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Fault detection and isolation, or fault diagnostic, of physical systems has been subject of several 

interesting works. Detecting and isolating faults may be convenient for some applications where the fault 

does not have severe consequences on humans as well as on the environment. However, in some 

situations, detecting and diagnosing faults may not be sufficient. In these cases, it is more interesting to 

anticipate the time of the fault, what is the purpose of prognostics. This latter activity aims at estimating the 

remaining useful life of systems by using three main approaches: data-driven prognostics, model-based 

prognostics and hybrid prognostics.  

Data-driven prognostics concerns the transformation of the raw monitoring data to relevant models or 

trends which are then used to continuously assess the health state of the system and predict its remaining 

useful life. This approach is easy to implement, but suffers from precision. In addition, the method is 

applied in most cases on single physical components (bearings, gears, belts, etc.) and thus the interaction 

between the components of the whole system is not addressed. Model-based prognostics (also called 

physics of failure prognostics) deals with analytical modelling of the system including its degradation. This 

approach gives more precise results, but it is difficult to apply on complex systems for which the 

construction of the behaviour and degradation models is not a trivial task. Finally, the hybrid approach 

combines both model-based and data-driven approaches by keeping their advantages.    

This paper presents a framework allowing the development of hybrid prognostics. The framework relies on 

two main phases: an offline phase and an online phase. The first phase concerns the construction of the 

nominal and degradation models, and the definition of the faults and performance thresholds needed to 

calculate the remaining useful life of the system. The second phase deals with the utilisation of the models 

and thresholds obtained in the first phase to detect the fault initiation, assess the current health state of the 

system, predict its future health state and calculate its remaining useful life. 

1. Introduction 

Fault Detection and Isolation (FDI), and fault prognostics of industrial systems are two necessary functions 

as they allow avoiding non-desirable situations and catastrophes. FDI can be applied on both abrupt and 

incipient faults. Several research and industrial works have been conducted in the domain. Interesting 

reviews related to FDI methods can be found in (Venkatasubramanian, 2005, Jardine et al. 2006, 

Samantaray and Ould Bouamama, 2008). The reported methods can be classified in two main categories: 

qualitative methods and quantitative methods. FDI can be used to do reconfiguration and accommodation 

and is suitable for systems where the fault does not have severe consequences. For example, detecting 

and isolating a fault on a valve controlling inflammable liquids may not avoid possible explosions. In this 

case, the fault is diagnosed a posteriori and thus is undergone. 

Contrary to FDI, which is done a posteriori after the appearance of the faults, prognostics aims at 

anticipating the time of a failure by predicting the Remaining Useful Life (RUL) of the system (AFNOR, 

2005). Prognostic results can then be used to take appropriate decisions on the system (change of set 

points, reduce the production load, stop the system, etc.). 

Fault prognostic methods can be grouped in three main approaches: data-driven prognostics, model-

based prognostics and hybrid prognostics. Interested readers can get more details on these three 



approaches through the reviews published by Jardine et al. (2006), Heng et al. (2009a), Sikorska et al. 

(2011) and Tobon-Mejia et al. (2012).  

Data-driven prognostics is based on the utilization of monitoring data to build behaviour models including 

the degradation evolution, which are then used to predict the RUL. Thus, Medjaher et al. (2012) proposed 

a method to estimate the RUL of critical components by using mixture of Gaussians hidden Markov 

models. Heng et al. (2009b) suggested a data-driven prognostic method based on the utilization of a feed-

forward neural network. The training targets of this latter model are asset survival probabilities estimated 

using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density 

function (PDF) estimator. Finally, Dong and He (2007) published a method based on a segmental hidden 

semi-markov model (hsmm) to do diagnostics and prognostics.  

Model-based prognostics, also called physics of failure prognostics, uses models generated from 

fundamental laws of physics to calculate the RUL as suggested by Luo et al. (2003) and Chelidze and 

Cusumano (2004).  

Finally, hybrid prognostics combines both previous approaches and can be considered as the one which 

gives the trade-off in terms of precision, applicability and complexity. Furthermore, the hybrid approach 

can be applied on physical systems rather than single physical components. This approach is for example 

easy to implement on mechatronic systems for which the construction of the behaviour and degradation 

models is possible. For this class of systems, the hybrid approach allows the estimation of the RUL of the 

whole system, this information can then be used to take appropriate decisions (reconfiguration of the 

mission, fault accommodation, etc.). 

This paper presents a framework for the development of hybrid prognostics, which can be applied on 

multi-physical systems, particularly the mechatronic systems.  The proposed framework is based on two 

phases: an offline phase and an online phase. The first phase concerns the construction of the nominal 

and degradation models of the systems. This phase concerns also the definition of the faults’ thresholds 

and the system’s performance limits needed to calculate its remaining useful life. The second phase uses 

the models and the thresholds obtained during the first phase to detect the fault initiation, assess the 

current health state of the system, predict its future health state and calculate its remaining useful life. 

The paper is organized as follows. After the introduction, section 2 presents a brief comparison between 

the model-based and the data-driven approaches to introduce the motivation behind the proposition of a 

framework for a hybrid approach. Section 3 deals with the presentation of the proposed framework and 

finally, section 4 concludes the paper. 

2. Model-based prognostics vs data-driven prognostics 

Fault prognostics can be done according to three main approaches: data-driven prognostics, model-based 

(also called physics of failure) prognostics and hybrid prognostics. The first approach uses the data 

provided by sensors (monitoring data) and which capture the degradation evolution of the system. The 

data are then pre-processed to extract features which are used to learn models for health assessment and 

RUL prediction, as proposed by Heng et al. (2009b) and Dong and He (2007). Examples of models are 

neural networks, regressions, hidden Markov models, support vector regression, etc. The second 

approach requires a deep understanding of the physical phenomena of the system, including the 

degradation evolution. This approach uses physical laws to build the global model of the system, which is 

then used for simulations and predictions to calculate the RUL. In this approach Luo et al. (2003) 

developed a model-based prognostic method using a mathematical model including the degradation of a 

car suspension. Similarly, Chelidze and Cusumano (2004) proposed a method based on a dynamical 

systems approach applied to the problem of damage evolution in a two-well magneto-mechanical 

oscillator. Note that in model-based prognostics the construction of the model supposes the availability of 

a degradation model. Examples of degradation models are those related to crack by fatigue, corrosion and 

wear. A summary of the advantages and drawbacks of each approach is given in Figure 1. As mentioned 

in this figure, the data-driven approach gives less precise results than the model-based approach. The 

other drawback of data-driven prognostics is the variability of the data used to learn the degradation 

models. Indeed, to implement this approach, one needs to do several experiments to acquire data 

representing the behaviour of the degradation. But, in practice the data acquired for example for bearings 

having the same reference and degraded by using same operating conditions will vary. Thus, the model 

learned from these data is in fact a “mean” model and the RUL predictions obtained by its utilization will 

suffer from precision (the precision of the results depends strongly on the variability of the data). 



 

Figure 1: Data-driven prognostics vs Model-based prognostics 

However, in terms of applicability, cost and simplicity of implementation, the practitioners prefer the data-

driven methods. Indeed, in practice, the model-based methods are not easy to generalize on industrial 

systems due particularly to the difficulty to build the physical model of the systems including their 

degradation phenomena. The model-based methods can be applied on systems for which the models are 

known or for a class of systems such as the mechatronic ones.  But even for these systems, it is 

necessary to do some experiments in order to catch the behaviour of the degradation which takes place in 

the system. Thus the implementation of a hybrid prognostics becomes a reality and allows taking benefit 

from both model-based and data-driven approaches.  

3. Framework for a hybrid prognostics 

The framework proposed in this paper applies on systems for which the construction of physical (or 

mathematical) behaviour models is possible. Also, the framework supposes that the system under study 

can be monitored by appropriate sensors in order to track the evolution of the degradation of its 

components. Furthermore, the proposed framework is system-oriented rather than component-oriented. 

This means that the whole system is considered for RUL prediction. For this purpose, we suppose that the 

variations (or drifts) in the parameters of the system are propagated to the whole system and are taken 

into account in the global dynamic model for simulations, predictions and RUL calculation.  

The hybrid prognostics proposed in this framework is done in two main phases, as shown in Figure 2: an 

offline phase to build the dynamic model of the system and learn its degradation models, and an online 

phase (or exploitation phase) where the learned models are used to detect the initiation of the degradation 

and predict the RUL of the system. 

The first phase concerns the construction of the nominal behaviour model of the physical system and the 

degradation models of its components. This phase concerns also the definition of the faults’ and system’s 

performance thresholds. The performance of the system can be defined by one of the following aspect: 

degree of precision, stability margins, magnitude of the faults, etc.  

The second phase deals with the exploitation of the models learned or constructed previously to 

continuously assess the health state of the system, predict its future state and calculate its RUL. Note that 

in this framework, we suppose that the calculation of the RUL is triggered by the detection of the fault 

initiation. 

 

Data-driven prognostics 

• Advantages 

– Simplicity of implementation 

– Low cost 

• Drawbacks 

– Need of  experimental data that represent the 
degradation phenomena 

– Variability of test results even for a same type of 
component under same operating conditions 

– Less precision 

– Difficult to take into account the variable 
operating conditions 

– Component-oriented approach rather than 
system-oriented approach 

– Difficult to define the failure thresholds 

Model-based prognostics

• Advantages 

– High precision 

– Deterministic approach  

– System-oriented approach: propagation of the 
failure in the whole system 

– The dynamic of the states can be estimated 
and predicted at each time 

– The failure thresholds can be defined 
according to the system�s performance 
(stability, precision, � ) 

– Possibility to simulate several degradations 
(drifts on the parameters)  

• Drawbacks 

– Need of degradation model 

– High cost of implementation 

– Difficult to apply on complex systems 



 

Figure 2: The detailed process of the proposed prognostic framework 

Details on the steps of the two phases of the hybrid prognostic framework are given hereafter.  

As stated previously, the first phase includes three main steps: the construction of the nominal behaviour 

model of the system, the generation of its degradation model and the definition of the thresholds (faults’ 

thresholds and system’s performance thresholds). The nominal model consists of a set of mathematical 

equations, which can be obtained by using the fundamental laws of physics or appropriate modelling 

formalisms and techniques such as bond graphs, which are well described in the following books (Karnopp 

et al., 2006) and (Samantaray and Ould Bouamama, 2008). The output of the nominal model is compared 

to the measurements acquired on the real system to generate residuals which are then used to build (or 

extract) the degradation models of the system’s components.   

A residual is a numerical evaluation of an Analytical Redundancy Relations (ARR) obtained from an over-

determined system of equations (number of equations is greater than the number of variables) (Ould 

Bouamama et al., 2006). An ARR can represent a mass balance, energy balance, etc., and contains only 

known variables (inputs, outputs and parameters of the system). An ARR is given by the following 

expression: ( ): 0ARR KΦ =           (1) 

Where K is a set of known variables or parameters of the system. A residual r(t) is a numerical evaluation 

of an ARR:  ( ) ( )r t K= Φ           (2) 

Theoretically, the residuals should be equal to zero in the absence of faults and different from zero in the 

presence of faults. However, in practice and due to modelling and measurement noises, the value of each 

residual remains within a given threshold when there is no fault and exceeds the threshold otherwise.  

In practice, several faults can occur simultaneously on the system. However, in this framework, only the 

single fault case is considered (several faults can’t occur at a same time). This assumption is made to 

simplify the approach and proof its applicability. Other assumptions considered for the generation of the 

degradation models are given below.  

1. Only incipient faults are considered (no abrupt faults). This assumption is due to the fact that this 

paper deals with fault prognostics. 

2. A fault is a consequence of a change in a physical parameter of the system. Thus, any change in 

the physical parameter will affect the residuals in which this parameter appears.  

3. The faults in the sensors are not considered. We suppose that the sensors are fault free and 

provide correct measurements.  

4. The faults in the actuators are not taken into account.  
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Let Į1, Į2, Į3 … Įn be the set of physical parameters of the system which are involved in its dynamic model 

and in the corresponding residuals. The residual equation given in Eq.2 can then be re-written as follows:  ( ) ( )1 2 3
,  ,  ,  ... 

n
r t α α α α= Φ           (3) 

Then, because only a single degradation can occur at a same time, its evolution can be determined by 

inverting Eq.3. For example, in the case where the degradation corresponds to the variation of the 

parameter Į1, its evolution can be calculated by the following equation: ( )( )1

1 2 3
,  ,  ,  ... 

n
r tα α α α−= Φ           (4) 

Note that during the offline phase, several experiments should be carried out to extract the degradation 

model (represented by the corresponding parameters) of each component of the physical system.  

The second phase of the proposed approach concerns the exploitation of the models and knowledge 

obtained in the first phase to assess the health state of the system and calculate its RUL. During this 

phase, the output of the nominal behaviour of the system is continuously compared to the measurements 

provided by the sensors to detect whether the fault starts to occur or not. If a fault initiation is detected, the 

process of health assessment and RUL calculation is launched. The detection of a fault initiation is done 

by continuously evaluating the residuals and by analyzing the corresponding binary fault signature matrix 

formed by the residuals and given in table 1. In this matrix, each cell “i” contains “1” if the parameter Įi is 

present in the residual “i” and “0” otherwise.   

Table 1:  Example of a binary fault signature matrix 

 Į1 Į2 Į3 … Įn 

Residual 1 1 1 0 … 0 

Residual 2 0 0 1 … 0 

… 0 1 0 … 0 

… 0 0 0 … 0 

Residual n 1 0 1 … 1 

 

As depicted in Figure 2, the assessment of the system’s health state is done by using its global model 

composed by the nominal model, the degradation model and the result of the fault detection step. Indeed, 

once the current fault initiation is detected, its corresponding degradation model, obtained in the offline 

phase, is replaced in the nominal model. Then, the updated whole model (the nominal model including the 

degradation model) is used to do predictions and calculate the RUL of the system. The RUL is calculated 

according to a defined performance, which can be the precision of the system, its stability, etc. (Figure 3).  

 

 

Figure 3: RUL calculation according to a given system�s performance 

4. Conclusion 

A framework for a hybrid prognostics, with particular application to mechatronic systems is proposed in this 

paper. The framework is a system-oriented approach rather than a component-oriented. It has thus the 
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interest of combining both model-based and data-driven approaches to take benefits from their 

advantages. The framework relies on two phases. The first phase concerns the generation of the dynamic 

and the degradation models and also the definition of the thresholds needed for the RUL calculation. The 

second phase deals with the exploitation of the knowledge gathered during the first phase to detect the 

initiation of the degradation, assess the health state of the system and predict its RUL. The predicted RUL 

can then be used to take appropriate decisions on the system. These decisions can be a reconfiguration of 

the mission to delay the fault, a preparation of the maintenance resources to repair the system and extend 

its utilization, the accommodation of the fault, etc.  

The presented framework can be easily applied on mechatronic systems for which the construction of 

dynamic behavior models is possible. Furthermore, for this category of systems, the generation of the 

degradation models is also feasible by using the concept of residuals and by respecting the assumptions 

made in this contribution. Finally, the implementation of the framework on a real mechatronic system 

would proof its applicability and its effectiveness.   
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