
HAL Id: hal-00869553
https://hal.science/hal-00869553

Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generalized model transformation approach to link
design models to network simulators: NS-3 case study

Iyas Alloush, Yvon Kermarrec, Siegfried Rouvrais

To cite this version:
Iyas Alloush, Yvon Kermarrec, Siegfried Rouvrais. A generalized model transformation approach to
link design models to network simulators: NS-3 case study. SIMULTECH 2013 : the 3rd International
Conference on Simulation and Modeling Methodologies, Technologies and Applications, Jul 2013,
Rekjavik, Iceland. pp.337 - 344, �10.5220/0004407503370344�. �hal-00869553�

https://hal.science/hal-00869553
https://hal.archives-ouvertes.fr

A generalized model transformation approach to link design models to
network simulators: NS-3 case study

Iyas Alloush1,2, Yvon Kermarrec1,2 and Siegfried Rouvrais1,3

1Telecom Bretagne, Institut Mines-Telecom, Université européenne de Bretagne, Brest, France
2UMR CNRS 6285 Lab-STICC

3IRISA
{iyas.alloush, yvon.kermarrec, siegfried.rouvrais}@telecom-bretagne.eu

Keywords: Model Driven Engineering, Simulators, NS-3, Telecom Service, Enterprise Architecture, Verification, Model
Transformation, Code Generation, Tool Chains

Abstract: Telecom service creation (TSC) activity is one of the most important phases of a TS life cycle. There are
many efforts that were done to improve this activity recently. The early verification of the TS from its design
models give an advantage to the service provider to improve the qualities and to detect design errors before
the implementation phase. Simulation makes it possible to predict the system behavior avoiding the cost
of real systems. Our objective in this paper is to present our methodology to link high abstract models of
telecom services to network simulators. Relying on Model Driven Engineering, we propose a generalization of
code generation methodology using an IMS meta-model and simulator-dedicated templates. In our approach,
the network simulator specifications are related to the transformation template only, while the underlying
platform specifications and standards are included in the meta-model. We illustrate our approach with a new
transformation to generate configurations for NS-3. We apply an example of a video conference service to
generate the simulation code.

1 INTRODUCTION

In the scope of the Telecom Service (TS) Verifica-
tion (Combes and Renard, 1999), the service designer
needs to verify the service design if it satisfies the pre-
defined funtional and non-functional (Chung et al.,
1999) requirements or not. This verification activ-
ity is better to be performed as early as possible, so
to avoid the expensive consequences that may happen
when correcting the design errors and flaws after the
software and hardware installation.

We aim to assist the different stakeholders that
are involved in the TS design (Combes and Renard,
1999), and more specifically, to help them detect the
design errors and flaws, so to improve the qualities
(Chiprianov, 2012) such as the performance, cost, etc.

Network simulators provide valuable feedback in
the behavior of Telecom Services. Although, there
are simulators which have friendly user interfaces and
modeling environments, they still consume the de-
signer time due to the complexity of the design ar-
chitecture. The domain specificity of network sim-
ulators, the daunting coding, and long time configu-
ration, makes it difficult to verify the TS through its

design models manually.
The difference between the technologies that are

used to design the telecom service architecture and
the ones that are used to model it in the simulator envi-
ronment raises a question: How to link directly and
automatically between these two technical spaces
(design and simulation)?

Observing the simulators’ output makes it possi-
ble to check design errors and quality violations. Our
objective in this paper is to provide the TS designer
with a tool that links directly the design model to the
simulator environment. Therefore, we can obtain spe-
cific measurements that will be needed in further veri-
fication activities according to the functional and non-
functional requirements.

Our recent work (Alloush et al., 2012) illustrated
our approach in using Model Driven Engineering
(MDE) to link the high abstract models to simula-
tors (e.g. OPNET). We rely on the core-network plat-
form IP Multimedia Subsystem (IMS) to perform the
video conference functions. IMS provides the ability
of deploying large number of Telecom Services that
are composed of different types of software applica-
tion thanks to its advanced structure that mediates be-

tween different telecom evolutions. We have obtained
manually the measurements that we relied on to check
the behavioral view of the TS design. The design ar-
chitecture of the TS was automatically generated by
our tool relying on Model Driven Engineering (MDE)
and Eclipse Modeling Framework (EMF) in Eclipse.
The measurement settings were manually configured,
and the measurement analysis were done manually to
check the behavioral view of the TS design. Addi-
tionally, relaying on one simulator to test the design
is not enough, as simulators differ from each other in
their measurement capabilities and certificate levels.

In this paper, we generalize and develop our ap-
proach to be used with domain specific (network) sim-
ulators, and we include the automatic generation of
the measurement configuration.

Our first contribution in this paper is in extend-
ing the Meta-Model (MM) that is presented in (Al-
loush et al., 2012; Chiprianov et al., 2011) to include
new elements that improve the code generation abil-
ities to adapt with different network simulators. We
add new measurement and tool (simulator) entities to
that MM to enable the automatic generation of the
measurement configuration. We argue, as our second
contribution, that by fixing the MM which represents
the core-network platform (e.g. IMS), we can gener-
ate the code that is needed to configure different net-
work simulators by changing the transformation tem-
plate using Eclipse environment. We illustrate our ap-
proach with an example of configuration generation to
the NS-3 network simulator, where as far as we know,
there is no similar work done using NS-3 yet. This
is added to the previously-argued case study in (Al-
loush et al., 2012) that is specific for another network
simulator (OPNET) to illustrate the generality of our
approach.

In section 2,we present briefly the related work,
highlighting the points of interest to our objective. In
section 3, we will provide an explanation about model
transformations that we rely on to generate the code.
In section 4, we highlight the Enterprise Architecture
(EA) with its architecture, and show the benefits from
applying its structure to our approach. In Section 5,
we present a short explanation about network simula-
tors, and show the features of the different simulators
that we used in our work. Section 6 will be dedicated
for our contributions, where we present our general-
ized approach to obtain wide range of measurements
for the verification process. Then we present the new
extensions of the Meta-Model, and we give a brief
view to the NS-3 code generation method. In Section
7, we discuss an example of a session creation for a
video conference TS, presenting the new model in-
stances that are needed to generate the measurement

configuration. Then we conclude in section 8 and dis-
cuss our future work.

2 RELATED WORK

This paper is in the scope of TS creation activity.
As our work is a continuation to (Chiprianov, 2012)
and according to the requirements of the early test
activity, we will highlight some of the others work
from this domain, taking into consideration the fol-
lowing criteria: (1) Involving the different actors dur-
ing the service creation activity; (2) the Platform Spe-
cific Models (PSMs) level of details with structural el-
ements and if it is enough to start simulation activity
or not; (3) the ability to generate code directly from
Platform Independent Models (PIMs); (4) The possi-
ble execution or simulation environments; (5) Usage
of Domain-Specific tools; (6) The ability to collect
measurements and to configure them automatically.

In the following, we present some of the work that
is related to early verification activity before the im-
plementation:
• In (Achilleos et al., 2008), the authors proposed

an approach for service creation that introduces
a service validation straight after the service de-
sign phase and before the implementation. Their
methodology integrates the Model Driven Archi-
tecture (MDA) and Petri Nets to provide design,
validation and code generation process.They use
Petri Nets to validate the service behavior and en-
sure its correctness. Their approach involves the
End-User in the final validation process, where
the validation software is obtained by the same
generative approach and MDA. Their methodol-
ogy provides behavioral details only, and presents
no relationships between different nodes of an ex-
ecution network. This prevents the tester from
being able to generate a network simulation sce-
nario. They generate Java code for their exam-
ple directly from the PIM interface model. The
presented Meta-Model of Service Oriented Petri
Net shows no possibility to analyze the behavior
of the service using any other method else than
Petri Nets;

• In (Hartman et al., 2007), the paper describes a
model-based approach to create telecom services.
They rely on the code generation to implement
the service relying on IP Multimedia Subsystem
(IMS) infrastructure. The stakeholder who is in-
volved in their approach is the service provider.
They start from the high abstract models as PIM
to define the service functions using state ma-
chine UML2 models. Using Eclipse software,

they could close the abstraction gap between the
design and the execution environment, by hid-
ing the low level protocol and architecture details.
The code generation process produces Java pack-
ages (e.g. SIP servlet) that can run on a SIP en-
abled Application Server (e.g. IBM WAS version
6.1). Simulation activity is not included as there
is no hardware entities descriptions in the PSM;

• The work presented in (Adamopoulos et al., 2002)
addresses the same scope of service creation ac-
tivity. They propose a methodology that takes into
consideration the customer and service provider
requirements. The validation activity is per-
formed after the implementation phase, and the
service specification is represented by use-case
models as PIMs. They apply code generation to
produce Java and C++ codes directly from these
PIMs. No simulators were used;

• The paper (Touraille et al., 2011) presents work
that is very close to the formalism which we use.
The authors apply MDE and rely on DEVS (Dis-
crete EVent Systems Specification) formalism to
smooth the modeling and simulation cycle and
facilitate the coupling of models using heteroge-
neous formalisms. They provide the SimStudio
software which aims at providing modeling and
simulation tool chain. This assists the developer
in all of the activities from the design to the result
analysis. They produced an advanced tool chain
that contains 4 axis: modeling, analysis, visual-
ization, and Management. The SimStudio relies
on DEVS that contains a simulation kernel which
offers the possibility of high abstract level of mod-
eling. Their approach and ours depend on meta-
models that contains different views to the differ-
ent activities of the tool chain (modeling, simula-
tion). Although they have analysis tools that we
didn’t include in our tool chain, their tool chain
doesn’t have support for structural elements rep-
resentation while limited to the behavioral ones.
Their approach doesn’t show domain specificity,
where we rely on IP Multimedia Subsystem (IMS)
platform. The different views of the actors of an
enterprise are not considered as it shows in their
approach.

In this paper, we will illustrate how our work satisfies
all of the previously mentioned criteria.

3 Model Transformations

Model transformation is one of the key concepts
in MDE, and in our approach. There are different

types of model transformations (van Amstel, 2010;
Mens and Van Gorp, 2006) and they are categorized
due to different views. There are different types
of model transformations: model-to-model, text-to-
model, model-to-text (which we use), and text-to-
text. From the meta-model or grammar change view
point, there are two types of model transformations:
endogenous model transformation where the source
and target models conform to the same meta-model,
and the exogenous model transformation where the
source and target models conform to different meta-
models. Our model transformation is an exogenous
model transformation, as the target is a configuration
script for a simulator with different syntax rules and
constraints. The difference in syntax and semantics
between the two technical spaces (design and Simu-
lation) creates a challenge to link between them. In
our approach, the code generation rules are used to
equilibrate this difference (Chiprianov et al., 2010).

XPAND is a model-to-text transformation lan-
guage that makes it possible to iterate over input
model instances to generate text files. It has the ca-
pability of collecting the data of the design model and
insert it in the form of text embedded in the different
statements of the code that is used to configure the
target tool. This enables us to generate Java packages
for high abstract models (PIMs) (Chiprianov, 2012),
and configuration scripts for simulators for the plat-
form specific models (PSM). We tend to make the
XPAND templates as far as possible from the hard
coding, this implies to define the needed entities in
the Meta-Model and so in the input model.

4 Enterprise Architecture (EA) and
ArchiMate

An Enterprise Architecture (EA) ”is an instrument
to articulate an enterprise’s future direction, while
also serving as a coordination and steering mecha-
nism toward the actual transformation of the enter-
prise” (Greefhorst and Proper, 2011). In our ap-
proach, we apply the EA standard into the TS archi-
tecture (Simonin et al., 2007). EA framework pro-
vides a telecom enterprise a way to decompose a com-
plex architecture of a TS into aspects and layers. The
aspects dimension provides an aspect conceptualiza-
tion of an enterprise. While the layer dimension sep-
arates the TS architecture into 3 different layers ac-
cording to the level of details.

In our approach, we apply ArchiMate which is
an EA modeling language, as ArchiMate seems to be
suitable for IT domain modeling (Chiprianov, 2012).
Figure (Fig.1) presents the two dimensions of Archi-

Figure 1: Enterprise Architecture and Code Generation in
our approach

Mate, and illustrates the separation in abstraction be-
tween the different layers from our view point. Re-
garding to the criteria in section 2, EA and ArchiMate
provides a solution for the simulation needs, as it: (1)
separates between the aspects of behavioral and struc-
tural entities; (2) provides designers with 3 layers that
are different in the level of details, which makes it
possible to specify the models of the technology layer
as PSMs; (3) involves the different stakeholders in the
design activity. This answers to the criteria 1, 2 and
3 that are mentioned in section 2. The dedication of
layers due to the domains makes it possible to involve
the different stakeholders of a service creation activ-
ity that is mentioned in (Combes and Renard, 1999).
We consider the service provider, designer, and ser-
vice developer stakeholders in our work, as an answer
to the first criteria in section 2.

5 NETWORK SIMULATORS

System modeling makes it possible to modify the
design parameters and to test the system and analyze
it more than once, without adding experiment cost.

5.1 Network Modeling Approaches

To model a system for testing purpose, some simpli-
fying assumptions are often required. Relying on too
many assumptions for simplification purpose, may
lead to an inaccurate representation of the system. In
the scope of computer networks, there are two mod-
eling approaches (Issariyakul and Hossain, 2009):

1. Analytical approach: This approach relies on
mathematical description for the system with the
help of mathematical tools such as queuing and
probability theories, then applying that descrip-
tion using the numerical methods. Such an ap-
proach may not give accurate representation of the
real system if many simplifying assumptions were
made;

2. Simulation approach: This approach requires

Figure 2: Our approach to verify Telecom Services after the
design activity relying on tool chains

fewer simplifying assumptions (less abstract level
in the model) than the analytical approach. One
can set every needed specification in its place to
describe the actual system in the best way.

Both approaches may leave out some details, since
having a lot of details may result in large computa-
tional efforts and unmanageable execution. In our ap-
proach, at the design activity, we need to model archi-
tectures, with both structural and behavioral entities
in high level of abstraction. Thus, we have chosen the
simulation approach for modeling the TS design, as
we prefer to have a better description of the TS de-
sign and to execute its behaviors in an accurate way.

5.2 NS-3 Simulator

We select NS-3 as it: (1) supports tracing functions, to
collect the measurements and export them into files;
(2) accepts configuration using Python and C++ for
front-end (e.g. scripting, visualization); (3) supports
different types of easy-configured applications (e.g.
Socket using TCP or UDP). NS-3 is a proper simula-
tor that fits the nature of TSs, as it accepts (in addition
to the previous features) plain text input files, and gen-
erates measurements that can be analyzed to improve
the qualities of the TS.

6 CONTRIBUTIONS

6.1 Methodology

Our general approach relies on tool chains to achieve
a complete loop 2 between the design and early veri-
fication activities in Telecom Service Creation (TSC)
activity (Combes and Renard, 1999).

The verification activity may require different
simulators according to the requirements nature and
variety, where the TS is going to be verified with re-
spect to these requirements. Therefore, we aim to pro-
vide the designer with a methodology that is able to

use wide range of simulators. In this paper, our con-
tributions have one broad aim (Fig.3) : to link the high
abstract design models from the TS domain to the
network simulators so to obtain measurements from
the modeled system and analyze in the next activities.
Therefore, we highlight two major contributions that
helps achieving this target:
• Extending the technology layer meta-model that

is mentioned in (Alloush et al., 2012) to include
new adequate entities that are relevant to the sim-
ulation activity and of general usage for different
types of network simulators;

• Proposing an approach based on MDE to link be-
tween design models and simulators using a gen-
eralized method, we fix the Meta-Model (syntax)
and change the model transformation template
only to generate the code for the different simu-
lators. This is coherent with the advanced core-
network platforms (e.g. IP Multimedia Subsys-
tem IMS (Camarillo and Garcı́a-Martı́n, 2008)),
as changing the infrastructure for every new IT
service is not a practical or economic solution.
Normally, once the infrastructure is installed and
implemented, it is better for the network provider
to invest in it for long period.

6.2 Meta-Model Extension

We present the technology layer Meta-Model exten-
sion that is needed to generalize our approach to link
between the high abstract models and the simulators.
The extension is tool (simulator) oriented, and in-
cludes the following actions:
1. Extending the NodeInterface entity (Fig.4) which

is defined using ArchiMate language (The Open
Group, 2009) and of the type InfrastructureInter-
face. We have defined more protocols that corre-
spond to the OSI (Open Systems Interconnection)

Figure 3: An MDE approach to link high abstract models to
simulators including measurement configuration

<<InfrastructuralInterface>>

NodeInterface

L2 Protocol
+name: String

L3 Protocol
+name: String

L4 Protocol
+name: String

L7 Protocol
+Name: String

1

1

1

1

1

1

1

1

Protocol Network
+Name: String
+NetAddress: String
+NetMask: String
+id: String

1

1

Figure 4: NodeInterface extension to the IMS meta-model
presented in (Alloush et al., 2012)

system. This makes it possible to map the design
with different types of network simulators of dif-
ferent granularity levels;

2. We define the Measurement model (Fig.5) of type
TechnologyLayerElement from ArchiMate lan-
guage (The Open Group, 2009) that contains:
measurement function, measure, and the probe.
The probe (Chang, 1999) is the entity that is re-
lated to the simulator part, while the measure is
the register that saves the final result of the data
manipulation after the call of the measurement
function. To enable the manipulation of the col-
lected data by different probes, we define mathe-
matical operators such as (Sum, Subtract, Multi-
ply, and Divide, etc). These operators are used
in the measurement function to enable the cus-
tomization of measurements by the domain ex-
perts (Fig.3). These measurements are linked to
the design entities (behavioral and/or structural)
through association relations (The Open Group,
2009). The reason behind this link is that there
are some measurements related to hardware ele-
ments (e.g. CPU utilization is related to nodes)
while (Session Start/End Probe is related to a be-
havior of exchanging control messages between
nodes). This contribution answers to the criteria 6
in section 2;

3. We define the ”associated with” relationship from
ArchiMate language (The Open Group, 2009) to
associate structural and behavioral entities of an
IMS platform with the corresponding measure as
a result of the measurement function that is pro-
cessed in the simulator.

The mentioned IMS Meta-Model and its extensions
are prototyped and implemented in an ecore file
(Meta-Model) using Eclipse EMF tool.

Measurement Function

Measure

Access

1

1

InfrastructureInterface(Archimate)

Associated with

1

0..*

Probe
+type: string

Measurement Model
+Name: String

1

1..*

Object

<<Tool>>

Simulator
+Measurements: List
+isCustomizedApplication: Boolean
+Probes: List
+Certificate Level: string

<<InfraStructure Service (Archimate)>>

TechnologyFunction

Associated with1
0..*

1

1..*

1

1..*

Tool

Artifact

Figure 5: Measurement view from the tool specification
Meta-Model linked with IMS MM presented in (Alloush
et al., 2012)

6.3 Using Multiple Network Simulators

The extended meta-model presented in subsection 6.2
have the same specifications that were used in the pre-
vious XPAND template that is used with OPNET tool
in (Alloush et al., 2012), and it works now also with
the NS-3 simulator template, where we use the same
model transformation language (XPAND) in section
3. OPNET and NS-3 are widely used in the domain
of network simulation, and the extended MM pro-
vides enough abstract syntax to implement and run
the model transformation. Additionally, the extension
depends on telecom standards and basics that every
network simulator should respect. This enables us
to answer the question of reusing our approach with
other network simulator.

Figure 6: Part of the XPAND template presents the itera-
tions to decompose and map the Service Design to NS-3
model

Figure 7: Mapping elements between TS design and NS-3
technical spaces (implemented in XPAND)

6.3.1 Mapping TS design model to NS-3 model

We will present the main conceptual modeling con-
cepts in NS-3 and its hierarchy, and how we mapped
it (Fig.7) to the IMS models that we have designed.
To build up the topology of the network and the ser-
vice structural design, we use the structural view from
the model of the TS instance. This model contains
the structural entities of the TS service, one of these
entities is the CommunicationPath that represent the
point-to-point connection between to NodeInterfaces.
Thus, iterating for every CommunicationPath (Fig.6)
makes it possible to identify the parent NodeInter-
faces, and then identifying the nodes that are joined
together using this CommunicationPath (Fig.10).

7 VIDEO CONFERENCE
CREATION EXAMPLE USING
IMS CASE STUDY

In this section, we illustrate our approach with
an example of a TS (Video Conference) relying on
IMS network platform (Camarillo and Garcı́a-Martı́n,
2008). We are interested in the control plane (sig-
naling) messages that are exchanged between the dif-
ferent nodes to perform the creation of the confer-
ence, and we focus on the application layer messages.
This is an important point for the designer. The Ses-
sion Initiation Protocol (SIP) (Camarillo and Garcı́a-
Martı́n, 2008) is the main application protocol in IMS.
SIP messages are text plain messages, the fact that
makes it easier to read and analyze them.

DevQueueDrop Measure

Measurement Model

1

TraceDevQueueDrop, "+"
Access

Access

DevQueueDrop, type=txQueue/DropDevQueueDrop Access

ProbeMeasurement FunctionMeasure

All(*): CommunicationPath
Asscociated with

From the design model

Constant

Figure 8: A model instance for DevQueueDrop Measure-
ment

7.1 TS design model instance (static
view)

The design model of the TS (right part of Fig.10)
contains high abstract level of details such as Nodes,
application protocols, messages, sequence of func-
tions that call each other, etc. We present the struc-
tural view of the design and from the technology
layer specifically. The CommunicationPath entities
are clear in this example, we use them as a starting
point to identify the structure of the simulation sce-
nario as mentioned in 6.3.1. Relying on the types de-
fined in the MM and the relations from ArchiMate,
we can investigate the topology of the scenario using
the iterative functions in XPAND (Fig. 6).

7.2 Examples of Measurements and
NS-3 code sample

Measurement instances should conform to the meta-
model (Fig. 5). For an IP network, we present 2
examples of measurement models that will be imple-
mented in NS-3 code automatically.

• DevQueueDrop: This is an example for a cus-
tomized measurement. This event is triggered
when a packet is dropped on the device level in
NS-3. We want to implement the trace of Queue
Packet Drop by defining a counter that increments
by 1 every time the probe is triggered (Fig.8).
This mathematical operation is implemented in
the measurement function, where the inputs are:
the probe value itself and the constant 1;

• CongestionWindow: This measurement exists in
the NS-3 simulator, and their is no need to imple-
ment a measurement function for such a built-in
measurement (Fig.9).

Unlike OPNET, the configuration method in NS-3
(NS3, 2012) makes it possible to use different types of
variables to be used inside the code for many purposes
such as calculations.

(Fig.10) presents the correspondence between the
generated code and the structural entities. Using (waf)

All(*),type=$ns3::TcpL4Protocol/SocketLis: L4Protocol

Congestion Window measurement model

Congestion Window: Measure

CongestionWindow: Probe

Associated withAccess

Probe

Figure 9: A model instance for CongestionWindow Mea-
surement

command we verified the result code with no errors in
the C++ rules neither in the NS-3 ones.

8 CONCLUSION AND FUTURE
WORK

In this paper, we have presented our approach to con-
nect the design models from the specification activ-
ity to the network simulators directly. A Meta-Model
extension was proposed to generalize the linking be-
tween the modeling and network simulation techni-
cal spaces relying on the reusability of the extended
MM. We rely on the MDE approach to keep the ab-
straction level high at the design phase and to hide
the complexity from the designer. To verify the tele-
com service design early at the specification phase,
our approach joins the two different technical spaces
(network simulation and TS design) together, attach-
ing the measurement entities that exists in the net-
work domain directly to the high abstract modeling
tools. Thus, we put the verification utilities between
the TS designer hands, taking the tool specificity and
the daunting coding away from his responsibilities.
We have illustrated our approach with some examples
from the generated code and the corresponding input
models.

Our approach separates between the roles of the
technical spaces mapping, where the meta-model is
reusable with different types of network simulators
and the xpand template is related to the simulator
specifically. The usage of multiple simulators enable
the verifier from testing the TS using wide range of
measurements. On the other hand, our method in gen-
erating the customized measurements takes into con-
sideration only two inputs for the measurement func-
tion element. Additionally, the implementation of the
XPAND template needs experience in the target sim-
ulator and modeling technical spaces besides to the
IMS platform ”execution platform”. These limita-
tions should be taken into consideration by the tool
vendor when adding new tools.

In the future, on the one hand, we intend to de-
fine the method of tool selection. On the other hand
we will integrate between these tools so the data flows
from one tool to another, this makes the tools comple-

Figure 10: C++ code sample as input of NS-3 mapped to the design model

ment each other in our tool chain.

REFERENCES

(2012). NS-3 Manual-Release ns-3-dev,
www.nsnam.org/docs/manual/ns-3-manual.pdf,
dev edition.

Achilleos, A., Yang, K., Georgalas, N., and Azmoodech,
M. (2008). Pervasive service creation using a model
driven petri net based approach. In Wireless Commu-
nications and Mobile Computing Conference, 2008.
IWCMC ’08. International, pages 309 –314.

Adamopoulos, D., Pavlou, G., and Papandreou, C. (2002).
Advanced service creation using distributed ob-
ject technology. Communications Magazine, IEEE,
40(3):146 –154.

Alloush, I., Chiprianov, V., Kermarrec, Y., and Rouvrais,
S. (2012). Linking telecom service high-level abstract
models to simulators based on model transformations:
The ims case study. In Information and Communi-
cation Technologies, volume 7479, pages 100–111.
Springer Verlag.

Camarillo, G. and Garcı́a-Martı́n, M. A. (2008). The 3G
IP Multimedia Subsystem (IMS) Merging the Internet
and the Cellular Worlds. Third edition.

Chang, X. (1999). Network simulations with opnet. In Sim-
ulation Conference Proceedings, 1999 Winter, vol-
ume 1, pages 307 –314 vol.1.

Chiprianov, V. (2012). Collaborative Construction of
Telecommunications Services. An Enterprise Archi-
tecture and Model Driven Engineering Method. PhD
thesis, Telecom Bretagne, France.

Chiprianov, V., Alloush, I., Kermarrec, Y., and Rouvrais,
S. (2011). Telecommunications service creation: To-
wards extensions for enterprise architecture model-
ing languages. In 6th Intl. Conf. on Software and
Data Technologies (ICSOFT), volume 1, pages 23–29,
Seville, Spain.

Chiprianov, V., Kermarrec, Y., and Rouvrais, S. (2010).
Meta-tools for Software Language Engineering: A
Flexible Collaborative Modeling Language for Effi-
cient Telecommunications Service Design. In Flex-
iTools2010 ICSE Workshop on Flexible Modeling
Tools.

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999).
Non-Functional Requirements in Software Engineer-
ing, volume I. KLUWER ACADEMIC Publishers.

Combes, P. and Renard, B. (1999). Service validation. Com-
puter Networks, 31(17):1817 – 1834.

Greefhorst, D. and Proper, E. (2011). Architecture Princi-
ples, volume 4 of The Enterprise Engineering series.
Springer.

Hartman, A., Keren, M., Kremer-Davidson, S., and Pikus,
D. (2007). Model-based design and generation of tele-
com services.

Issariyakul, T. and Hossain, E. (2009). Introduction to Net-
work Simulator NS2. Springer.

Mens, T. and Van Gorp, P. (2006). A taxonomy of model
transformation. Electron. Notes Theor. Comput. Sci.,
152:125–142.

Simonin, J., Le Traon, Y., and Jezequel, J. M. (2007). An
enterprise architecture alignment measure for telecom
service development. 11th Ieee International Enter-
prise Distributed Object Computing Conference, Pro-
ceedings, pages 476–483.

The Open Group (2009). ArchiMate 1.0 Specification.
Touraille, L., Traoré, M. K., and Hill, D. R. C. (2011).

A model-driven software environment for modeling,
simulation and analysis of complex systems. In Pro-
ceedings of the 2011 Symposium on Theory of Mod-
eling & Simulation: DEVS Integrative M&S Sympo-
sium, pages 229–237, San Diego, CA, USA.

van Amstel, M. (2010). The right tool for the right job:
Assessing model transformation quality. In Com-
puter Software and Applications Conference Work-
shops (COMPSACW), 2010 IEEE 34th Annual, pages
69 –74.

	Introduction
	Related work
	Model Transformations
	Enterprise Architecture (EA) and ArchiMate
	Network Simulators
	Network Modeling Approaches
	NS-3 Simulator

	Contributions
	Methodology
	Meta-Model Extension
	Using Multiple Network Simulators
	Mapping TS design model to NS-3 model

	Video Conference Creation Example using IMS case study
	TS design model instance (static view)
	Examples of Measurements and NS-3 code sample

	Conclusion and future work

