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1. INTRODUCTION

Based on a layered-medium interpretation, Jones introduced the concept of “N-matrices” in the seventh paper of his series 
[1]. He also derived a differential equation governing the evolution of the state of polarization for a totally polarized light beam 
propagating through a linear and non depolarizing medium:

d
dz
E N E=                                                                                             (1)

E is the Jones vector associated to the two dimensional electric field vector propagating along the z direction.
Later, Azzam extended this approach [2] to the partially polarized light propagating through non depolarizing media and found 
that the Stokes vector of the light obeys the equation:

d
d NDz
S m S=                                                                                         (2)

where  mND is termed the differential Mueller matrix and S stands for the Stokes vector of the light at distance z into the 
medium. Azzam also derived the relations between the entries of N and mND differential matrices for non depolarizing media. 
However, the formal relation between these both matrices was formulated by Barakat [3]. From the concept of exponential 
versions of the Mueller-Jones matrices and properties of the Kronecker product of matrices, Barakat established the following 
relation:

( )† *
NDm N I I N= Λ ⊗ + ⊗ Λ                                                                          (3)

Where I is the identity matrix, † and * stand for a Hermitian and complex conjugate respectively and  

1 1 0 0
0 0 1 i1
0 0 1 i2
1 1 0 0

 
 − Λ =
 
 −  

                                                                                 (4)

It is worth noticing that in his paper, Azzam derived Eq. (2) for non depolarizing media only but extended the scope of this 
result to depolarizing media by noting:

“Polarizing  medium has the following properties: (1) all diagonal elements are equal, and (2) off-diagonal elements 
symmetrically located with respect to the main diagonal are either equal or differ only in sign. … Breaking any of these  
symmetry conditions produces a matrix m that must correspond to a depolarization phenomenon, or else a matrix that is  



entirely nonphysical.” However, he did not provide a general method and the result for depolarizing media was just illustrated 
by an example. 

Although a generalization of Azzam’s differential matrix formalism to depolarizing Mueller matrices was proposed by 
Ossikovski [4] and Ortega-Quijano & al. [5-6] as:

0 1 7 2 8 3 9

1 7 0 13 12 6 11 5

2 8 12 6 0 14 10 4

3 9 11 5 10 4 0 15

d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d

+ + + 
 − − + − =
 − − − +
 − + − −  

m                                                               (5)

In Ref. [4], Ossikovski provides a physical interpretation of this symmetry breaking in the matrix m. He proposes to consider 
the  d0-6 parameters as mean values of the non-depolarizing properties (mND part) and  d7-15 as their respective uncertainties 
resulting from the depolarization (mD part). The elementary optical non-depolarizing properties are [1]  the amplitude or 
isotropic absorption (d0-), the linear dichroism along the x–y laboratory axes (d1), the linear dichroism along the 45° axes (d2), 
the circular dichroism (d3), the linear birefringence along the x–y axes (d4) , the linear birefringence along the 45° axes (d5) and 
the circular  birefringence  (d6).  d13-15 are  the anisotropic  absorptions  coefficients  along the x-y,  45° and circular  axes 
respectively.   

Under this approach, differential matrix formalism in polarization optics connects the Mueller matrix M(z) at distance z into 
the medium to its spatial derivative along the light propagation direction. For a homogeneous medium, the solution of this 
differential equation is given by:

( ) exp( )z z=M m                                                                                            (6) 

The Mueller matrix logarithm L is then proportional to the differential matrix m and can be decomposed in two terms Lm 

and Lu related to mND and mD respectively with:
( ) m uln= = +L M L L                                                                                       (7)   

Lm and Lu are derived from L by [3]:

( )

( )

1
2
1
2

m

u

=

=

T

T

L L - GL G

L L + GL G
                                                                                       (8)

where G=diag(1, -1, -1, -1) is the Minkowski metric. 

It is worth noticing that the Mueller matrix roots decomposition was introduced in [7-8] to provide an order-independent 
description of polarization properties. Nevertheless, the roots and the Mueller matrix logarithm decompositions are equivalent 
as demonstrated by Ossikovski [9] although obtained from different mathematical procedures.

However, m formulation of Eq. (5) leads to various comments.

As noted by Germer [10]: “… with the exception of d13-15, setting any one of these depolarizing coefficients to non-zero 
value will result in an invalid Mueller matrix.” So there must be a relationship between the off-diagonal coefficients d7-12 

physically representing the uncertainties of the respective elementary polarization properties d1-6 and the diagonal anisotropic 
depolarizations d13-15. In order to solve this problem Germer [10] proposes a very interesting approach to ensure that the 
parameterization will only lead to physical Mueller matrices. Based on three types of depolarization a new parameterization is 
proposed. Each of these depolarization types is related to a direction in Poincaré space, yielding a total of nine adjustable 
parameters.  The  off-diagonal  depolarizing  coefficients  of  m are  function  of  these  nine  parameters  and  are  no  more 
independent.

 Nevertheless, this approach suffers from two main drawbacks:



a) Hypothesis is only valid for the definition of Mueller matrix as a matrix which transforms the space of valid Stokes vectors 
into a subspace of valid Stokes vectors but is not valid for the correct definition of Mueller matrix as a convex sum of Mueller-
Jones [11].

b) The obtained parameterization does not describe the full set of physically admissible differential matrices (diagonal 
matrices with different entries on the diagonal are not possible with this parameterization for instance).

Nevertheless, how the depolarizing part of a physical differential Mueller matrix can be correctly parameterized has been 
explained in recent articles [12-13].  It has been first demonstrated [12] that diagonal differential matrices are always given by:

 

1 2 3

1 2 3

2 1 3

3 1 2

0 0 0
0 0 0
0 0 0
0 0 0

k k k
k k k

k k k
k k k

+ + 
 − − 
 − −
 − −  

                                                       (9)        

Where (k1, k2, k3) parameters have to be positive in order to lead to physical Mueller matrices (as a convex sum of Mueller-
Jones matrices).
 

The general expression of this depolarizing part is then given by [13]:

(i)
u = -1L Am A                                                                                      (10)

where A∈SO(3,1) whose generators are G1-6. Then A can be parameterized as A = eG with G =α G1+β G2+γ G3+ µ G4+ν 
G5+ ρ G6. So mD =eG m(i) e-G. m(i) is either  
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4 1 4
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diag( , ,
                                              , ) 
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(1)

(2)

m

m

                                                     (11)

Regardless to Eq. (11) of [13] an overall isotropic absorption factor -0.5(k1+k4) is introduced in m(2) in order to be consistent 
with the present notation where left upper corner entry of  the matrix can be non zero. This isotropic absorption coefficient can 
always be removed by subtracting  0.5(k1+k4) I from the initial matrix and has no effect on the values of the rest of the 
properties.

In order to lead to physical Mueller matrices defined as a convex sum of Mueller-Jones matrices, the (k1, k2, k3) or (k1, k4) 
parameters have to be positive while free of constraint are the six other parameters related to A.

Although very relevant, nothing in the proposed model of Eq. (5) can explain why the diagonal coefficients should check 
some relationships described in Ref [12] and Eq. (9) or why the mean values of the non-depolarizing properties (mND part) and 
their respective uncertainties resulting from the depolarization are not independent, as is shown in Ref [10,13].

Although these results were also experimentally confirmed [14], it remains to explain the physical basis and link the various 
properties of these differential matrices to underlying physical phenomena. This is exactly the question that we address in the 
following sections of this article.

2. LAYER MEDIUM APPROACH



A. Non depolarizing medium

Addressing this question may be founded on the similar approach to the layered-medium interpretation proposed by Jones in 
the seventh paper of his series [1].  If a very thin section of a medium is considered from a nondepolarizing element, the 
resulting Mueller matrix  Me differs only slightly from the Identity matrix. This elementary matrix can be considered as a 
sandwich of six thin laminae related to elementary optical properties of the medium (3 for dichroïsm, 3 for birefringence and 
one for amplitude absorption). Let the corresponding thicknesses and generators associated to these laminae named τi and Gi 

respectively. The elementary Mueller matrix associated to one of these laminae can be written as:

( )
i i

e 2 2 3
i i i i i i

1exp ( )
2

+Oτ τ τ τM G I G G= = + +                                                      (12)        

where the term O(τi 
3) is for the terms of order higher than two.  

Six generators G1-6 are the well known generators of SO(3,1) the proper orthochronous Lorentz group and G0 is the identity 
matrix. These generators and their relations are described in Appendix A. 

B. Medium with fluctuating parameters 

We address now the case in which each of the values τi of the elementary optical property is assumed to be temporally 
random and fluctuating around its mean value.

τi can then be decomposed as the sum of a deterministic part and a stationary ergodic zero mean process so that:

i i i

i i i  0
τ µ σ

τ µ σ
= +

= =
                                                                                 (13)

Where < X.> denotes the mean value of X.  σi is the zero mean process and the deterministic and random processes are 
assumed independent.

In the limit in which the thickness of the section of the medium approaches zero, it is always possible to consider  µi
2 

negligible compared to µi.  However, the energy of the fluctuations < σi
2 > has not to be assumed negligible compared to µi in 

order to take into account the effect of these fluctuations. Since < σi >=0 in our model, the first significant term is < σi
2 > 

when the thickness vanished. As we are dealing with passive system it is necessary to specify that the isotropic absorption 
coefficient has to be negative. We thus impose that < σ0

2 > is not negligible compared to µ0 but µ0+< σ0
2 > remains always 

negative.

 The Taylor series expansion of order 2 of an elementary Mueller matrix can be written as:

( ) ( )
i i

e 2 2 3
i i i i i i i i i

1exp ( )
2

+Oτ µ σ σ µ σ τM G I G G = = + + + + ÷ 
                                         (14)

It is worth noticing that this last hypothesis leads to one consequence. Unlike the case where the medium is deterministic (σi 

= 0) the expression of the elementary matrix Me as a sandwich of thin laminae 

{ }
i

e e

i 0,6
M M

∈
= ∏                                                                               (15)

is now dependent on the ordering of the laminae since the generators Gi are not commuting matrices (see Appendix A). 



According to the hypothesis on {σi , µi} and the previous remark the mean Mueller matrix of a thin section of the medium is 
given from Eq. (13)-(14) by:

{ }

{ }
i

6
e

i i i j i j
(i, j) 0,6i 0

i j

2 2 3
i i

i 0,6

1
                            ( )

2
+O

µ σ σ

σ τ

M I G G G

G

∈=
≠

∈

= + +

+

∑ ∑

∑
                                                              (16)

It is worth noticing that if all the random processes σi are assumed statistically independent. Eq. (16) becomes:

   
{ }

i i

6
e 2 2 3

i i i
i 0 i 0,6

1 ( )
2

+Oµ σ τM I G G
= ∈

= + +∑ ∑                                                       (17) 

Using a classical approximation of the logarithm near the unity: log(I+B) = B+O(Β 2), we have:

             ( )
{ }

( )i

2e e 2 2

i 0,6
log log log ( ) ( )O Oτ τ τ τM M I G G G

∈

 
= = + + = + ÷ ÷ 

∏                          (18)

where τ is the mean value of the thickness of the six thin laminae sandwich and

{ } { }
i

6
2 2

i i i j i j i
(i, j) 0,6i 0 i 0,6

i j

1 1
2

µ σ σ σ
τ

G G G G G
∈= ∈
≠

 
 ÷

= + + ÷
 ÷
 

∑ ∑ ∑                                                  (19)

If τ approaches zero: 
2e 2exp ( )Oτ τM G G = +                                                                    (20)

A medium of thickness z may be considered as a pile composed by q independent statistical realizations of the previous 
sandwich. Since qτ = z, we have from Eq. (20): 

2 2e 2exp ( ) exp ( )
q

q O q z O zτ τ τM G G G G   = + = +                                              (21)

Thus when τ approaches zero and q becomes infinite since z is constant:

[ ]e e

0
) lim lim exp

zq

q
z zτ

τ
M( M M G

→ + ∞ →
= = =                                                          (22)

And G can be written as: 

  { } { }
i

6
2 2

i i i j i j i
(i, j) 0,6i 0 i 0,6

i j

1
2

µ σ σ σG G G G G
∈= ∈
≠

= + +∑ ∑ ∑                                                (23)

provided to define µi and σi  as parameters per unit length and < σi
2 > as the energy of the fluctuations per unit length.

As we have already noted G takes different forms according to the order of the elements Gi. However, regardless of the 
order of Gi, it is always possible to write:

{ }i j i j i j
1 1
2 2

G G G ,G G ,G = +                                                                        (24)



Where [A,B] = AB-BA is the commutator operator and {A,B}=AB+BA is the anticommutator operator. This anticommutator 
operator is obviously independent of the order of the Gi elements.

G can be thus decomposed in two parts:

( )
{ }

{ }
{ }

i

6

i 0 i i i j i j
(i, j) 1,6i 0

i j

6
2 2

i j i j i
(i, j) 1,6 i 1

i j

1
2

1
2

µ σ σ σ σ

σ σ σ

m

u

G G G ,G

G G ,G G

∈=
≠

∈ =
≠

 
  = + +   
 
 

 
 

= + 
 
 

∑ ∑

∑ ∑

                                                   (25)

It is also possible by a direct calculation of anticommutators and commutators (see Appendix A) to demonstrate that Gm and 
Gu are the Minkowski antisymmetric and symmetric components of G [4]. It is worth noticing that Gu is independent of the 
order of the Gi elements and then can be considered as an invariant but Gm is not. 

Gu has the following invariant expression:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2
4 5 6 2 6 3 5 3 4 1 6 1 5 2 4

2 2 2
2 6 3 5 4 2 3 1 2 4 5 1 3 4 6

u
2 2 2

3 4 1 6 1 2 4 5 5 1 3 2 3 5 6

2 2 2
1 5 2 4 1 3 4 6 2 3 5 6 6 1 2

1 1 1
2 2 2

1 1 1
2 2 2
1 1 1
2 2 2
1 1 1
2 2 2

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

G

 + + − − − − − −

 + − − − + + + +

= 
 + − + + − − + +


+ − + + + + − −











 
 
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         (26) 

Note that factor <σ4
2>+<σ5

2>+<σ6
2> can always been subtracted from the main diagonal of Gu. 

The expression of Gm is Gi order dependent however two configurations of Gm will differ only by the signs of the factors 
<σi σj> since [Gi , Gj] = -[Gj  , Gi]. As example we give the expression of Gm for the configuration (4, 5, 6, 1, 2, 3) of the 
sandwich:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
0 0 4 0 4 2 6 3 5 5 0 5 3 4 1 6 6 0 6 1 5 2 4

2
4 0 4 2 6 3 5 0 0 3 0 3 4 5 1 2 2 0 2 4 6 1 3

m
2

5 0 5 3 4 1 6 3 0 3 4 5 1 2 0 0 1 0 1 5 6 2 3

6 0

1 1 1
2 2 2

1 1 1
2 2 2
1 1 1
2 2 2

µ σ µ σ σ σ σ σ σ µ σ σ σ σ σ σ µ σ σ σ σ σ σ

µ σ σ σ σ σ σ µ σ µ σ σ σ σ σ σ µ σ σ σ σ σ σ

µ σ σ σ σ σ σ µ σ σ σ σ σ σ µ σ µ σ σ σ σ σ σ

µ σ σ

G

+ + − − + − − + − −

+ − − + + + − − − + −
=

+ − − − − − − + + + −
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6 1 5 2 4 2 0 2 4 6 1 3 1 0 1 5 6 2 3 0 0

1 1 1
2 2 2

σ σ σ σ µ σ σ σ σ σ σ µ σ σ σ σ σ σ µ σ

 
 
 
 
 
 
 
 
 
 − − + − − − − − − +  

 

(27)

Again, the isotropic absorption coefficient µ0+<σ0
2> can always be removed by subtracting (µ0+<σ0

2>)I.  

3.  PHYSICAL  SIGNIFICANCE  AND  PROPERTIES  OF  DEPOLARIZING  DIFFERENTIAL  MUELLER 
MATRIX



It is obvious that Eq. (26) and (27) are exactly Eq. (5) decomposed into a mean and uncertainty part according to Eq. (8)  
(meaning that Lm = Gm and Lu = Gu), but we can now clarify the meaning of terms d0-6 and d7-15 of these two matrices.

For the Gm matrix we can see that the entries d0-6 of  matrix m are not exactly the mean values of the elementary optical 
properties except if the fluctuations of the processes σi are independent  (or at least non-correlated). 

This reflects the fact that optically neutral medium at rest (the Mueller matrix is the identity and µi are all zero) may acquire 
optical properties (birefringence, dichroism and attenuation) by the appearance of fluctuations into the medium.

It is also interesting to note that each term correlation in addition to the  µi comes from the correlation of the processes 
associated  with  complementary  optical  properties.  The  correlation  between  the  processes  related  to  the  properties  of 
birefringence and dichroism along the 45° axes or circular is added to µ1 for example, which is on the linear dichroism along 
the x–y laboratory axes. And so on.

 The same is valid for the matrix  Gu that  expresses the uncertainties of the properties. The uncertainty on the linear 
dichroism along the x–y laboratory axes (d1) is due to the correlation between the processes related to the properties of 
birefringence and dichroism but along the 45° axes and circular. 

Being d7-15 coefficients not independent is obvious since they are related to correlation between the different fluctuations. So 
put all these coefficients (with the exception of  d13-15)  to zero except one, will result in an invalid Mueller matrix. The 
exception for d13-15 comes from the case where fluctuations are not correlated.

If the fluctuations of the processes σi are non-correlated, all the off-diagonal terms of Gu vanish and Gu is restricted to its 
diagonal form Gu

D :

2 2 2
4 5 6

2 2 2
4 2 3

u 2 2 2
5 1 3

2 2 2
6 1 2

0 0 0

0 0 0

0 0 0

0 0 0

σ σ σ

σ σ σ

σ σ σ

σ σ σ

G

 + +
 
 − −
 =
 − −
 
 − − 

                           (28)

The principal axes of this depolarizer are along the Poincaré representation axis (the last three Stokes parameters normalized 
by intensity).  However, in the general case the principal axes of a depolarizer can be along any three orthogonal axes. The 
general expression of Gu can always be diagonalized. Since such a Gu matrix is completely defined by one of both the forms of 
Eq (10), the diagonal matrix Gu

D associated to Gu  is obviously the m(1)  expression of Eq. (11), since m(1) is already a diagonal 
matrix or the diagonalized form of the m(2) expression of Eq. (11): 

[ ]

1 2 3 1 2 3 2 1 3 3 1 2

1 4 1 4 1 1

diag( , , , ) 
                                    or

diag 0.5( ), 0.5( ), 0.5 , 0.5

D1
u

D2
u

k k k k k k k k k k k k

k k k k k k

= + + − − − − − −

= + − − −

G

G
                                             (29)

A straightforward calculation gives the expressions of the (k1, k2, k3) or (k1 , k4) parameters from Eq. (28) and (29). For the first 
expression Gu

D1:
2 2

1 1 4

2 2
2 2 5

2 2
3 3 6

k

k

k

σ σ

σ σ

σ σ

= +

= +

= +

                                                                                     (30)

For the second expression Gu
D2:



2 2
1 1 4

2 2 2 2
4 2 3 5 6

2 2 2 2 2 2
1 4 1 2 3 4 5 6

and

0.5 )

k

k

(k k

σ σ

σ σ σ σ

σ σ σ σ σ σ

= +

= + + +

+ = + + = + +

                                                    (31)                          

The positivity of (k1, k2, k3) or (k1 , k4) parameters of Eq. (11) is then due to their definition as sums of mean square values 
(or energies) of the fluctuations. The anisotropic depolarization coefficients d13-15 can then be analyzed as composition of mean 
square values of linear birefringence and dichroism fluctuations along the x–y laboratory axes (k1 parameter ), mean square 
values of linear birefringence and dichroism fluctuations along the 45° axes (k2 and k4 parameters ) and mean square values of 
circular birefringence and dichroism fluctuations  (k3 and k4 parameters). It is worth noticing that the (k1 , k4) parameters model 
is related to a configuration with identical mean square value of dichroism and birefringence fluctuations. 

These results can be illustrated on the example already analyzed in [4] of an experimental Mueller matrix, measured by Gosh 
& al. [15] from a biological phantom in a transmission experiment. The medium consists of a dispersion of polystyrene  
microspheres in a sucrose-containing polymerized polyacrylamide and exhibits properties of linear, circular birefringence, and 
turbidity (depolarizing).

phantom R D

1 0.0185 0.0029 0.0042
0.0172 0.7569 -0.0405 0.0462

M M M M
0.0034 0.0524 0.5450 -0.5466
0.0024 -0.0070 0.6244 0.5967

∆

 
 
 = =
 
 
  

                                        (32)

The corresponding decomposed depolarizing M∆ , retardance MR and diattenuation MD matrices obtained from the Lu and 
Chipman decomposition [ ] are given by:

 R D

1 0 0 0 1 0 0 0 1 0.0185 0.0029 0.004
0.0031 0.7593 -0.0050 -0.0019 0 0.9972 -0.0470 0.0578

M M M
0.0031 -0.0050 0.7737 0.0084 0 0.0742 0.6964 -0.7138
-0.0018 -0.0019 0.0084 0.8638 0 -0.0067 0.7161 0.6980

∆

   
   
   = = =
   
   
      

2
0.0185 1 0 0
0.0029 0 0.9998 0
0.0042 0 0 0.9998

 
 
 
 
 
  

   (33)

It is not a question of comparing the results of this decomposition with those of the differential approach. The underlying 
physical models are not the same. The turbidity of the medium is assumed to be spatially localized for instance in the Lu and 
Chipman decomposition. This decomposition only serves us to generate Mueller matrices related to media with different types 
of optical properties.

Tab.1 Mueller matrices and corresponding Lm and Lu matrices. The ki coefficients calculated from Lu matrices are also 
presented.

X Lm (X) Lu (X) ki (X)

M∆

0 0.0018 0.0018 -0.001
0.0018 0 0 0
0.0018 0 0 0
-0.001 0 0 0

 
 
 
 
 
  

     0  -0.0018 -0.0018 0.001
0.0018 -0.2754 -0.0065 -0.0023
0.0018 -0.0065 -0.2566 0.0103
-0.001 -0.0023 0.0103 -0.1465

 
 
 
 
 
  

1

2

3

k 0.1938
k 0.0836
k 0.0617

=
=
=

M∆MD

0 0.0204 0.0047 0.0032
0.0204 0 0 0
0.0047 0 0 0
0.0032 0 0 0

 
 
 
 
 
  

0 0.0008 -0.0014 0.0013
-0.0008 -0.2753 -0.0065 -0.0023
0.0014 -0.0065 -0.2566 0.0103
-0.0013 -0.0023 0.0103 -0.1464

 
 
 
 
 
  

1

2

3

k 0.1938
k 0.0836
k 0.0617

=
=
=



M∆MR

0 0.0019 0.0013 -0.0016
0.0019 0 0.0676 0.0359
0.0013 0.0676 0 0.7985
-0.0016 0.0359 0.7985 0

 
 − 
 −
 −  

0 -0.0019 -0.0013 0.0016
0.0019 -0.2757 -0.0071 -0.0009
0.0013 -0.0071 -0.2358 0.0518
-0.0016 -0.0009 0.0518 -0.1669

 
 
 
 
 
  

1

2

3

k  = 0.2001
k 0.0779
k 0.0611

=
=

M∆MRM
D

0 0.0205 0.0030 0.0033
0.0205 0 0.0677 0.0359
0.0030 0.0677 0 0.7985
0.0033 0.0359 0.7985 0

 
 − 
 −
 −  

0 0.0007 -0.001 0.0019
-0.0007 -0.2757 -0.0071 -0.001
0.001 -0.0071 -0.2357 0.0518

-0.0019 -0.001 0.0518 -0.1669

 
 
 
 
 
  

1

2

3

k  = 0.2002
k 0.0779
k 0.0610

=
=

We first consider the case of  M∆ alone. This matrix accounts for the depolarizing effects related to the turbidity of the 
medium. Tab. 1 gives the corresponding  Lm and  Lu matrices. All the off-diagonal entries of  Lm are null or identical to 
corresponding entries of Lu. From Eq. (26) and (27) it is thus immediate to deduce that the µ1-6 values must be zero (bearing in 
mind that two configurations of Gm will differ only by the signs of the factors <σi σj>). The entries values of Lm are thus 
exclusively due to fluctuations. This result is consistent with the definition of M∆ as characterizing the purely depolarizing 
part of the medium. Since k1 is much larger than k2 and k3, we can conclude from Eq. (30) that the linear birefringence and 
(or) dichroism along the x–y laboratory axes are the optical properties which mainly fluctuate in this medium. 

We now consider the matrix M∆MD. This matrix accounts for the depolarizing and diattenuation (or dichroism) effects of the 
medium. From the corresponding Lm and Lu matrices (given Tab. 1)  we see immediately that there is no increase in the 
birefringence since the corresponding entries of Lm(M∆MD) are null ( µ1-3 values are then null and there is no contribution 
from the fluctuations) and the corresponding sub-matrices of  Lu(M∆) and  Lu(M∆MD) are identical. Fluctuation of the 
birefringence only comes from M∆. From M∆  to M∆MD the total energy of the fluctuations and its distribution are unchanged 
(ki values are identical for both matrices). With the exception of the first column and the first row, all other entries of Lu remain 
unchanged. As a result, the changes in the coefficients values of the first column of Lm(M∆MD) are due solely to the matrix 
MD. This  can be verified by subtracting the values  of the first column of  Lm(M∆) to the values  of the first column of 
Lm(M∆MD). We recover the values of the first column of MD. 

From M∆ to M∆MR the total energy of the fluctuations is unchanged (k1+k2+k3 has the same value in both cases) but its 
distribution is changed. First column entries of  Lm(M∆MR) and  Lu(M∆MR) are identical.  This means again that these 
coefficients (related to dichroism) are only due to fluctuations (µ4-6 values are then null). This corresponds well with the fact 
that MR does not contribute to the dichroism in the resulting product M∆MR. Nevertheless the values are different from those 
of Lu(M∆) which matches the fact that MR modifies fluctuations of birefringence coming from M∆.

We now consider the matrix M∆ MR MD. This matrix accounts for the depolarizing, diattenuation (or dichroism) and 
birefringence effects of the medium.  The phantom is built to exhibit properties of birefringence and chirality. Polystyrene 
microspheres are added resulting in a scattering effect responsible for the depolarizing nature of the medium (see [] for more 
details). 

The corresponding Lm and Lu matrices can be found in [4] and are recalled Tab. 1. The total energy of the fluctuations 
(k1+k2+k3) keeps the same value as in the case of M∆ alone and the same distribution as M∆MR (an additional multiplication 
by MD does not change this result as we have seen). The birefringence corresponding entries of Lm(M∆ MR MD) and their 
fluctuations depicted in Lu(M∆ MR MD) are completely defined by M∆ MR and unaffected by the additional multiplication by 
MD as expected.

The estimated values for the linear birefringence (and its fluctuation) δ=0.7985±0.0518 and for the circular birefringence 
0.0677±0.0071 (or the associated optical rotation angle ψ) are in close agreement with the expected values as it was already 
noted in [4]. It was also noted small values for the linear dichroism (0.0205±0.007) and linear birefringence along the 45° axes 
(0.0359±0.001). How can explain the appearance of these quantities?

As reported in [15] the medium exhibits linear birefringence inherited from strain applied along the vertical direction and 
chirality inherits from the concentration of sucrose. The path length of photons randomly increased due to multiple scattering 
effects in this birefringent-chiral medium. This random variation of path length results in a random variation of the linear and 
circular birefringence (i.e. by the existence of terms σ1 and σ3). These fluctuations are correlated since they come from the 



same variation in the length of the path traveled by the photon. The result is a non-zero value for the term <σ1σ3> which 
occurs in the linear birefringence along the 45° axes coefficient (see Eq. (27)). 

The scattering-induced diattenuation is due mainly to the weakly scattered photons [17]. This effect is even more important 
in the backscattering geometry as compared  to  forward scattering geometry.  As noted in  [18],  this  scattering-induced 
diattenuation effect is not exhibited in a completely distributed fashion leading to an equivalent diattenuation parameter in the 
differential matrix model. The corresponding values of the entries of Lm(M∆ MR MD) and Lu(M∆ MR MD) clearly show that 
this parameter is seen as an intrinsic diattenuation parameter ( µ4 parameter in Eq. (27) ) and is not related to fluctuations (see 
the comparison above between  Lm(M∆) and Lm(M∆MD)).

We can conclude from the value of the k1 parameter and Eq. (30) that the linear birefringence and (or) dichroism along the 
x–y laboratory axes are the optical properties which mainly fluctuate in this medium. This result is in perfect agreement with 
the above discussion on the scattering effects in a turbid and birefringent medium. 

4. CONCLUSION

A physical model of differential Mueller matrix for depolarizing uniform media has been introduced in order to address the 
question of significance of the parameters of differential Mueller matrix formalism. The concept of mean value and uncertainty 
of the optical properties recently introduced to depict this differential matrix is straightforwardly related to the random 
fluctuations of these optical properties. We extend the scope of the depolarizing Mueller calculus to parallel that established by 
Jones for his calculus based on the layered-medium interpretation. Based on the random Mueller-Jones matrix approach, the 
obtained parameterization perfectly fits the previous results of the literature. Necessary conditions of positivity on specific 
coefficients imposed in order to have physical Mueller matrix are introduced in a natural way and not inferred a posteriori. 
Interpretations of the underlying physical processes are also presented.

It may be argue that the previous results are only obtained for a model where the properties are assumed to be temporally 
random and do not cover the classical approach of depolarizing Mueller matrices as sum of Mueller-Jones matrices (non-
depolarizing matrices). The answer is given by the hypothesis of ergodicity on the temporal processes. For ergodic processes 
all the temporal moments are equal to the statistical moments. These statistical moments are obtained by computing the  
moments on all the possible events of the process. According to our model, one event is just a non-depolarizing matrix obtained 
for one realization of the elementary properties. These statistical moments are then related to a model of depolarizing matrix 
defined by a sum of random realizations of non-depolarizing matrices. Extending the results to the  classical approach of 
depolarizing Mueller matrix as sum of non-depolarizing ones is thus allowed by the ergodicity hypothesis. 
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APPENDIX A

A description  of the  six  generators  G1-6 is  presented  using  the  usual  notation  for  generators  of  SO(3,1)  the  proper 
orthochronous Lorentz group. The generators are dissociated in terms of more familiar quantities: 3 rotation generators J1, J2, J3 

and 3 boost generators K1, K2 and K3:

1 1 2 2 3 3

1 4 2 5 3 6

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i 0 0 i 0

i  i   i
0 0 0 i 0 0 0 0 0 i 0 0
0 0 i 0 0 i 0 0 0 0 0 0

0 i 0 0 0 0 i 0
i 0 0 0 0 0 0 0

i  i  i
0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0

J G J G J G

K G K G K G

     
     −     = = = = = =
     −
     −          

   
   
   = = = = = =
   
   
      

0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 
 
 
 
 
  

                 (A1)



With this notation the commutators are given by:

   
[ ]
[ ]
[ ]

m n mnk k

m n mnk k

m n mnk k

i

i

i

α

α

α

J ,J J

K ,K K

J ,K J

= −

=

= −
                                                                            (A2)

where αmnk is the totally anti-symmetric second rank tensor.

The anti-commutators are given by:

{ } { }

{ } { }

1 1 1 1

2 2 2 2

0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0

                 ,   ,
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0
0 2 0 0 0 0 0 0

                 ,  ,
0 0 0 0 0 0 2 0
0 0 0 2 0 0 0 0

               

J J K K

J J K K

−   
   −   = =
   
   
      

−   
   
   = =
   −
   
      

{ } { }

{ } { } { } { }

{ } { }

3 3 3 3

1 2 1 2 1 2 2 1

1 3 1 3

0 0 0 0 2 0 0 0
0 2 0 0 0 0 0 0

  ,  ,
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

, ,  , ,
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0
0 0 0 1

, ,
0 0 0 0
0 1 0 0

J J K K

J J K K K J K J

J J K K

−   
   
   = =
   
   −      
   
   −   = = = − =
   −
   −      

 −= =

−

{ } { }

{ } { } { } { }

1 3 3 1

2 3 2 3 2 3 3 2

0 0 1 0
0 0 0 0

 , ,
1 0 0 0
0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

, ,  , ,
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

K J K J

J J K K K J K J

−  
  
  = − =

   
   
     
   
   −   = = = − =
   −
   −      

                                     (A3)

The result of anti-commutation operator is not shown when it is equal to null matrix.
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