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Abstract. This paper is a summary of the theory of discrete embeddings introduced in [5].

A discrete embedding is an algebraic procedure associating a numerical scheme to a given

ordinary differential equation. Lagrangian systems possess a variational structure called

Lagrangian structure. We are specially interested in the conservation at the discrete level

of this Lagrangian structure by discrete embeddings. We then replace in this framework

the variational integrators developed in [10, Chapter VI.6] and in [12]. Finally, we extend

the notion of discrete embeddings and variational integrators to fractional Lagrangian

systems.
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Introduction

The theoretical framework of embeddings of dynamical systems is initiated by Cresson and

Darses in [7]. A review of the subject is given in [6]. An embedding of an ordinary or partial

differential equation is a way to give a sense to this equation over a larger set of solutions.

As an example, the stochastic embedding developed in [7] allows to give a meaning of a

differential equation over the set of stochastic processes.

We are specially interested in Lagrangian systems covering a large set of dynamical be-

haviors and widely used in classical mechanics, [2]. These systems possess a variational

structure called Lagrangian structure, i.e. their solutions correspond to critical points of La-

grangian functionals, [2, p.57]. The Lagrangian structure is intrinsic and induces strong

constraints on the qualitative behavior of the solutions. The conservation of this structure by

embedding seems then important. In [7], the authors construct stochastic embeddings which

preserve the variational structure of Lagrangian systems, i.e. the generalized solutions are

also characterized as critical points of generalized Lagrangian functionals.

This paper is a summary of the theory of discrete embeddings introduced in [5] where,

as in [7], we are interested in the conservation of the Lagrangian structure of Lagrangian

systems. We then refer to [5] for more details and for the proof of some results.

A discrete embedding is an algebraic procedure associating a numerical scheme to a given

differential equation, in particular to a given Lagrangian system. On the other hand, defining

a discrete embedding induces a discretization of the Lagrangian functional associated and we
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can develop a discrete calculus of variations on this one: this leads to a numerical scheme

called variational integrator. The variational integrators, developed in [10, Chapter VI.6]

and [12], are then numerical schemes for Lagrangian systems preserving their variational

structures.

Thus, we propose the following definition: a discrete embedding is said to be coherent

if the two discrete versions obtained (the direct one and the variational integrator) of a La-

grangian system coincide. Hence, a coherent discrete embedding conserves at the discrete

level the Lagrangian structure of a Lagrangian system.

Recently, many studies have been devoted to fractional Lagrangian systems, [1], [7].

They arise for example in fractional optimal control theory, [9]. They are difficult to solve

explicitly, it is then interesting to develop efficient numerical schemes to such systems.

Some preliminary results on fractional discrete operators and on the discretization of frac-

tional Euler-Lagrange equations have been discussed by several authors, [3], [4], [8]. In this

paper, we extend the discrete embedding point of view, the corresponding problem of coher-

ence and the associated notion of variational integrator to the fractional case.

The paper is organized as follows. In Section 1, we define the notion of discrete em-

beddings of differential equations. Section 2 recalls definitions and results concerning La-

grangian systems and we apply the previous theory of discrete embeddings to Lagrangian

systems. Then, we recall the strategy of variational integrators of Lagrangian systems in

the framework of discrete embeddings and we finally present the problem of coherence of

a discrete embedding. Section 3 is devoted to the extension of discrete embeddings to the

fractional case.

§1. Notion of discrete embeddings

In this paper, we consider classical and fractional differential systems in R
d where d ∈ N∗ is

the dimension. The trajectories of these systems are curves q in C0([a, b],Rd) where a < b

are two reals. For smooth enough functions q, we denote q̇ = dq/dt and q̈ = d2q/dt2.

1.1. Discrete embeddings

Definition 1. Defining a discrete embedding means giving a discrete version of the following

elements: the curves q ∈ C0([a, b],Rd), the derivative operator d/dt and the functionals

a : C0([a, b],Rd) −→ R. More precisely, it means giving:

• an application q 7−→ qh where qh ∈ (Rd)m1 ,

• a discrete operator ∆ : (Rd)m1 −→ (Rd)m2 discretizing the differential operator d/dt,

• an application a 7−→ ah where ah : (Rd)m1 −→ R,

where m1,m2 ∈ N
∗.

In order to illustrate Definition 1, we define backward and forward finite differences embed-

dings. For all the rest of the paper, we fix σ = ± and N ∈ N
∗. We denote by h = (b − a)/N
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the step size of the discretization and τ = (tk)k=0,...,N the following partition of [a, b]:

∀k = 0, ...,N, tk = a + kh.

Definition 2 (case σ = −). We call backward finite differences embedding denoted by FDE−

the definition of the following elements: the application

disc : C0([a, b],Rd) −→
(

R
d
)N+1

q 7−→ (q(tk))k=0,...,N

,

and the discrete operator

∆− :
(

R
d
)N+1

−→
(

R
d
)N

Q = (Qk)k=0,...,N 7−→
(

Qk−Qk−1

h

)

k=1,..,N
.

Definition 3 (case σ = +). We call forward finite differences embedding denoted by FDE+

the definition of the following elements: the application disc and the discrete operator

∆+ :
(

R
d
)N+1

−→
(

R
d
)N

Q = (Qk)k=0,...,N 7−→
(

Qk−Qk+1

h

)

k=0,..,N−1
.

Let us notice that the discrete analogous of d/dt in FDEσ is then −σ∆σ. We use these

notations in order to be uniform with the fractional notations (see Section 3).

1.2. Direct discrete embeddings

Defining a discrete embedding allows us to define a direct discrete version of a given differ-

ential equation:

Definition 4. Let be fixed a discrete embedding as defined in Definition 1 and let (E) be an

ordinary differential equation of unknown q ∈ C0([a, b],Rd) given by:

O(q) = 0, (E)

where O is a differential operator shaped as O =
∑

i fi(·)(d/dt)i◦gi(·) where fi, gi are functions.

Then, the direct discrete embedding of (E) is (Eh) the system of equations of unknown qh ∈

(Rd)m1 given by:

Oh(qh) = 0, (Eh)

where Oh is the discretized operator of O given by Oh
=

∑

i fi(·)∆
i ◦ gi(·).

As an example, we consider the Newton’s equation with friction of unknown q ∈ C0([a, b],Rd)

given by:

∀t ∈ [a, b], q̈(t) + q̇(t) + q(t) = 0. (NE)

Then, the direct discrete embedding of (NE) with respect to FDE− is (NEh) the system of

equations of unknown Q ∈ (Rd)N+1 given by:

∀k = 2, ...,N,
Qk − 2Qk−1 + Qk−2

h2
+

Qk − Qk−1

h
+ Qk = 0. (NEh)
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The direct discrete embedding of an ordinary differential equation is strongly dependent on

the form of the differential operator O (and not on its equivalence class). The process O −→

Oh is not an application. For example, the discretized operator Oh of O = d/dt ◦ sin(·) =

d/dt(·) cos(·) is different depending on the writing of O.

1.3. Direct discrete embeddings of Lagrangian systems

We recall now classical definitions and theorems concerning Lagrangian systems. We refer

to [2] for a detailed study and for a detailed proof of Theorem 1.

Definition 5. A Lagrangian functional is an application defined by:

L : C2([a, b],Rd) −→ R

q 7−→

∫ b

a

L(q(t), q̇(t), t)dt

where L is a Lagrangian i.e. a C2 application defined by:

L : R
d × Rd × [a, b] −→ R

(x, v, t) 7−→ L(x, v, t).

An extremal (or critical point) of a Lagrangian functional L is a trajectory q such that

DL(q)(w) = 0 for any variations w (i.e. w ∈ C2([a, b],Rd), w(a) = w(b) = 0), where

DL(q)(w) is the differential of L in q along the direction w. Extremals of a Lagrangian

functional can be characterized as solution of a differential equation of order 2:

Theorem 1 (Variational principle). Let L be a Lagrangian functional associated to the La-

grangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of L if and only if q is solution

of the Euler-Lagrange equation given by:

∀t ∈]a, b[,
∂L

∂x
(q(t), q̇(t), t) −

d

dt

(

∂L

∂v
(q(t), q̇(t), t)

)

= 0. (EL)

We now apply definitions of Section 1 on Lagrangian systems.

Proposition 1. Let L be a Lagrangian and let (EL) be its associated Euler-Lagrange equation.

The direct discrete embedding of (EL) with respect to FDEσ is given by:

∂L

∂x
(Q,−σ∆σQ, τ) + σ∆σ

(

∂L

∂v
(Q,−σ∆σQ, τ)

)

= 0, Q ∈ (Rd)N+1. (1)

We refer to [5] for a concrete example illustrating Theorem 1 and Proposition 1.

§2. Discrete embeddings and variational integrators of Lagrangian

systems

A direct discrete embedding is only based on the form of the differential operator which is

dependent of the coordinates system and consequently is not intrinsic. Then, a natural ques-

tion arises: what can be said about the conservation of intrinsic properties of a differential
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equation by a discrete embedding? This paper is devoted to the conservation by discrete

embeddings of the Lagrangian structure of Lagrangian systems. More precisely, Theorem

1 shows that (EL) possesses a variational structure: the direct discrete embedding being a

procedure mainly algebraic, does (1) possess a variational structure too? It is not always

true.

However, a variational integrator, developed in [10, Chapter VI.6] and in [12], is a dis-

cretization of a Lagrangian system preserving its variational structure. Indeed, it is based

on the discrete analogous of the variational principle on a discrete version of the associated

Lagrangian functional.

In our framework, the discretization of the Lagrangian functional is induced by giving a

discrete embedding.

2.1. Discrete Lagrangian functionals and discrete calculus of variations

In this subsection, as an example, we are going to work exclusively in the framework of

FDEσ. Giving FDEσ induces the discretization of a Lagrangian functional as long as

a quadrature formula is fixed in order to approximate integrals. We choose the usual σ-

quadrature formula of Gauss: for a continuous function f on [a, b], we discretize
∫ b

a
f (t)dt

by h
∑

k∈Iσ
f (tk) where I+ = {0, ...,N − 1} and I− = {1, ...,N}.

This process defines the Gauss finite differences embedding denoted by Gauss-FDEσ. Such

a choice allows to keep at the discrete level the following fundamental result:

∫ b

a

q̇(t)dt = q(b) − q(a)
Gauss-FDEσ

// h
∑

k∈Iσ

(−σ∆σQ)k = QN − Q0.

Proposition 2. Let L be a Lagrangian functional associated to a Lagrangian L. The discrete

Lagrangian functional associated to L with respect to Gauss-FDEσ is given by:

Lσ
h

:
(

R
d
)N+1

−→ R

Q = (Qk)k=0,...,N 7−→ h
∑

k∈Iσ

L(Qk, (−σ∆σQ)k, tk).

Once the discrete version of the Lagrangian functional is formulated, we can develop a

discrete calculus of variations on it: this leads to a variational integrator. Let L be a La-

grangian functional and Lσ
h

the discrete Lagrangian functional associated with respect to

Gauss-FDEσ. A discrete extremal (or discrete critical point) of Lσ
h

is an element Q in

(Rd)N+1 such that DLσ
h

(Q)(W) = 0 for any discrete variations W (i.e. W ∈ (Rd)N+1,

W0 = WN = 0). Discrete extremals of Lσ
h

can be characterized as solution of a system

of equations:

Theorem 2 (Discrete variational principle). Let Lσ
h

be the discrete Lagrangian functional

associated to the Lagrangian L with respect to Gauss-FDEσ. Then, Q in (Rd)N+1 is a discrete

extremal of Lσ
h

if and only if Q is solution of the following system of equations (called

discrete Euler-Lagrange equation) given by:

∂L

∂x
(Q,−σ∆σQ, τ) − σ∆−σ

(

∂L

∂v
(Q,−σ∆σQ, τ)

)

= 0, Q ∈ (Rd)N+1. (ELσ
h

)
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(ELσ
h

) is obtained from (EL) by variational integrator. Its variational origin allows us to say

that it possesses a Lagrangian structure. Then, we have conservation at the discrete level of

the Lagrangian structure by variational integrator.

Let us note that an asymmetry appears in (ELσ
h

): indeed, we have a composition between

the two discrete operators ∆+ and ∆−. We notice that this asymmetry does not appear in the

continuous space in (EL).

2.2. Problem of coherence of a discrete embedding

Hence, defining a discrete embedding leads to two discrete versions of an Euler-Lagrange

equation: the first one (1) obtained by direct discrete embedding and the second one (ELσ
h

)

corresponding to a variational integrator. The direct discrete embedding is an algebraic proce-

dure (respecting for example the law of semi-group of the differential operator d/dt). On the

contrary, a variational integrator is mainly based on a dynamical approach via the extremals

of a functional.

However, we are interested in the conservation at the discrete level of the Lagrangian

structure of Lagrangian systems. We then propose the following definition: a discrete em-

bedding is said to be coherent if the two numerical schemes coincide. Precisely, a discrete

embedding is coherent if it makes the following diagram commutative:

Lagrangian functional
Functional discretization

//

Variational principle

��

Discrete Lag. functional

Discr. var. principle

��

Euler-Lagrange equation
Direct discrete embdedding

//

Variational integrator

��

Numerical scheme

Thus, a coherent discrete embedding provides a direct discrete version of a Lagrangian sys-

tem preserving its Lagrangian structure.

The previous study leads to a default of coherence of Gauss-FDEσ. Indeed, algorithms

obtained by direct discrete embedding (1) and obtained by discrete variational principle (ELσ
h

)

do not coincide. The problem is to understand why there is not asymmetry appearing in the

direct discrete embedding? It seems that we miss dynamical informations in the formulation

of Lagrangian systems at the continuous level which are pointed up in the discrete space with

the asymmetric discrete operators (−σ∆σ)σ=±. Nevertheless, this default of coherence can be

corrected using a different writing of the initial Euler-Lagrange equation.

2.3. Rewriting of the Euler-Lagrange equation and discrete embeddings

The usual way to derive differential equations in Physics is to built a continuous model using

discrete data. However, this process gives only an information in one direction of time. As
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a consequence, a discrete evaluation of the velocity corresponds in general at the continuous

level to the evaluation of the right or left derivative. In general, we replace the right (or

left) derivative by the classical derivative d/dt. However, this procedure assumes that the

underlying solution is differentiable. This assumption is not only related to the regularity

of the solutions but also to the reversibility of the systems (the right and left derivatives are

equal). In this section, we introduce asymmetric Lagrangian systems which are obtained

with functionals depending only on left or only on right derivatives. We prove in this case

that Gauss-FDEσ is coherent.

Definition 6. For f : [a, b] −→ R
d smooth enough function, we denote:

∀t ∈]a, b], d− f (t) = lim
h→0+

f (t) − f (t − h)

h

and

∀t ∈ [a, b[, d+ f (t) = lim
h→0+

f (t) − f (t + h)

h
.

Although we have d− f = −d+ f = ḟ for a differentiable function f , it is interesting to use

these notations in order to keep dynamical informations.

Definition 7. An asymmetric Lagrangian functional is an application:

Lσ : C2([a, b],Rd) −→ R

q 7−→

∫ b

a

L(q(t),−σdσq(t), t)dt

where L is a Lagrangian.

Then, by calculus of variations, we obtain the following characterization of the extremals of

an asymmetric Lagrangian functional:

Theorem 3 (Variational principle). Let Lσ be an asymmetric Lagrangian functional associ-

ated to the Lagrangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of Lσ if and only

if q is solution of the asymmetric Euler-Lagrange equation:

∀t ∈]a, b[,
∂L

∂x
(q(t),−σdσq(t), t) − σd−σ

(

∂L

∂v
(q(t),−σdσq(t), t)

)

= 0. (ELσ)

Hence, (ELσ) possesses a variational structure. Is it conserved by discrete embeddings? In

order to embed (ELσ), we have to discretize two differential operators at the same time. We

then define the following asymmetric version of Gauss-FDEσ:

Definition 8. We call the asymmetric version of Gauss-FDEσ the definition of the following

elements: the application disc, the σ-quadrature formula of Gauss and the discrete operators

∆− and ∆+ discretizing respectively the operators d− and d+.

Proposition 3. The asymmetric version of Gauss-FDEσ is a coherent discrete embedding.

Indeed, the direct discrete embedding and the variational integrator of (ELσ) in the frame-

work of the asymmetric Gauss-FDEσ lead to the same numerical scheme: (ELσ
h

).

We notice that the rewriting (ELσ) of (EL) provides additional dynamical informations which

allows the asymmetric Gauss-FDEσ to unify the algebraic and the dynamical approaches in

the discretization of a Lagrangian system. Moreover, this rewriting can be justified by the

fractional calculus as we will see in Section 3.
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§3. Discrete embeddings and variational integrators of fractional

Lagrangian systems

3.1. Fractional derivatives and fractional Lagrangian systems

Fractional calculus is the generalization of the derivative notion to real orders. We refer to

[11], [14] for many different ways generalizing this notion. For the whole paper, we fix

0 < α < 1 and for any r ∈ N
∗, we denote by αr = (−α)(1 − α)...(r − 1 − α)/r! and α0 = 1.

We are going to use the classical notions of Grünwald-Letnikov. The following definition is

extracted from [13].

Definition 9. Let f be an element of C1([a, b],Rd). The Grünwald-Letnikov fractional left

derivative of order α with inferior limit a of f is:

∀t ∈]a, b], Dα− f (t) = lim
h→0

nh=t−a

1

hα

n
∑

r=0

αr f (t − rh)

and the Grünwald-Letnikov fractional right derivative of order α with superior limit b of f is:

∀t ∈ [a, b[, Dα
+

f (t) = lim
h→0

nh=b−t

1

hα

n
∑

r=0

αr f (t + rh).

Recently, an important activity has been devoted to fractional Lagrangian systems for the

purpose of optimal control, mechanics, engineering and Physics, [1], [3], [9]. We recall

definitions and results concerning these fractional systems, we refer to [1] for a detailed

study and for a detailed proof of Theorem 4.

Definition 10. A fractional Lagrangian functional of order α is an application defined by:

Lσ,α : C2([a, b],Rd) −→ R

q 7−→

∫ b

a

L(q(t),−σDασq(t), t)dt

where L is a Lagrangian.

We can give a characterization of extremals of a fractional Lagrangian functional as solutions

of a fractional differential equation:

Theorem 4 (Variational principle). Let Lσ,α be a fractional Lagrangian functional of order

α associated to the Lagrangian L and let q be an element of C2([a, b],Rd). Then, q is an

extremal of Lσ,α if and only if q is solution of the fractional Euler-Lagrange equation:

∀t ∈]a, b[,
∂L

∂x
(q(t),−σDασq(t), t) − σDα−σ

(

∂L

∂v
(q(t),−σDασq(t), t)

)

= 0. (ELσ,α)

We refer to [1] for a detailed proof. Hence, in the fractional case, we find an asymmetry again

making a link with the asymmetric rewriting of (EL) into (ELσ).

As in the classical case, we conclude that (ELσ,α) possesses a Lagrangian structure and we

are iterested by its conservation at the discrete level by discrete embeddings.



Variational integrators of fractional Lagrangian systems in the framework of discrete embeddings 9

3.2. Discrete embeddings of fractional Lagrangian systems

There exist many studies concerning the discretization of fractional differential equations but

without the point of view of discrete embeddings. We refer to [3], [4]. By referring to the

notion of Grünwald-Letnikov [8], we give the following definition:

Definition 11. The Gauss Grünwald-Letnikov embedding denoted by Gauss-GLEσ is the

definition of the following elements: the application disc, the σ-quadrature formula of Gauss

and the discrete operators

∆
α
− : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

















1

hα

k
∑

r=0

αrQk−r

















k=1,..,N

and

∆
α
+

: (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

















1

hα

N−k
∑

r=0

αrQk+r

















k=0,..,N−1

.

These discrete operators are respectively the discrete versions of Dα− and Dα
+
.

We are first interested in the variational integrator of (ELσ,α) in the framework of Gauss-

GLEσ. Giving Gauss-GLEσ allows us to formulate the discrete version of a fractional La-

grangian functional:

Proposition 4. Let Lσ,α be the fractional Lagrangian functional associated to the Lagrangian

L. The discrete fractional Lagrangian functional associated to Lσ,α with respect to Gauss-

GLEσ is given by:

L
σ,α

h
:

(

R
d
)N+1

−→ R

Q = (Qk)k=0,...,N 7−→ h
∑

k∈Iσ

L(Qk, (−σ∆
α
σQ)k, tk).

Then, discrete extremals of the discrete fractional Lagrangian functional can be characterized

as solutions of a system of equations:

Theorem 5 (Discrete variational principle). LetLσ,α
h

be a discrete fractional Lagrangian func-

tional associated to the Lagrangian L with respect to Gauss-GLEσ. Then, Q in (Rd)N+1 is

a discrete extremal of Lσ,α
h

if and only if Q is solution of the following system of equations,

called the discrete fractional Euler-Lagrange equation:

∂L

∂x
(Q,−σ∆ασQ, τ) − σ∆α−σ(

∂L

∂v
(Q,−σ∆ασQ, τ)) = 0, Q ∈ (Rd)N+1. (ELσ,α

h
)

We conclude with the following proposition:

Proposition 5. Gauss-GLEσ is a coherent discrete embedding. Indeed, the direct discrete

embedding and the variational integrator of (ELσ,α) in the framework of Gauss-GLEσ lead

to the same numerical scheme: (EL
σ,α

h
).
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