V. Dikhtyar and E. Jerby, Fireball Ejection from a Molten Hot Spot to Air by Localized Microwaves, Physical Review Letters, vol.96, issue.4, 2006.
DOI : 10.1103/PhysRevLett.96.045002

E. Jerby and V. Dikhtyar, Fireball ejection from a molten hotspot in solid to air by a reversed microwave drill mechanism, Microwave Discharges: Fundamentals and Applications; Zvenigorod, Russia, pp.11-15, 2006.

Y. A. Lebedev, I. L. Epstein, A. V. Tatarinov, and V. A. Shakhatov, Electrode microwave discharge and plasma self-organization, Journal of Physics: Conference Series, vol.44, pp.30-39, 2006.
DOI : 10.1088/1742-6596/44/1/004

Y. Gu, J. Lu, T. Grotjohn, T. Schuelke, and J. Asmussen, Microwave plasma reactor design for high pressure and high power density diamond synthesis, Diamond and Related Materials, vol.24, pp.210-214, 2012.
DOI : 10.1016/j.diamond.2012.01.026

Y. H. Ohtsuki and H. Ofuruton, Plasma fireballs formed by microwave interference in air, Nature, vol.350, issue.6314, pp.139-141, 1991.
DOI : 10.1038/350139a0

H. Ofuruton, N. Kondo, M. Kamogawa, M. Aoki, and Y. H. Ohtsuki, Experimental conditions for ball lightning creation by using air gap discharge embedded in a microwave field, Journal of Geophysical Research: Atmospheres, vol.224, issue.D12, pp.12367-12369, 2001.
DOI : 10.1029/2000JD900726

K. D. Stephan, Microwave generation of stable atmospheric-pressure fireballs in air, Physical Review E, vol.74, issue.5, 2006.
DOI : 10.1103/PhysRevE.74.055401

J. Abrahamson, Ball Lightning, 2002.

A. I. Egorov, S. I. Stepanov, and G. Shabanov, Laboratory demonstration of ball lightning, Physics-Uspekhi, vol.47, issue.1, pp.99-101, 2004.
DOI : 10.1070/PU2004v047n01ABEH001691

S. K. Lazarouk, A. V. Dolbik, V. A. Labunov, and V. E. Borisenko, Spherical plasmoids formed upon the combustion and explosion of nanostructured hydrated silicon, JETP Letters, vol.84, issue.11, pp.581-584, 2007.
DOI : 10.1134/S0021364006230020

G. S. Paiva, A. C. Pavao, E. A. De-vasconcelos, O. Mendes, and E. F. Da-silva, Production of Ball-Lightning-Like Luminous Balls by Electrical Discharges in Silicon, Physical Review Letters, vol.98, issue.4, pp.10-1103, 2007.
DOI : 10.1103/PhysRevLett.98.048501

A. Versteegh, K. Behringer, U. Fantz, G. Fussmann, B. Juttner et al., Long-living plasmoids from an atmospheric water discharge, Plasma Sources Science and Technology, vol.17, issue.2, pp.10-1088, 2008.
DOI : 10.1088/0963-0252/17/2/024014

M. Sztucki, D. Ashkenazi, and Z. Barkay, Nanoparticle plasma ejected directly from solid copper by localized microwaves, Appl. Phys. Lett, vol.95, pp.10-1063, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00662650

J. B. Mitchell, J. L. Legarrec, M. Sztucki, T. Narayanan, V. Dikhtyar et al., Evidence for Nanoparticles in Microwave-Generated Fireballs Observed by Synchrotron X-Ray Scattering, Physical Review Letters, vol.100, issue.6, pp.10-1103, 2008.
DOI : 10.1103/PhysRevLett.100.065001

URL : https://hal.archives-ouvertes.fr/hal-00671064

E. Jerby, Y. Meir, Z. Barkay, D. Ashkenazi, J. B. Mitchell et al., Experimental characterization of silica plasmoids excited by localized microwaves in air atmosphere, Microwave Discharges, Fundamentals and Applications, Process MD-8, pp.10-14, 2012.

P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, 2002.

P. K. Shukla, Experiments and Theory of Dusty Plasmas, AIP Conference Proceedings. Garmisch-Partenkirchen, pp.11-23, 2011.
DOI : 10.1063/1.3659734

J. H. Kim, Y. C. Hond, and H. S. Uhm, Synthesis of oxide nanoparticles via microwave plasma decomposition of initial materials, Surface and Coatings Technology, vol.201, issue.9-11, pp.5114-5120, 2007.
DOI : 10.1016/j.surfcoat.2006.07.224

R. Herskowits, P. Livshits, S. Stepanov, O. Aktushev, S. Ruschin et al., Silicon heating by a microwave-drill applicator with optical thermometry, Semiconductor Science and Technology, vol.22, issue.8, pp.863-869, 2007.
DOI : 10.1088/0268-1242/22/8/006

E. Jerby, V. Dikhtyar, O. Actushev, and U. Grosglick, The Microwave Drill, Science, vol.298, issue.5593, pp.587-589, 2002.
DOI : 10.1126/science.1077062

E. Jerby, O. Aktushev, and V. Dikhtyar, Theoretical analysis of the microwave-drill near-field localized heating effect, Journal of Applied Physics, vol.97, issue.3, pp.10-1063, 2005.
DOI : 10.1063/1.1836011

E. Lozneanu and M. Sanduloviciu, Self-organization scenario grounded on new experimental results, Chaos, Solitons & Fractals, vol.40, issue.4, pp.1845-1857, 2009.
DOI : 10.1016/j.chaos.2007.09.067

O. Meshcheryakov, Ball Lightning???Aerosol Electrochemical Power Source or A Cloud of Batteries, Nanoscale Research Letters, vol.98, issue.7, pp.319-330, 2007.
DOI : 10.1007/s11671-007-9068-2

O. Meshcheryakov, Charge-Dipole Acceleration of Polar Gas Molecules towards Charged Nanoparticles: Involvement in Powerful Charge-Induced Catalysis of Heterophase Chemical Reactions and Ball Lightning Phenomenon, Journal of Nanomaterials, vol.106, issue.12, 2010.
DOI : 10.1007/BF02802063

R. E. Collin, Foundations for Microwave Engineering, 2001.
DOI : 10.1109/9780470544662

Y. Meir and E. Jerby, Breakdown spectroscopy induced by localized microwaves for material identification. Microwave Opt, Technol. Lett, vol.53, pp.2281-2283, 2011.

J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation (Version 1.5). SRI International

P. Bruggeman, D. C. Schram, M. G. Kong, and C. Leys, Is the rotational temperature of OH(A?X) for discharges in and in contact with liquids a good diagnostic for determining the gas temperature? Plasma Process. Polym, pp.751-762, 2009.

Z. Machala, M. Janda, K. Hensel, I. Jedlovsky, L. Lestinska et al., Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications, Journal of Molecular Spectroscopy, vol.243, issue.2, pp.194-201, 2007.
DOI : 10.1016/j.jms.2007.03.001

C. E. Nwankire, V. J. Law, A. Nindrayog, B. Twomey, K. Niemi et al., Electrical, Thermal and Optical Diagnostics of an Atmospheric Plasma Jet System, Plasma Chemistry and Plasma Processing, vol.19, issue.5, pp.537-552, 2010.
DOI : 10.1007/s11090-010-9236-5

S. Y. Moon, D. B. Kim, B. Gweon, and W. Choe, Temperature measurement of an atmospheric pressure arc discharge plasma jet using the diatomic CN (B??+2-X??+2, violet system) molecular spectra, Journal of Applied Physics, vol.105, issue.5, pp.10-1063, 2009.
DOI : 10.1063/1.3087537

I. Abdullin, . Sh, A. N. Bykanov, I. G. Gafarov, O. E. Ibragimov et al., Spectral diagnostics of inductively coupled RF discharge plasma, High Energy Chemistry, vol.46, issue.4, pp.271-275
DOI : 10.1134/S0018143912040029

H. K. Chelliah, P. C. Wanigarathne, A. M. Lentati, R. H. Krauss, and G. S. Fallon, Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames, Combustion and Flame, vol.134, issue.3, pp.261-272, 2003.
DOI : 10.1016/S0010-2180(03)00092-0

G. Beaucage, H. K. Kammler, and S. E. Pratsinis, Particle size distributions from small-angle scattering using global scattering functions, Journal of Applied Crystallography, vol.37, issue.4, pp.523-535, 2004.
DOI : 10.1107/S0021889804008969

B. R. Pauw, J. S. Pedersen, S. Tardif, M. Takata, and B. B. Iversen, Improvements and considerations for size distribution retrieval from small-angle scattering data by Monte Carlo methods, Journal of Applied Crystallography, vol.41, issue.2, pp.365-371, 2013.
DOI : 10.1107/S0021889813001295/ce5145sup1.pdf

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627408

F. V. Mikulec, J. D. Kirtland, and M. J. Sailor, Explosive Nanocrystalline Porous Silicon and Its Use in Atomic Emission Spectroscopy, Advanced Materials, vol.15, issue.1, pp.38-41, 2002.
DOI : 10.1002/1521-4095(20020104)14:1<38::AID-ADMA38>3.0.CO;2-Z

L. Sicard, O. Spalla, F. Ne, O. Tache, and P. Barboux, Dissolution of Oxide Glasses:??? A Process Driven by Surface Generation, The Journal of Physical Chemistry C, vol.112, issue.5, pp.1594-1603, 2008.
DOI : 10.1021/jp075268s

H. Y. Peng, N. Wang, W. S. Shi, Y. F. Zhang, C. S. Lee et al., Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires, Journal of Applied Physics, vol.89, issue.1, pp.727-731, 2001.
DOI : 10.1063/1.1328786

X. H. Sun, N. B. Wong, C. P. Li, S. T. Lee, and T. K. Sham, Chainlike silicon nanowires: Morphology, electronic structure and luminescence studies, Journal of Applied Physics, vol.96, issue.6, pp.3447-3451, 2004.
DOI : 10.1063/1.1782958

URL : http://hdl.handle.net/1885/16246

S. Y. Xiang, G. D. Biao, and W. Jian, Theoretical analysis of microwave attenuation constant of weakly ionized dusty plasma, Chin. J. Geophys, vol.50, pp.877-883, 2007.

H. Griem, Validity of Local Thermal Equilibrium in Plasma Spectroscopy, Physical Review, vol.131, issue.3, pp.1170-1176, 1963.
DOI : 10.1103/PhysRev.131.1170

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.61, issue.1, pp.2-30, 2006.
DOI : 10.1016/j.sab.2005.10.003

J. Abrahamson and J. Dinniss, Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil, Nature, vol.97, issue.6769, pp.519-521, 2000.
DOI : 10.1038/35000525

J. Abrahamson, Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.360, issue.1790, pp.61-88, 2002.
DOI : 10.1098/rsta.2001.0919

V. Bychkov, Artificial and Natural Fireballs as Combustion Objects, IEEE Transactions on Plasma Science, vol.38, issue.12, pp.3289-3290, 2010.
DOI : 10.1109/TPS.2010.2051167

P. L. Kapitza, Free plasma filament in a high frequency field at high pressure. Sov. Phys, p.973, 1970.

Y. Meir and E. Jerby, Thermite powder ignition by localized microwaves, Combustion and Flame, vol.159, issue.7, pp.2474-2479, 2012.
DOI : 10.1016/j.combustflame.2012.02.015

Z. Ren, X. Zhang, J. Zhang, X. Li, and B. Yang, Building cavities in microspheres and nanospheres, Nanotechnology, vol.20, issue.6, pp.10-1088, 2009.
DOI : 10.1088/0957-4484/20/6/065305