I}N wasinterpreted as a kind of �limit� of the re�nements N [Xi ← Ni][Xi ← Ni] · · ·or N [Xi ← Ni[Xi ← Ni[· · ·]]]. This 
on
ept is formalised in [37℄ in the 
ase ofM-nets, in
luding the possibility of parametrised re
ursion. The semanti
s ofthe re
ursion is given by expressing expli
itly the form of the result insteadof as a limit like in [4,5℄.4 Remember that the unfolding of a parametrised M-net gives a family of low-level nets.



M-nets: a survey. 17There are several similarities between the re�nement and the re
ursion,but the latter is more 
omplex. The transitions are here �nite sequen
es
t.t1 . . . tj of arbitrary length (but satisfying some 
onstraints), instead ofsequen
es of length 1 or 2 like t or t.ti as used in de�nition 8. Moreover, thetypes of the pla
es 
ontain values whi
h are labelled trees of arbitrary height,possibly in�nite, instead of the trees of height 1 or 2 as in de�nition 8.Intuitively, a sequen
e of transitions t.t1 . . . tj−1.tj expresses a sequen
e ofre�nements whi
h begins by the hierar
hi
al transition t in N , 
ontinues withthe hierar
hi
al transitions t1, . . ., tj−1 in M-nets Ni1 , . . ., Nij−1

and �nisheswith a transition tj (hierar
hi
al with a label Xj /∈ XN or non-hierar
hi
al) in
Nij

. Ea
h sequen
e of that form leads to a transition in the re
ursive M-net
Ñ . As for the re�nement, the pla
es s̃ may be of the form π.s and we distin-guish two 
ases:� the pla
es 
oming from N , for whi
h π is empty;� internal pla
es 
opied from the nets Ni for whi
h π df

= t1.t2 · · · tn−1 is notempty.The new values of these pla
es have the general shape shown in �gure 8. Theroot is labelled by σ1.σ2 . . . σn−1.u where u is a value from α(s) if π is emptyor from αi(s) if π = t1.t2 · · · tn−1 and tn−1 is labelled by Xi. Ea
h σi is amode for the hierar
hi
al transition ti 
orresponding to a given depth of there
ursion. The other labels are analogous to that of re�nement, their exa
tdes
ription is given in [37℄.As for the re�nement, the de�nition of the re
ursion is 
omplex, butit has the advantage to work in any 
ir
umstan
e. In parti
ular, it allowshierar
hi
al transitions to be 
onne
ted to entry or exit pla
es of the nets Ni(or both), whi
h was not the 
ase with previous attempts.We have the following properties [37℄:Theorem 31. Domain preservation: if N and all the Ni's, for i ∈ I, are M-nets, then
µ{Xi.Ni | i ∈ I}N is also an M-net.2. Consisten
y of the re
ursion with the low-level nets via the unfolding:for M-nets N and Ni, for i ∈ I, and for all 
hoi
es κ of values for the

σ1.σ2 . . . σn−1.u

(e, v)... ... . . .
(e′, v′)... . . .
(e′′, v′′)... ... . . .

(x,w)... ... . . .
(x′, w′)... . . .
(x′′, w′′)... ... . . .

(tn, σn) (t′n, σ′
n)

(tm, σm)

(tm+1, σm+1)

(t′m, σ′
m)

(t′m+1, σ
′
m+1)Fig. 8 The general shape of value trees in a re
ursive M-net.
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k Pommereauparameters, we have, up to isomorphism:
unf(µ{Xi.Ni | i∈I}N, κ) =

µ{Xi(κi).unf(Ni, κi) | i∈I, κi is elementary )}unf(N, κ).3. Substitution property: for M-nets N and Ni (i ∈ I), we have, up toisomorphism:
µ{Xi.Ni | i ∈ I}N = N [Xi ← µ{Xj.Nj | j ∈ I}Ni | i ∈ I].In parti
ular, the third property generalises the standard �x point equa-tion µ{X.N}N = N [X ← µ{X.N}N ].This approa
h of the re
ursion produ
es potentially in�nite nets, a �niterepresentation of whi
h was investigated in [26℄.3.3 Bu�ered 
ommuni
ationAn extension introdu
ed in [54,71℄ allows M-nets to support bu�ered 
om-muni
ation. The key of this extension is a new kind of pla
es, 
alled bu�erpla
es, whi
h are automati
ally merged when several M-nets are 
ombined,i.e., during the re�nement.5 Consider for instan
e two M-nets N1 and N2 be-ing re�ned in a net N ; if a transition t1 from N1 produ
es a token in a bu�erpla
e and if a transition t2 from N2 
onsumes a token from its own bu�erpla
e, after the re�nement, the pla
e merging ensures that these transitionsuse the same bu�er pla
e, making possible the 
ommuni
ation between t1and t2, even if they are not originated from the same M-net.More pre
isely, we 
onsider a set B of bu�er symbols su
h that ea
h b ∈

B is asso
iated with a type type(b) ⊆ Val . Ea
h bu�er pla
e s is labelledby a b ∈ B and we have ι(s) df
= b.type(b). Then, the re�nement and there
ursion (parameterised or not) are rede�ned as follows: (1) we use theoriginal de�nition 
onsidering the bu�er pla
es as internal ones; (2) for all

b ∈ B, we merge the bu�er pla
es sharing the same label b ∈ B, their markingsbeing added.The extension with bu�ered 
ommuni
ation turns out to be very usefuland generally allows to express 
omplex systems using smaller and simplerparts. Many appli
ations of M-nets rely on the bu�ered 
ommuni
ation ex-tension. In parti
ular, we will see later on how the semanti
s of a parallelspe
i�
ation language 
an be simpli�ed, thanks to bu�er pla
es, by usingjust 
ombinations of basi
 nets having only one transition.4 M-net algebraThe model by whi
h M-nets are inspired, the Petri Box Cal
ulus (PBC) [4,5℄and its more re
ent versions [6,34℄, is a pro
ess algebra provided with a low-level Petri net semanti
s. It has a synta
ti
al domain of box expressions and5 As shown later on, various M-nets 
omposition operations 
an be de�ned. Sin
ethey are based on the re�nement, they do not require any 
hange to support bu�ered
ommuni
ation.
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al domain of boxes. Ea
h synta
ti
al operator has a 
orrespondingoperation (with the same name) in the net domain. The semanti
s 
an beobtained by asso
iating a box to a box expression and then through thestandard de�nition of 
on
urrent evolutions (pro
esses) [3,44℄ in order toobtain, for instan
e, a partial order semanti
s. The semanti
s 
an also beobtained dire
tly from a box expression following the rules of the stru
turedoperational semanti
s following the approa
h from [6℄.4.1 M-expressionsEven though the model of M-nets has been developed �rst in the semanti
aldomain, it also has a synta
ti
al domain, 
alled the algebra of M-expressions[58℄.
E ::= EN | E #E | E�E | E ‖ E | [E ∗E ∗ E] | E[X ← E] | E[f ]

| E tie b | E sy a | E rs a | E scaThe syntax of the algebra of M-expressions E is presented above, where
a ∈ A, b ∈ B, and f is a renaming fun
tion on a
tions, hierar
hi
al and bu�ersymbols. The operators 
omprise: sequen
e E1 #E2 (the exe
ution of E1 isfollowed by that of E2); 
hoi
e E1 �E2 (either E1 or E2 
an be exe
uted);parallel 
omposition E1‖E2 (E1 and E2 
an be exe
uted 
on
urrently); iter-ation [E1 ∗E2 ∗E3] (E1 is exe
uted on
e (initialisation), E2 
an be exe
utedan arbitrary number of times (loop), and then is followed by E3 (termi-nation)); re�nement E1[X ← E2] (events labelled by hierar
hi
al symbol
X in E1 are repla
ed by E2); renaming E1[f ] (elements of E1 are 
onsis-tently renamed by f); bu�er restri
tion E1 tie b (the bu�er pla
e b and therelated 
ommuni
ations be
ome private to E1); syn
hronisation E1 sy a (allmulti-way syn
hronisations involving the a
tions a or â are made possible);restri
tion E1 rs a (events involving a or â may no longer be exe
uted) ands
oping E1 sc a (the syn
honisation followed by the restri
tion w.r.t. a).We assume that any M-net N has an asso
iated 
onstant expression ENin the M-expression domain. Often, this N is a very simple M-net 
omposedof only one transition, one entry and one exit pla
e, and possibly 
onne
tedbu�er pla
es, as for instan
e in [18,53℄.The 
orresponden
e between the synta
ti
al domain of M-expressions andthat of M-nets is given 
ompositionally through the semanti
al fun
tion mnet.For the base 
ase we de�ne mnet(EN )

df
= N , and the semanti
s of the op-erators is as follows, where bin stands for any binary operator in {#, ‖,�}and una stands for any unary operator in {sy a, rs a, sca, tie b, [f ]}, the netoperations appearing on the right being de�ned in the next se
tions:

mnet(E1 binE2)
df
= mnet(E1) binmnet(E2)

mnet(E1[X ← E2])
df
= mnet(E1)[X ← mnet(E2)]

mnet(E1 una)
df
= mnet(E1) una

mnet([E1 ∗ E2 ∗ E3])
df
= [mnet(E1) ∗mnet(E2) ∗mnet(E3)]
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k PommereauA fragment of the algebra of M-expressions has also been provided with astru
tured operational semanti
s [18,58℄. It was shown that, for a restri
ted
lass of M-expressions (used for the semanti
s of the parallel spe
i�
ationlanguage B(PN)2), the semanti
s obtained using the operational rules fromthe initial state of an M-expression was equivalent to the step semanti
s ofthe 
orresponding M-net.4.2 Control �ow operationsOriginally, at the level of boxes as well as at that of M-nets, the 
ontrol �owoperations, su
h as sequen
e, parallel 
omposition, 
hoi
e or iteration, werede�ned through auxiliary operations of net 
omposition, see for instan
e [4,8℄. The re�nement allows to de�ne these operations in a uniform way. Oneuses for that operator nets like those shown in �gure 9.
N�

X1 X2

⇐

⇒

N∗

X1 X1X2

X2X3 X3

⇐

⇒

N#

⇐

X1

X2

⇒

N‖

X1 X2

⇐

⇐

⇒

⇒Fig. 9 The operator nets for the de�nition of the M-net 
ontrol �ow operations.De�nition 9 For arbitrary M-nets N1, N2 and N3, we de�ne:
N1 �N2

df
= N�[X1 ← N1, X2 ← N2] 
hoi
e

[N1 ∗N2 ∗N3]
df
= N∗[X1 ← N1, X2 ← N2, X3 ← N3] iteration

N1 #N2
df
= N#[X1 ← N1, X2 ← N2] sequen
e

N1 ‖ N2
df
= N‖[X1 ← N1, X2 ← N2] parallel4.3 Syn
hronous 
ommuni
ationsThe formal de�nitions of the operations presented in this se
tion may befound in [8℄; we give here an informal presentation.The syn
hronisation N sy a adds new transitions to the net N . It maybe seen as a CCS-like syn
hronisation extended to multi-sets of a
tions witharbitrary arity. Intuitively, one 
an 
onsider the operation of syn
hronisationon an M-net as a result of an appli
ation, possibly repeatedly, of a 
ertainnumber of partial syn
hronisations between pairs of transitions having in
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onjugate a
tions a and â. The repetition of su
h binary syn-
hronisations with respe
t to a, for all pairs of transitions whi
h 
ontain
onjugate a
tions, and until no new transition 
an be added, results in thesyn
hronisation of N with respe
t to a, N sy a. For instan
e, the transitions
t1 and t2 in the fragment of the M-net N in �gure 10 may syn
hronise to-gether w.r.t. start. The 
orresponding basi
 syn
hronisation generates a newtransition t via a renaming of the variables in the surrounding of t1 and
t2 and a uni�
ation of the arguments of the a
tions start(x) and ŝtart(z),e.g., with {x 7→ z}. The guard of this new transition is the disjun
tion ofthe guards of t1 and t2, and the multiset of syn
hronous a
tions is the sumof those of t1 and t2 minus start(x) and ŝtart(z), both substituted by theuni�
ation dis
overed for the 
onjugated a
tions. The result of this binarysyn
hronisation is shown on the right in �gure 10.

{•}⇐

t1
start(x)
x 6= y

{1, 2, 3} ... {1, 2, 3}...x y

{•}⇐

t2
{ŝtart(z),

get(z)} ... {•}
{•}⇐

t1
start(x)
x 6= y

{1, 2, 3} ... {1, 2, 3}...x y

{•}⇐

t2
{ŝtart(z),
get(z)}... {•}t

x 6= y

get(x)
x

yFig. 10 A fragment of an M-net N and its syn
hronisation w.r.t. start (where zhas been substituted with x).The restri
tion of an M-net with respe
t to a removes from the net all thetransitions whi
h 
ontain in their labels a
tions involving a or â. For instan
e,the result of (N sy start) rs start removes from the net represented on theright in �gure 10 the transitions t1 and t2 (but preserves t); it 
orrespondsalso to the s
oping N sc start.The algebrai
 properties of the restri
tion are stated by the theorem 4(equality of nets being 
onsidered up to isomorphism). The same propertiesare obtained in M-nets for the syn
hronisation (equality of nets being 
onsid-ered up to isomorphism and up to the equivalen
e whi
h identi�es dupli
atedtransitions [8,35℄). This theorem is a 
orollary of a similar one for a versionof M-nets using algebrai
 data types [51℄.Theorem 4 For an M-net N and a1, a2 ∈ A, we have:� 
ommutativity of sy: (N sy a1) sy a2 = (N sy a2) sy a1� idempoten
e of sy: (N sy a1) sy a1 = N sy a1� 
ommutativity of rs: (N rs a1) rs a2 = (N rs a2) rs a1� idempoten
e of rs: (N rs a1) rs a1 = N rs a1Thanks to the 
ommutativity of sy and rs, we shall use the extendednotations N syA, N rsA and N scA, for A ⊆ A.
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k Pommereau4.4 Bu�ered 
ommuni
ationThe bu�er restri
tion of an M-net N w.r.t. b ∈ B is the M-net N tie b whi
his obtained from N by repla
ing b by i in the pla
e sb having this status.This is to say that the bu�er pla
e b is made internal. This is illustrated in�gure 11. If N has no su
h pla
e sb, applying tie b leaves the net untou
hed.We then obtain the following results.Theorem 5 Let N be an M-net, a ∈ A and b1, b2 ∈ B. Then:� 
ommutativity of tie: (N tie b1) tie b2 = (N tie b2) tie b1� idempoten
e of tie: (N tie b1) tie b1 = N tie b1� 
ommutativity of tie and sy: (N tie b1) sy a = (N sy a) tie b1The last result, whi
h holds up to isomorphism, shows the orthogonal-ity between bu�ered and syn
hronous 
ommuni
ation s
hemes. Moreover,thanks to the 
ommutativity of tie, we shall use the extended notationN tieB,where B ⊆ B.
{•}⇐

t1x 6= y

{1, 2, 3} ... {1, 2, 3}...x y

{•}

...
t2 z 6= 2

{•}⇒

bx
z

{•}⇐

t1x 6= y

{1, 2, 3} ... {1, 2, 3}...x y

{•}

...
t2 z 6= 2

{•}⇒

x
zFig. 11 A fragment of an M-net N with a bu�er pla
e b (depi
ted with a doubleline) and its version with b removed by the bu�er restri
tion N tie b.4.5 RelabellingThe relabelling N [f ] of an M-net N is like N where the a
tion symbols, thehierar
hi
al symbols and the bu�er names are 
onsistently renamed usingthe fun
tion f whi
h must be a bije
tion on A ∪ X ∪ B su
h that f(A) = A,

f(X) = X and f(B) = B.4.6 Consisten
y of the operationsThe 
onsisten
y of the operations of the M-net algebra with their low-level
ounterparts is 
ru
ial. It means that the unfolding of an M-net N obtainedfrom a 
omposition of M-netsNi, i ∈ I, using operations of the M-net algebra,is equivalent to the low-level net obtained by 
omposing the unfoldings of the
Ni's using the 
orresponding operations in the low-level domain. It allows inparti
ular to model a 
on
urrent system in the high-level framework (where itis easier) and to obtain automati
ally (thanks to the unfolding) its low-levelequivalent where properties may be e�
iently veri�ed.



M-nets: a survey. 23Theorem 6 The operations of the M-net algebra are 
onsistent with the low-level ones through the unfolding.For the 
ontrol-�ow operations, this is a 
orollary of the 
onsisten
y ofthe re�nement. For the syn
hronisation and the restri
tion, the 
onsisten
ywith the low-level model is non-trivial to show, see [8℄. It was obtained up toan equivalen
e whi
h identi�es dupli
ated transitions (i.e., having the samelabel, the same 
onne
tivity and same annotations, up to 
onsistent renamingof variables). Consisten
y of the bu�er restri
tion was shown in [54,71℄.The 
onsisten
y of the M-nets operations was also studied in a moregeneral 
ontext allowing the presen
e of net parameters not only as argumentsof syn
hronous or hierar
hi
al a
tions but also in the guards and in the ar
ins
riptions [27℄.5 Appli
ations of M-nets5.1 Semanti
s of parallel spe
i�
ation languagesThe de�nition of M-nets was a

ompanied in [7,8℄ by their appli
ation to aformal semanti
s of the parallel spe
i�
ation language B(PN)2: Basi
 PetriNet Programming Notation [10℄. B(PN)2 
omprises in a simple syntax mosttraditional 
on
epts of parallel programming in
luding nested parallel 
ompo-sition, iteration, guarded 
ommands, and 
ommuni
ation via both handshakeand bu�ered 
ommuni
ation 
hannels, as well as shared variables. Originally,B(PN)2 in
orporated no pro
edures, but this important feature was addedat the M-net level �rst in [39,64℄ and then in [53℄. The main di�
ulty whendealing with pro
edures 
onsisted in the treatment of their parameters, whi
hmay be passed by value or by referen
e. The approa
h from [53℄ was basedon M-net re�nement and syn
hronisation operations inheriting in this wayall properties of the M-net model, in parti
ular the 
onsisten
y with the low-level. Another semanti
s based on parameterised M-expressions was proposedin [52,70℄ exploiting the introdu
tion of the bu�ered 
ommuni
ation and theproperties of the M-expression algebra. With the experien
e a
quired withthe modelling of B(PN)2, M-nets 
ould also be used in [40℄ for a semanti
sof SDL: Spe
i�
ation and Des
ription Language [21℄.5.2 Semanti
s of obje
t orientationThe works in [61�63℄ provided �rst attempts in expressing obje
t oriented
on
epts using M-nets. They were improved in [16,17,20℄ by allowing thede�nitions of 
lasses with their own �elds (attributes and methods), sin-gle 
lass inheritan
e, polymorphism and dynami
 binding. This led to thede�nition of an extension of B(PN)2, 
alled BOON (Basi
 Obje
t OrientedNotation), having a syntax inspired from Java and C++, and a fully 
om-positional semanti
s in terms of M-nets. It may be seen as an alternativeto other Petri net based formalisms 
apable to express obje
t oriented 
on-
epts, whi
h generally use more 
omplex net 
lasses. This is the 
ase, for
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k Pommereauinstan
e, for Obje
t Petri Nets (OPN) [59℄, whi
h uses net tokens, or for CO-OPN [13℄ and CLOWN [22℄, whi
h use algebrai
 Petri nets (nets extendedwith algebrai
 data types).5.3 Semanti
s of mobilityIn order to be able to express mobility, dedi
ated pro
ess algebras have beendesigned, among whi
h one of the most popular is 
ertainly the π-
al
ulus[67℄. The basi
 devi
e for expressing mobility in this framework is to passa referen
e (or a 
hannel) to a pro
ess through a 
ommuni
ation, allowingthe re
ipient to use then the new 
hannel for further intera
tions with otherpro
esses.On the other hand, Petri nets are generally not 
onsidered as naturallysuitable for expressing pro
esses with 
hanging stru
ture, su
h as 
ommu-ni
ating agents whi
h 
an be dynami
ally linked to other agents, possiblydepending on previous 
ommuni
ations. In this respe
t, the approa
hes from[28,29,31,32℄ show that M-nets enri
hed with read ar
s 
an be su

essfullyapplied to the modelling of systems with su
h a mobility feature and thusto emulate the π-
al
ulus. The basi
 idea is to use bu�er pla
es to store the
urrent value of a 
hannel and to update this value during the evolution. Theoriginality of this approa
h is that it allows to build a Petri net semanti
sof a mobile system in a 
ompositional way, using some simple 
ompositionrules and only a few basi
 nets.These ideas were applied in [14,15℄ to give a high-level net semanti
s tothe se
urity proto
ol language (SPL) [23℄ inspired from π-
al
ulus-like pro-
ess algebras. Subsequently, Needham-S
hröder proto
ol was 
onsidered toillustrate how this semanti
s 
ould be used in order to establish the violationof the authenti
ation propertyM-nets were also used in [30,33℄ for a semanti
s of various versions ofKlaim language [24℄ implementing the mobility using the features of multi-ple data tuple spa
es distributed over network nodes. This work has beenapplied in a 
ase study about the modelling and veri�
ation of multi-agentssystems [2℄.5.4 Semanti
s of preemptionAn extension of M-nets was proposed in [55,57℄ in order to provide themwith preemption 
apabilities. The preemption of a pro
ess is an interruptionof its exe
ution. It is 
alled a suspension when it is temporary and followedby a resuming, while it is 
alled an abortion when the pro
ess is killed. Thisextension was applied in [56℄ to give a semanti
s of ex
eptions in B(PN)2.Two unary operators were introdu
ed: the �rst one, πs, allows an M-net tobe suspended and the other, πa, to be aborted. It turned out that de�ningthese operators in the algebrai
 framework of M-nets required to introdu
epriorities between the transitions. But it was showed that they were used
arefully enough to avoid obtaining the expressive power of Turing ma
hines;instead they allowed a logarithmi
 simpli�
ation of the expression of the
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ompression was observed in Pla
e ChartsNets introdu
ing abortion in Petri nets [48℄.The M-nets extended with priorities and preemption operators are 
alledpreemptible M-nets (PM-nets). A PM-net is a pair (N, ρ) where N is anM-net and ρ is a binary relation over the transitions of N whi
h is 
alledthe priority relation, following the s
heme from [11℄. Having (t1, t2) ∈ ρ isdenoted t1 ≺ t2 and means that the enabling of t2 disables t1, i.e., that t2has the priority over t1. The re�nement is then adapted in order to allow apriority over a hierar
hi
al transition tX , e.g., tX ≺ t, to be propagated to allthe transitions of an M-net N ′ re�ning tX , whi
h ensures that tX .t′ ≺ t holdsfor all the transitions t′ of N ′. This allows to de�ne the suspension operatorin a simple way as πs(N)
df
= Ns[X ← N ] sc sleep where Ns is the net shownon the left of �gure 12. Thanks to the priority tX ≺ t2, all the transitions inthe net re�ning tX are suspended as long as t2 remains enabled. The abortionoperator is de�ned in a similar way using the net Na given on the right of�gure 12. The main di�eren
e is that the looping transition t2 is exploited toremove the tokens in ea
h pla
e of the PM-net on whi
h πa is applied. Thisis made possible by adding to these pla
es emptying transitions (holding thea
tion empty) whi
h are syn
hronised with t2. Finally, the abortion of N isobtained thanks to the priority t3 ≺ t2 in Na, whi
h ensures that all thetokens are removed before the net πa(N) 
an produ
e its �nal marking.

⇐ tX

X

is

⇒

t1

ŝleep

t2

t3

̂resume

⇐ tX

X

ia

⇒

t1

âbort

t2êmpty

t3

̂completeFig. 12 On the left, the operator net Ns used to de�ne the suspension operator.On the right, the operator net Na for the abortion operator.Another approa
h to preemption has been proposed in [74℄, whi
h 
on-sists in a framework where a synta
ti
 level (PBC-like) allows to restri
t the
on
urren
y to 
ommuni
ating sequential threads of exe
utions. Preemptionis here limited to an ex
eption me
hanism, but a thread 
annot be suspendedor aborted from another thread. The simpli�
ation of the 
on
urren
y s
hemeand the restri
ted preemption allows for a more simpler implementation with-out priorities.5.5 Semanti
s of time 
onstrained spe
i�
ationsThe 
ausal time approa
h is a way to introdu
e timing features in an oth-erwise untimed model [38℄. In parti
ular, we shall 
onsider 
oloured Petrinets as in [77℄, or M-nets as in [19,54,71℄. The idea behind 
ausal time is touse the expressive power of the model, this amounts to give an expli
it rep-resentation of 
lo
ks in the modelled systems. In the 
ase of Petri nets, it is
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k Pommereaupossible to introdu
e 
ounters and a distinguished ti
k transition whose roleis to simultaneously in
rement the 
ounters. Thus, they be
ome the timingreferen
e and 
an be used as 
lo
k-wat
hes by the pro
esses. This is quitesimilar to what exists, e.g., in timed automata [1℄ ex
ept that, in this later
ase, 
lo
ks are real values whi
h are 
ontinuously in
reased by a pro
ess(the passing of time) external to the system. Using the features of M-netsallows for a de�nition of a 
ausal 
lo
k whi
h a
ts like a server for the restof the system: ea
h ti
k 
ounter is asso
iated with an identi�er whi
h 
an beallo
ated or freed and may be used to set or 
he
k the 
urrent value of the
ounter from any part of the system. Transmitting the 
ounter identi�ers ismade easy by using the bu�er pla
es.Using the 
ausal time approa
h has been further simpli�ed in [72,74℄ byusing a PBC-like syntax allowing to spe
ify time 
onstrained system with-out the need to manage the identi�ers of 
ounters. In parti
ular, [74℄ allowsto de�ne multiple independent 
lo
k ti
ks, ea
h being asso
iated to variouswat
h or timeout 
ounters allowing respe
tively to measure or to 
onstrainthe passing of time. This work also avoids to stati
ally de�ne boundaries tosome 
ounters, whi
h was used to model timeouts in the previous approa
hes.It was shown in [19℄ that the 
ausal time approa
h is highly relevant sin
ethe model 
he
king 
an be more e�
ient using a general purpose model-
he
ker for high-level Petri nets (MARIA [65℄) than using well known toolsfor timed automata (Kronos [82℄ and UPPAAL [60℄). This 
ase study wasperformed on a railroad 
rossing problem whi
h is presented in the next se
-tion. A method to use the 
on
urrent semanti
s of Petri nets with a notion oftime region was proposed in [72℄, allowing for more e�
ient model-
he
kingof 
ausally timed systems. Another approa
h has been proposed in [75℄ tohandle 
ounters of ti
ks using Petri nets equipped with integer variables. A
ompa
t state spa
e 
onstru
tion was provided in order to give a represen-tation of the rea
hable states. This 
onstru
tion aggregates in one uniquesymboli
 state possibly in�nitely many 
on
rete states that di�er only bythe values of the integer variables.6 ExampleThis se
tion presents an example of a spe
i�
ation using M-nets and 
ausaltime in the version proposed in [19,71℄. The system of interest is a railroad
rossing 
omposed of nt tra
k se
tions (ea
h being o

upied by only onetrain) and of a pair of gates whi
h 
an prevent 
ars from 
rossing the tra
kswhen a train is present.The trains are independent and at the beginning none is present in the
rossing. Ea
h of them starts far from the railroad 
rossing; it triggers asignal app when it approa
hes 
lose enough to the gates. From this point,it rea
hes the gates after at least am and at most aM time units. Then, itpasses inside the gates during at least em and at most eM time units and�nally leaves the gates triggering a signal exit .The gates are initially open. They 
lose in at least gm and at most gMtime units after re
eiving a signal down . We assume that they require thesame delay for opening after re
eiving a signal up. It may happen that the
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eive the signal down when they are already going up; in this 
asealso, the time needed in order to 
lose is within the same bounds.A 
ontroller re
eives the signals from the trains and rea
ts by sendingsignals to the gates in at least cm and at most cM time units. It must ensurethe safety property whi
h states that if a train is present at the 
rossing, thenthe gates must be 
losed. (In this example, we do not address the availabilityproperty, i.e., the gates are open as mu
h as possible.)These various parts of the system are modelled using the three M-netsdepi
ted at the top of �gure 13. The M-net given at the bottom of this �gureis the 
ausal 
lo
k Nk. The number nc
df
= 2nt + 1 of ti
k 
ounters in 
lo
k

Nk depends on the number nt of tra
ks in the system be
ause we use two
ounters for ea
h train, with the following stati
 allo
ation (whi
h improvesthe e�
ien
y of the veri�
ation).The 
ounter 0 is reserved to the 
ontroller, and its maximal value is
max 0

df
= cM . This 
ounter is reset when a train is approa
hing (see thetransition t13) and is used in order to ensure that the signal down is sent tothe gates after at least cm ti
ks (transition t14). The maximum number ofti
ks allowed here, cM , is enfor
ed in the guard of the transition t20 in the
lo
k. The same 
ounter is also used when the last train leaves the 
rossing(transitions t15 and t17). Noti
e that if we have had di�erent 
onstraints inthese two 
ases, we should have used two di�erent 
ounters. (This is not anintrinsi
 limitation of 
ausal time but rather a limitation of the simple 
lo
kwe use.)The 
ounter 1 is reserved to the gates and its maximal value is max 1

df
=

gM . It is reset when the gates re
eive the signal to go down (transition t5)and it ensures that the gates are down after at least gm and at most gM ti
ks(see the transition t7 and the guard of t20). The same 
ounter is used in orderto ensure the opening of the gates under the same timing 
onstraints.For ea
h tra
k i, for i ∈ {1, . . . , nt}, we use two distin
t 
ounters: 2i and
2i + 1, with max 2i

df
= aM and max2i+1

df
= eM . When a train approa
hes, atleast am and at most aM ti
ks 
an o

ur between the sending of the signal appand the arriving of the train between the gates. This 
onstraint is ensured bythe 
ounter 2i (transitions t1 and t2). The 
ounter 2i+ 1 ensures that theremust be at least em and at most eM ti
ks between the 
rossing of the roadby a train and its leaving sending the signal exit (transitions t2 and t3). Inparti
ular, t2 �res when the train enters the 
rossing; the 
ounter 2i mustthen indi
ate a value greater than am (thanks to t ≥ am in the guard t2) andthe 
ounter 2i+ 1 is set to zero.The 
omplete system is then spe
i�ed as the parallel 
omposition of its
onstituting nets followed by a s
oping w.r.t. all the visible a
tions. In par-ti
ular, the a
tions it, ic and ig are used to allow a simultaneous initialisationof all the 
omponents. So we have:

Nrc
df
= (Nt‖Ng‖Nc‖Nk) sc {it, ig, ic, app, exit , down , up, clock} .This system 
an be modelled using the PEP toolkit [41℄ whi
h allows for edit-ing and 
omposing M-nets. For the model 
he
king of M-nets, PEP relies onthe unfolding, whi
h is unfortunately intra
table in this 
ase be
ause of thein�nite type of the pla
e Time in Nk. Bounding the type, is not enough sin
e



28 Hanna Klaudel, Fran
k Pommereau
⇐

t0

bit

⇒

Far

{1,...,nt}

t1

app,clock(y,t,0)

y=2i

Before

{1,...,nt}t2

clock(y,t,ω),
clock(y′,t′,0)

t≥am∧y=2i∧y′=2i+1

Inside
{1,...,nt}

t3

exit,

clock(y′,t′,ω)

t′≥em∧y′=2i+1
{1,...,nt}

i i

iiii

⇐

⇒

t4

big Open

t5

d̂own,clock(1,g,0) GoDown

t6 d̂own

t7 clock(1,g,ω)g≥gm

Closed

t8 d̂ownt9

cup,clock(1,g,0)GoUp

t10clock(1,g,ω) g≥gm t11

d̂own,clock(1,g,0)

⇐

t12bic

⇒

Idle
{0,...,nt}

t13
dapp,

clock(0,c,0)

AppDown{0,...,nt}

t14 down,clock(0,c,ω),c≥cm

t15

dexit,clock(0,c,0)

ExitUpt16

up,clock(0,c,ω),c≥cm

t17dexit
x≥2

0

x

x−1

x

x x

x+1

1

0

⇐

t18 it,ig ,ic ⇒

Time

{0,...,nc}×{0,...,ω}

t20
V

i≤nc
ci 6=maxi t19 ĉlock(x,c1,c2)

{(0,0),...,(nc,0)}

{(0,c0),...,(nc,cnc)}

{(0,c0+1),...,(nc,cnc+1)}
(x,c1)

(x,c2)Fig. 13 The nets Nt, Ng , Nc and Nk (from top to bottom, if taken separately) ortheir parallel 
omposition (if taken as a single net).
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h do not 
orrespond to a
tual markings but leadto a huge unfolding, intra
table as well. This explains why MARIA [65℄ wasused in [19℄ instead of PEP. After the publi
ation of [19℄, the tool PUNF [49,50℄ be
ame available and integrated in PEP, allowing to over
ome this limi-tation.7 Con
lusionWe presented the model of M-nets, based on labelled high-level Petri netsand provided with various 
omposition operations. We shown that these fea-tures make it suitable for bottom-up design by using its pro
ess algebra like
ompositions, as well as for top-down design by using re�nement allowing torepla
e transitions by arbitrary M-nets. Thanks to the operation of unfolding,M-nets are 
onsistent with the Petri Box Cal
ulus (PBC). This 
hara
ter-isti
s o�ers a strong formal basis and allows for e�
ient model 
he
king.Indeed, PBC is based one safe (1-bounded) Petri nets for whi
h optimisedte
hniques exist.The main extensions of M-nets allow to express parameterised re�ne-ment, re
ursion and bu�ered 
ommuni
ation. The main appli
ations are thede�nitions of semanti
s for parallel spe
i�
ation languages, the modelling ofobje
t oriented, mobile, preemptive or timed systems. A more detailed ex-ample is developed for illustrating this last appli
ation. It 
on
erns a railroad
rossing system and allows to show how M-net modularity may fa
ilitate themodelling of su
h time 
onstrained 
riti
al systems.Future works about M-nets will aim at improving the pro
ess algebrai
aspe
ts, trying to introdu
e most of the high-level features of M-nets in PBC-like algebras, exploiting, in parti
ular, the possibilities of abstra
tion o�eredby bu�ered 
ommuni
ation (see, e.g., [72,74℄ as �rst steps). Moreover, work isin progress 
on
erning an e�
ient veri�
ation method for M-nets. The mainidea 
onsists in avoiding going through the unfolding way; instead, stayingat the high-level allows to envisage approa
hes based on abstra
tion (likein [75℄) and exploiting the modular aspe
t of the veri�ed systems.A
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