The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties

Christophe Guiderdoni, Ekaterina Pavlenko, Viviane Turq, Alicia Weibel, Pascal Puech, Claude Estournès, Alain Peigney, Wolfgang Bacsia, Christophe Laurent

To cite this version:

HAL Id: hal-00869492
https://hal.archives-ouvertes.fr/hal-00869492
Submitted on 3 Oct 2013
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 9361

To link to this article: DOI:10.1016/j.carbon.2013.02.049
URL: http://dx.doi.org/10.1016/j.carbon.2013.02.049

To cite this version: Guiderdoni, Christophe and Pavlenko, Ekaterina and Turq, Viviane and Weibel, Alicia and Puech, Pascal and Estournès, Claude and Peigney, Alain and Bacsa, Wolfgang and Laurent, Christophe. The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. (2013) Carbon, vol. 58. pp. 185-197. ISSN 0008-6223

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties

Ch. Guiderdoni a, E. Paulenko b, V. Turq a, A. Weibel a, P. Puech b, C. Estournès c, A. Peigney a, W. Bacs a, Ch. Laurent a,*

a Université de Toulouse, Institut Carnot CIRIMAT, UMR CNRS-UPS-INP 5085, Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
b CEMES, UPR 8011, CNRS-Université de Toulouse, 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse, France
c CNRS, Institut Carnot CIRIMAT, UMR CNRS-UPS-INP 5085, 118 route de Narbonne, 31062 Toulouse cedex 9, France

Abstract

Carbon nanotubes with 2, 3, 8 and 20 walls are mixed with a copper powder (micrometer sized) and consolidated by spark plasma sintering. The microhardness of resulting composites is found to be over 50% higher than that for Cu and the friction coefficient against a steel ball is decreased by a factor of 3–4 while the wear and wear rate are reduced by a factor of 10–20. Raman maps of selected specimens outside and inside the worn surface show that double-wall carbon nanotubes remain intact. The reasons for the effect of the number of walls and carbon content are discussed.

1. Introduction

Metal-matrix composites containing carbon nanotubes (CNTs) are promising materials for structural applications because of the unique mechanical properties of the CNTs [1 and references therein]. Self-lubricating materials, preventing the need for liquid lubricants, are of particular interest and reports on such materials, in particular CNT/Cu composites [2–9], are increasingly abundant. The homogeneity of the CNT dispersion, good interfacial bonding and a high relative density are key points to achieve a higher microhardness, a lower friction and a lower wear. However, the comparison of the results reported by different groups is hampered notably because different CNTs are used, the preparation routes differ markedly and the tribological testing conditions (counterface, load, distance, relative humidity) vary widely. When using double-walled CNTs (DWCNTs) [9], a doubling of the Vickers microhardness and a fourfold decrease of the average friction coefficient against steel or alumina, compared to pure Cu, were obtained for a carbon loading (5 vol.%) significantly lower than those (10–20 vol.%) reported when using multi-walled CNTs (MWCNTs) [2–4,7,8]. Indeed, a given DWCNT weighs much less than a MWCNT of the same length [10] and therefore many more DWCNTs are present for a given carbon weight loading, which can greatly modify the matrix microstructure and ultimately give better results for lower carbon loadings, as was also found for DWCNT/ceramic composites [11–13]. Thus, one aim of this work is to study the influence of the volume carbon content on microhardness, friction and wear. We change the volume carbon content by increasing the average number of walls (2, 3, 8 and 20) of the CNTs. The results will be compared with those of a previous study [9] where the volume carbon content was changed by increasing the proportion of DWCNTs in the composites. A second aim is to perform a detailed Raman spectroscopy study of selected specimens, outside and inside the wear

* Corresponding author.
E-mail address: laurent@chimie.ups-tlse.fr (Ch. Laurent).
tracks, in order to shed light on the role and the state of the CNTs.

2. Experimental methods

2.1. Raw materials

A commercial Cu powder (Alfa Aesar 0.5–1.5 μm) was used for the study. Several types of CNT samples with a different average number of walls, were selected as described later in this section. For the sake of clarity, the sample where \(N \) is equal to 2 is noted DWCNT and the samples where \(N \) is equal to 3, 8 and 20 are noted 3WCNT, 8WCNT and 20WCNT, respectively. The DWCNTs were synthesized by methods reported earlier [14,15]. Briefly, a Mg\(_{29}\)(Co\(_{0.7}\)Mo\(_{23}\))O\(_{0.05}\)O powder prepared by combustion synthesis was submitted to a catalytic chemical vapor deposition (CCVD) treatment (H\(_2\)–CH\(_3\) with 18 mol% CH\(_3\)Cl, maximum temperature 1000 °C), producing a CNT/Co–Mo/MgO powder. This powder was soaked in a 37% HCl aqueous solution in order to dissolve MgO and most of the cobalt- and molybdenum compounds [16]. The so-obtained suspension of DWCNTs was washed with deionized water until neutrality and subsequently filtered and washed with ethanol. Finally, the sample was dried overnight at 80 °C in air. The 3WCNTs were synthesized by the same route, the starting catalytic material being a Mg\(_{29}\)(Co\(_{0.18}\)Mo\(_{0.42}\))O\(_{0.05}\)O powder [15,17]. The 8WCNT and 20WCNT samples were purchased from Nanocyl (Belgium) and Nanothinx (Greece), respectively. They were prepared using a CCVD route but the precise experimental details are not known to the authors.

The CNT samples were investigated by high-resolution transmission electron microscopy (HRTEM, JEOL JEM 2100F operated at 120 kV). Typical images are shown in Fig. 1. The DWCNTs (Fig. 1a and b) and 3WCNTs (Fig. 1c and d) tend to form bundles, which is favored by their small diameter, their high aspect ratio and van der Waals interactions [14]. The presence of structural defects and non-tubular carbon may result from degradation under the electron beam. The 8WCNTs (Fig. 1e and f) and 20WCNTs (Fig. 1g and h) are not bundled and most CNTs present important structural defects, such as kinks, uncompacted walls, bamboo-like structure and variation of the diameter, along the length of the CNTs.

The number of walls was measured for about 100 CNTs on HRTEM images. The average number of walls (\(N \)) is shown in Table 1. For the DWCNT sample, the distribution of the number of walls (Fig. 2a) shows mostly DWCNTs (80%) together with single-wall CNTs (15%) and 3WCNTs (5%). \(N \) is equal to 1.9 which was rounded to 2. For the 3WCNT specimen (Fig. 2b), CNTs with 1–7 walls are observed. The DWCNTs are still dominant (40%) with 3WCNTs (28%) the second most abundant CNTs. \(N \) is equal to 2.7 which was rounded to 3. For the 8WCNT sample (Fig. 2c), CNTs with 3–22 walls are observed. The 8WCNTs are dominant (30%) with 7WCNTs and 9WCNTs (both 16%) the second most abundant CNTs. \(N \) is equal to 8.5 which was rounded to 8. For the 20WCNT sample (Fig. 2d), the distribution of the number of walls is very wide, mostly in the range 8–37, and CNTs with 50, 52 and 56 walls were also observed. The CNTs with 17 walls are dominant but barely (only 10%). \(N \) is equal to 19.8 which was rounded to 20. Note however that no 20WCNT was actually observed. Although the notion of an average number of walls is admittedly less pertinent for the 20CNT specimen than for the DWCNT, 3WCNT and 8WCNT samples, it was thought useful to use it, as well as the codename 20WCNT, as opposed to MWCNT, which is indeed too vague. The average external diameter (\(d_{ex} \) – Table 1) was also derived from HRTEM measurements. The present values are in excellent agreement with the empirical law giving the correlation with \(N \) for a population of MWNTs prepared by CCVD [18].

Other characteristics are listed in Table 1: the theoretical density of the CNTs (\(\rho_0 \)) calculated using the CNT density chart [10], the specific surface area of the samples (\(S_{BN} \)) measured by the BET method using N\(_2\) adsorption at liquid-N\(_2\) temperature, which decreases when \(N \) is higher in agreement with calculations from geometrical data [19] and the carbon content in the sample (\(C_o \)) determined by flash combustion. It was also attempted to evaluate CNT length (\(L \) – Table 1) on TEM images, although it is very difficult for the DWCNT and 3WCNT samples because the CNTs tend to form bundles as noted above.

2.2. Powders

The CNT/Cu powders were prepared by a rapid mixing route involving short-time sonication and freeze-drying, without oxidative acidic treatment or ball-milling in order to avoid damaging the CNTs [9]. The surface area developed by the total amount of CNTs introduced in the samples was kept as a constant. It was chosen equal to that (64 m\(^2\)) found for the sample prepared with DWCNTs for a carbon content equal to 5 vol.%, which was the best earlier sample [9]. The appropriate quantity of CNTs was dispersed in deionized water using a sonotrode (Bioblock Scientific VibraCell 75042) for a few seconds, after which the Cu powder was added. The ultrasonic agitation was maintained for one minute. Then, the vessel containing the CNT/Cu suspension was immediately immersed in liquid N\(_2\) for 2 min and was freeze-dried (Christ alpha 2–4 LD, Bioblock Scientific) at −40 °C for 48 h in a primary vacuum (12 Pa). The mixed powders are noted P2, P3, P8 and P20 hereafter.

2.3. Spark plasma sintering

The Cu and CNT/Cu powders were densified by SPS (Dr. Sinter 2080, SPS Syntex Inc., Japan). They were loaded into a 20 mm inner diameter graphite die. A sheet of graphic paper was placed between the punch and the powder as well as between the die and the powder for easy removal. This ensemble is known as the stack. The powders were sintered in vacuum (residual cell pressure <10 Pa). A pulse pattern of twelve current pulses followed by two periods of zero current was used. A heating rate of 100 °C/min was used from room temperature to 700 °C, where a six minutes dwell was applied. The temperature was controlled using a thermocouple introduced in a little hole (5 mm deep) located on the outer surface of the die. A uniaxial charge (corresponding to 100 MPa on the pellet) was gradually applied within the first minute of the dwell at 700 °C and maintained during the remaining five minutes.
Natural cooling was applied down to room temperature and the uniaxial load was gradually released during the same time. The sintered specimens were in form of pellets 20 mm in diameter and about 2 mm thick. The pellets were polished down to 0.25 μm using diamond slurries. The sintered specimens will be noted as Cu, S2, S3, S8 and S20 hereafter.
Table 1 - Average number of walls (N), average external diameter (d_{ext}) and approximate length (L) of the CNTs, theoretical density of the CNT (ρ), specific surface area of the CNT samples (S_{CNT}), carbon content in the CNT samples (C_{c}); the balance is mostly water and residual metal catalyst.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>N</th>
<th>d_{ext} (nm)</th>
<th>L (μm)</th>
<th>ρ (g/cm³)</th>
<th>S_{CNT} (m²/g)</th>
<th>C_{c} (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWCNT</td>
<td>1.9 # 2</td>
<td>2.0</td>
<td>>5</td>
<td>1.8</td>
<td>1000</td>
<td>88.4</td>
</tr>
<tr>
<td>3WCNT</td>
<td>2.7 # 3</td>
<td>3.5</td>
<td>>5</td>
<td>1.9</td>
<td>534</td>
<td>90.5</td>
</tr>
<tr>
<td>8WCNT</td>
<td>8.5 # 8</td>
<td>10.2</td>
<td><1.5</td>
<td>1.8</td>
<td>242</td>
<td>91.8</td>
</tr>
<tr>
<td>20WCNT</td>
<td>19.8 # 20</td>
<td>19.6</td>
<td><4</td>
<td>2.1</td>
<td>92</td>
<td>88.2</td>
</tr>
</tbody>
</table>

Fig. 2 – Distribution of the number of walls as deduced from the measurement of about 100 CNTs on HRTEM images for the DWCNT (a), 3WCNT (b), 8WCNT (c) and 20WCNT (d) samples.

2.4. Characterization

The specific surface area of the powders was measured by the BET method using N₂ adsorption at liquid-N₂ temperature (Micromeritics FlowSorb II 2300). The reproducibility of the results is ±3%. The density of the pellets (d – Table 2) was calculated from their weight and dimensions. The theoretical density of the pellets (d_{th} – Table 2) was calculated using 3.92 g/cm³ for Cu and the appropriate CNT theoretical density (ρ_{CNT} – Table 1). The relative density was then calculated from the d and d_{th} values (δ – Table 2). The powders and pellets were observed by field-emission-gun scanning electron microscopy (FESEM, JEOL JSM 6700F). For observation of the polished surfaces, the pellets were etched in HNO₃ (room temperature, 10 s). The wear tracks were observed by interferential microscopy (Zygo NewView 100). Selected samples were studied by Raman spectroscopy (XPlora spectrometer in backscattering geometry and using 632 nm laser excitation). The laser power was fixed to 1 mW and we used a 100× objective. For Stokes/Anti-Stokes measurements, a Dilor spectrometer with the same experimental conditions was used.

2.5. Microhardness and tribological testing

The indentation tests (0.1 N for 10 s in air at room temperature) were performed on the fresh polished surface of the specimens by loading with a Vickers indenter (Shimadzu HMV 2000). The calculated microhardness values are the average of ten measurements. Friction tests were performed using a ball-on-flat geometry in reciprocating mode (CSM Tribometer), at room temperature in ambient air with a 40–60% relative humidity. A 100Cr6 steel ball 6 mm in diameter was used against flat Cu and CNT/Cu sample fresh polished surfaces. The maximum sliding speed was fixed at 2 cm/s. The testing
length for one cycle is about 6 mm and a total of 500 cycles were performed for one test. The tests were performed at 1 and 5 N. No higher load was tested in order to limit the pellets damage and to avoid changing the contact geometry. The frictional force transferred to a load cell was recorded throughout the test. Wear tests were performed in rotary mode (constant speed equal to 2 cm/s) using a 10 N load. Flat surfaces 20 mm in diameter were rubbed against a 100Cr6 steel ball 6 mm in diameter. The testing length (L) is 15 m in order to stay in the mild-wear regime.

3. Results and discussion

3.1. Powders and sintered specimens

FESEM observations of the powders revealed that the S2 powder is more homogeneous, the mixing conditions having been optimized for this sample [9]. For example, two areas of S20 are shown, one showing many CNTs (Fig. 3a) and one showing no CNTs (Fig. 3b). A direction for future work is to fine-tune the mixing conditions with the Cu powder according to the types of CNTs. The equivalent carbon proportions in the composites, both in weight and in volume, are given in Table 2. The specific surface area (S_p - Fig. 4) of the Cu powder is equal to 2 m2/g. It is in the range 10–26 m2/g for the mixed powders, reflecting the presence of the CNTs.

The density of the pellets (d - Fig. 5 and Table 2) is higher than 95% for Cu and S2 and decreases regularly upon the increase in carbon content, reaching only 73% for S20 (carbon content equal to 32.2 vol.%).

In agreement with the observation made for the powders, FESEM observations of the polished surfaces reveal some inhomogeneity in the dispersion of the CNTs. Typical images reveal CNT bundles covering the surface for S2 (Fig. 6a), apparent alignment possibly generated during polishing and CNT agglomerates between Cu grains for S20 (Fig. 6b). It was not attempted to measure the Cu grain size, because as mentioned above, there is a certain lack of homogeneity in the CNT dispersion and thus, there is a wide distribution of the grain size of Cu in the sintered samples: very small grains (<100 nm) in areas with many CNTs and larger grains elsewhere. Indeed, it is known that the presence of the CNTs hampers Cu diffusion and grain growth [9,20].

3.2. Microhardness and tribological properties

The Vickers microhardness (H_V - Fig. 7 and Table 2) for the Cu specimen is equal to 50. It is significantly higher for S2, S3 and
Fig. 5 – Relative density of the specimens prepared by SPS versus carbon content.

Fig. 6 – FESEM images of the polished and etched surface of specimens S2 (a) and S20 (b).

Fig. 7 – Vickers microhardness versus carbon content.

S8 (about 80%), which is similar or slightly lower to what has been reported for other CNT/Cu composites [2–4,7–9] (Table 3). The trend is that it decreases with the increasing carbon content, which could reflect the decreasing relative density.

Typical curves showing the friction coefficient against a steel ball (1 N load) versus the number of cycles are shown in Fig. 8 (the curve for S8 was omitted for the sake of clarity). After a running-in period (about 100 cycles), the friction coefficient stabilizes at 0.9 for pure Cu. For S2–S20, it stabilizes in the range 0.15–0.30. Moreover, the running-in period decreases from about 200 to about 10 cycles upon the increase of the number of walls. Once the contact is stabilized, a lower noise is observed for the composites than for Cu. The behavior at 5 N load is similar. The observed noise on the curves (Fig. 8) reflects that the contact lacks stability and that a certain amount of wear occurs.

For both applied loads, the average friction coefficient (Fig. 9 and Table 2) decreases and reaches a plateau for S3–S20, showing a fourfold decrease compared to Cu. These results compare favorably with those reported by other researchers (Table 3). It is interesting to note that attempts to strengthen the interface between SWCNTs and Cu by using Ni-coated SWCNTs result in an increase of the friction coefficient over that found for pure Cu [5]. Data corresponding to DWCNT/Cu composites [9] are also shown in Fig. 9 (triangle symbols). The friction coefficients found for the present S3 specimens are in line with what would be obtained for the same carbon content (8.4 vol.%) using DWCNTs. Interestingly, for S8 (17.1 vol.%), the friction coefficient at both 1 and 5 N are two times lower than for the DWCNT/Cu composite with a similar carbon content (16 vol.%). Moreover, despite a poor densification and a moderate microhardness, S20 (33.2 vol.%) shows a friction coefficient (0.21) which is about 3 times lower than the one (ca. 0.6–0.7) coherent when comparing with the DWCNT/Cu data (Fig. 9).

After wear tests were performed, the half-width (r) of the wear track was measured from white-light interferential rugosimetry images (Fig. 10) [21]. The wear tracks on Cu (Fig. 10a) and S20 (Fig. 10d) reveal important wear, contrasting with what is observed for S2 (Fig. 10b) and S8 (Fig. 10c). S3 (not shown) is similar to S2. The outer radius of the circular track (L') is equal to 4 mm. Dark areas in the images correspond to areas not accessible to the white-light beam and therefore are deeper than the areas colored in blue. This corresponds to the samples showing high wear volume, as discussed below, which is not unexpected.

The wear volume \(V_w\) (Fig. 11a and Table 2) was calculated for a half-ellipse track according to Eq. (1):

\[
V_w (\text{mm}^3) = \frac{1}{2} \cdot r \cdot d \cdot 2\pi L' \tag{1}
\]

with \(r = \) track half-width (mm), \(d = \) track depth (mm), \(L' = \) outer radius of the circular track (4 mm)
<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>Wear Loss</th>
<th>Microhardness</th>
<th>Wear Rate Normalized</th>
<th>Average</th>
<th>Contact (Vol%)</th>
<th>Microhardness</th>
<th>Wear Rate Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN steel, pin-on-disc</td>
<td>0.035 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
<tr>
<td>Steel, 0.4A N/m²</td>
<td>0.005 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
<tr>
<td>2014</td>
<td>0.005 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
<tr>
<td>2016</td>
<td>0.005 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
<tr>
<td>2018</td>
<td>0.005 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
<tr>
<td>2020</td>
<td>0.005 mm/m</td>
<td>83.40</td>
<td>0.983</td>
<td>0.23</td>
<td>3.00</td>
<td>0.10</td>
<td>0.035 mm/m</td>
</tr>
</tbody>
</table>

This work concludes that the wear loss and load-normalized wear rate were consistent with the same units (µm and mg/m, respectively) except where indicated. Microhardness, average friction coefficient, and wear rate for different CNTs on composite. Microhardness tests: Wicks method unless specified. Hertz: Load normalised wear loss and load normalised wear rate were consistent with the same units (µm and mg/m, respectively) except where indicated.
The load-normalized wear rate \((W - \text{Fig. 11b and Table 2})\) was calculated according to Eq. (2):

\[
W(\text{mm}^3/\text{m} \cdot \text{N}) = \frac{V_w}{L \cdot F}
\]

(2)

with \(L\) = sliding distance (25 m), \(F\) = applied normal load (10 N)

For both S2 and S3, \(V_w\) and \(W\) are about 10 times lower than for pure Cu. The minimum is reached for S8, with \(V_w\) and \(W\) about 20 times lower than for Cu. The values for S20 are higher than the values for S2–S8, reflecting the poor relative density of the specimen (i.e., the high residual porosity). Highly porous composites show a decrease of their wear resistance notably under high-load [4]. However, the present load is moderate (10 N) and thus the severe wear regime is not established, which could account for the fact that despite a much lower relative density for S20 than for Cu (73% vs 95%), the former sample shows less wear. Wear data from the present study and other works [3, 4, 6, 8] were converted into mass units (as opposed to volume units) for the sake of comparison, using the density of pure Cu (8.96 g/cm³) for the sake of simplicity, and all wear rates were load-normalized (Table 3).

The load-normalized wear rates are in a fairly wide range \((10^{-5}\) to \(10^{-1}\) mg/m·N), depending probably on the test conditions and wear regime (low, mild or severe) and on the density and polishing state of the specimens. A preliminary analysis of the worn surface of the steel ball found Cu and carbon transfer on the ball. FESEM observation of the worn surface of the S8 (Fig. 12a) revealed grooves, scars and plastic deformation of Cu, suggesting abrasive and adhesive wear, as observed by several authors [2, 6–8], reflecting that Cu grains wear out and that the subsurface is freshly exposed to the steel counterface, even for the moderate loads used in this study. A back-scattered electron image in chemical composition mode (Fig. 12b) of the same area reveals that the dark spots are CNT agglomerates.

Although a detailed investigation of the wear mechanisms as performed by other authors [2, 7, 8] is well beyond the scope of this work and warrants further studies, it was found interesting to study the wear tracks by Raman spectroscopy. Typical Raman spectra for S2, S8 and S20, inside and outside the worn surface, are shown in Fig. 13.

Outside the worn surface, a large background signal is observed, while background is considerably reduced inside the worn surface and the CNT spectral bands are more intense. To understand the difference in the background signal, the Raman Stokes and anti-Stokes spectra were recorded. The Stokes signal is proportional to \(n(o)+1\) (with \(n(o)\) the Bose–Einstein factor) while the anti-Stokes signal is proportional to \(n(o)\). The temperature can be roughly estimated through the relative intensity of the Stokes and anti-Stokes spectra using Eq. (3) [22]:

\[
T = \frac{n_O}{k_B \cdot \ln\left(\frac{I_S}{I_A}\right)}
\]

(3)

Temperatures of 400–500 K inside and outside the worn surface were deduced depending on location when considering the 200–400 cm⁻¹ spectral range. This temperature increase is due to the laser power deposited on the sample. The probe depth of visible light in copper is very small (a few nanometers). \(T(o)\) is constant in the considered spectral range indicating that the inelastic signal is a Raman signal. Moreover, no change in the background signal is observed when using 530 and 488 nm laser excitation. This shows that the background signal is not caused by luminescence but by Raman inelastic scattering with phonons and electrons. Thus, the higher background signal outside the track is attributed to the presence of a larger fraction of Cu. The smaller background signal and higher intensities of the Raman bands thus show that the fraction of CNTs is higher in the worn surface. A more detailed analysis was performed in the track for S2.

Indeed, DWCNTs have a characteristic B band line shape due to inner and outer tubes [23], even if the pristine signal of DWCNTs is less effective (the pristine \(A_D/A_G\) ratio of integrated intensities is lower than 20% with no significant D' band). Due to the huge background which saturates the spectrometer detector, an accurate analysis of the DWCNT Raman signal outside the track (Fig. 13a) is not possible. Interestingly, the line width and intensity of the G band in the worn surface (Fig. 13d) indicate that the CNTs are still in cylindrical form with some possible local deformation and are not transformed in disordered forms of sp² carbon. The G₁ band from the inner tube is located at 1581 cm⁻¹ and the G⁺ band from
Fig. 10 – White-light interferential rugosimetry images of the wear track for Cu (a), S2 (b) S8 (c) and S20 (d). There are two tracks for S8.

Fig. 11 – Wear volume (a) and load-normalized wear rate (b) versus carbon content.

Fig. 12 – Typical FESEM image of friction track for S8 (a) and back-scattered electron image in chemical composition mode of the same area (b).

the outer tube is located at 1592 cm\(^{-1}\) (Fig. 13d). The best spectral fitting was obtained when keeping fixed the G', G'', and D' bands line width and wave number and using the intensity of the three bands as free parameters. It was noticed that when using a single spectral band in the spectral range of the G band, the spectral shifts so obtained are inconsistent with spectral shifts of the D band. Using the 632 nm laser excitation, it is known that the D and D' bands intensity is
higher [24], which makes it easier to separate the D’ band from the G’ band. The line width and intensity of the G band in the worn surface (Fig. 13d) indicate that the DWCNTs are still present and are not transformed in disordered forms of sp² carbon. Raman maps (100 x 100 µm²) in the worn surface (Fig. 14) were recorded by scanning the laser spot over the surface.

It is found that the D band shifts are small (Fig. 14a), indicating residual stress variations. The wave number for the D band with pristine DWCNT is equal to 1324 cm⁻¹. However, we are not sure that the comparison is meaningful because, due to non-adiabatic effects, phonon can be coupled to electron leading to a renormalization of the excitation. The present data do not permit to fully understand the possible effects of strain, doping and disorder. Full ab initio calculations will be the subject of future work. The D band shift is correlated with the increase of the relative intensity of the D’ band (Fig. 14b). It is noted that the D and D’ bands can be explained by inter-valley and intra-valley double resonant processes, respectively [25]. The D’ band intensity is suspected to increase with the tube-tube interlayer interaction. This small increase of the D’ band can thus be attributed to a reduction of the interlayer spacing consistent with a weak residual stress. This is consistent with the lower G/D ratio indicating a larger number of defects (Fig. 14c). Some morphological changes consistent with FESEM images (Fig. 12) were also observed inside the track. These results are also consistent with pressure-induced DWCNT deformations, as discussed below. According to Caillier et al. [26], the first mechanical transition (ovalization), corresponding to a modification of the outer wall cross-section from circular to oval, could occur above 80 MPa for DWCNTs with an outer diameter of 4 nm. The second one (collapse), corresponding to the deformation of the outer wall into a peanut-like cross-section, could occur above 540 MPa. It was shown that in the case of DWCNTs, the supporting effect of the internal tube pushes the collapse pressure to higher values [27-30]. Due to the large number of defects, both the ovalisation and the collapse can be stabilized by bridging carbon bonds between the CNTs. These authors [26] note that the interaction with a substrate (here the matrix surface) should lead to a reduction of the ovalization onset. Moreover, stress deviatoric components, characteristic of the friction and wear experiments, should reduce the pressure values of cross-section modification as discussed by Merlen et al. [31]. The average and maximum Hertzian contact pressures sustained by the CNTs in the contact (Pₜₚₑₕₜ and Pₚₐₓₜ respectively) were calculated from the ball-radius (R), the applied load (F), the Young modulus (E) and Poisson coefficient (ν) of the counterparts, using Eqs. (4) and (5):

\[P_{\text{hertz}} = \frac{F}{\pi a^2} \]

\[P_{\text{max}} = \frac{3F}{2\pi a^2} \]

where

\[a = (3R'/2t')^{1/3} \]

The equivalent contact radius R’ and the equivalent Young modulus are defined as follows:

\[R' = R/2 \text{ (steel ball – plane contact)} \]

\[1/E' = (1 - \nu_{\text{steel}}^2)/E_{\text{steel}} + (1 - \nu_{\text{plane}}^2)/E_{\text{plane}} \]

where \(E_{\text{Cu}} = 100 \) GPa, \(\nu_{\text{Cu}} = 0.33 \), \(E_{\text{steel}} = 200 \) GPa, \(\nu_{\text{steel}} = 0.33 \).

The \(P_{\text{hertz}} \) and \(P_{\text{max}} \) values are equal to 330 and 495 MPa, respectively for a 1 N load and to 565 and 850 MPa, respectively for a 5 N load. The comparison of \(P_{\text{max}} \) with the values reported by Caillier et al. [26] supports the Raman spectroscopy findings, indicating that the DWCNTs in the worn surface still present a cylindrical shape, maybe cut but not in form of planar fragments that may have been formed by
nant mechanism. Bundle deformation could also be involved [37]. Such detailed analysis of the Raman spectra is not possible for 8 and 20 because the signal of the G band is due to a broad G band and a D' shoulder and the subtle changes observed with DWCNTs are difficult to track. However, the barriers for the relative axial sliding of adjacent walls, and hence the corresponding shear strengths, are reported to be negligible in MWCNTs [34]. A shear strength equal to only 0.04 MPa was measured for MWCNTs [35]. Thus, the 8WCNTs and 20WCNTs could be cut, producing shortened CNTs, and broken (exfoliated), thus contributing to the formation of a mechanically mixed carbonaceous layer, the nature of which is still unclear, into the contact. Cutting of CNTs under mechanical stress has been reported elsewhere [36]. This could limit the metal-metal contact and the seizing wear, as already suggested [7,8]. This could also result in a filling of the surface porosity, accounting for the low friction coefficient observed for samples of poor relative density (i.e. high volume residual porosity) and of low microhardness. As study on hollow, multilayered and highly faceted WS_2 nanoparticles about $80-120$ nm in diameter [38] revealed firstly that the presence of the hollow core gives the possibility for the external layers to first elastically deform before exfoliation and secondly that the presence of point defects in the particles facilitates easier exfoliation. Our results could imply that CNT deformation/collapse has a more positive influence than CNT exfoliation on friction and wear at least for the DWCNTs. It would thus be interesting to test higher-diameter DWCNTs. As noted above, it is not yet clear if exfoliation is occurring on a large scale for the 8WCNTs and 20WCNTs. Further experimental studies, as well as modeling, are warranted in order to determine the influence of CNT diameter and number of walls on mechanisms involving either CNT deformation/collapse or CNT exfoliation and in order to determine the most appropriate compromise for the design of materials well suited for particular friction or wear conditions.

4. Conclusions

CNT/Cu composites prepared using CNTs with a different number of walls (2, 3, 8 and 20) present a higher microhardness, a lower friction coefficient (by a factor of $3-4$) and lower wear and wear rate against steel (by a factor of $10-20$) compared to pure Cu. An in-depth Raman spectroscopy study of the DWCNT/Cu specimen outside and inside the wear track indicates that the DWCNTs still exist in the track, with some residual strains. After Cu grains wear out, the subsurface is freshly exposed to the contact and the DWCNTs therein are not transformed into carbon debris. A comparison of the maximum Hertzian contact pressures sustained in the contact with literature data points to a mechanism involving ovalization and collapse of the DWCNTs. Tests involving higher-diameter DWCNTs is the subject of future work. Increasing the number of walls increases the volume content, which hampers densification and thus decreases the microhardness. The composites prepared using DWCNTs, 3WCNTs and notably 8WCNTs shows particularly good results in friction and wear. Interestingly, the friction coefficients found for the present specimens are lower than those

Fig. 14 – Raman maps ($100 \times 100 \mu m^2$) within the friction area for sample $S2$. ω_D: wavenumber position of the D band (a), $\omega_D = 1324$ cm$^{-1}$ for pristine DWCNTs; $A_{D'}/A_D$: relative intensity of the D' band (b) using integrated intensity and A_G/A_D: relative intensity of the G band (c) using integrated intensity.
obtained for the same carbon content using only DWCNTs. CNTs with more walls and thus a higher diameter are less shear-resistant than DWCNTs and therefore it is probable that BWNTs and 20WCNTs are shortened and also broken (exfoliated) thus contributing to the formation of a mechanically mixed carbonaceous layer into the contact. This could result in a filling of the surface porosity, accounting for the low friction coefficient observed for samples of poor relative density and low microhardness. These results provide important guidelines for the design of self-lubricating CNT/Cu composites and future work directions include: (i) studies to determine the influence of CNT diameter and number of walls on mechanisms involving either CNT deformation/collapse or CNT exfoliation, (ii) an in-depth characterization of the microstructure, which notably depends on the number of CNTs (and therefore of a combination of number of walls and carbon loading) and (iii) a study of the transition into the severe-wear regime.

Acknowledgements

The FESEM observations were performed at TEMSCAN, the "Service Commun de Microscopie Electronique", Université Paul-Sabatier. The authors thank V. Fonceyro for assistance for the wear tests and G. Chevallier for assistance with the SPS, which was performed at the Plateforme Nationale CNRS de Frittage Flash (PNF², Toulouse). This work is performed within the framework of the Fondation de Recherche pour l'Aéronautique et l'Espace program (FRAE A04).

REFERENCES

