A note on the second order universality at the edge of Coulomb gases on the plane

Abstract : We consider in this note a class of two-dimensional determinantal Coulomb gases confined by a radial external field. As the number of particles tends to infinity, their empirical distribution tends to a probability measure supported in a centered ring of the complex plane. A quadratic confinement corresponds to the complex Ginibre Ensemble. In this case, it is also already known that the asymptotic fluctuation of the radial edge follows a Gumbel law. We establish in this note the universality of this edge behavior, beyond the quadratic case. The approach, inspired by earlier works of Kostlan and Rider, boils down to identities in law and to an instance of the Laplace method.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2014, 156 (2), pp.368-383. 〈10.1007/s10955-014-1007-x〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00868922
Contributeur : Djalil Chafaï <>
Soumis le : lundi 5 mai 2014 - 12:08:45
Dernière modification le : lundi 29 mai 2017 - 14:26:12
Document(s) archivé(s) le : mardi 5 août 2014 - 12:10:34

Fichiers

cougas.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Djalil Chafaï, Sandrine Péché. A note on the second order universality at the edge of Coulomb gases on the plane. Journal of Statistical Physics, Springer Verlag, 2014, 156 (2), pp.368-383. 〈10.1007/s10955-014-1007-x〉. 〈hal-00868922v2〉

Partager

Métriques

Consultations de
la notice

253

Téléchargements du document

107