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Abstract

Optimization of expensive computer models with the help
of Gaussian process emulators in now commonplace. How-
ever, when several (competing) objectives are considered,
choosing an appropriate sampling strategy remains an
open question. We present here a new algorithm based on
stepwise uncertainty reduction principles to address this
issue. Optimization is seen as a sequential reduction of the
volume of the excursion sets below the current best solu-
tions, and our sampling strategy chooses the points that
give the highest expected reduction. Closed-form formulae
are provided to compute the sampling criterion, avoiding
the use of cumbersome simulations. We test our method
on numerical examples, showing that it provides an effi-
cient trade-off between exploration and intensification.
keywords Kriging; EGO; Pareto front; Excursion sets

1 Introduction

We consider the problem of simultaneous optimization of
several objective functions over a design region X ⊂ R

d:

min y(1)(x), . . . , y(q)(x),

where y(i) : X → R are outputs of a complex computer
code. The objectives being typically conflicting, there ex-
ists no unique minimizer, and the goal is to identify the
set of optimal solutions, called Pareto front (Collette and
Siarry, 2003). Defining that a point dominates another
if all his objectives are better, the Pareto front X∗ is the
subset of the non-dominated points in X:

∀x∗ ∈ X
∗, ∀x ∈ X, ∃k ∈ {1, . . . , q} such that

y(k)(x∗) ≤ y(k)(x).

When the computational cost of a single model evaluation
is high, a well-established practice consists of using Gaus-
sian process (GP) emulators to approximate the model
outputs and guide the optimization process. Following
the seminal article of Jones et al. (1998) and its Efficient
Global Optimization (EGO) algorithm for single objec-
tive optimization, several strategies have been proposed
in the past few years to address the multi-objective prob-
lem (Knowles, 2006; Keane, 2006; Ponweiser et al., 2008;

Wagner et al., 2010). They consist in evaluating sequen-
tially the computer model at the set of inputs that maxi-
mizes a so-called infill criterion, derived from the GP em-
ulator, that expresses a trade-off between exploration of
unsampled areas and sampling intensification in promis-
ing regions. While the single objective case has been ex-
tensively discussed (Jones, 2001; Wang and Shan, 2007),
finding efficient and statistically consistent infill criteria
for the multi-objective case remains an open question.

Alternatively to the EGO paradigm, stepwise uncer-

tainty reduction (SUR) strategies aim at reducing, by se-
quential sampling, an uncertainty measure about a quan-
tity of interest. In a single objective optimization context,
Villemonteix et al. (2009) defined the Shannon entropy
of the maximizer (computed using the GP model) as an
uncertainty measure: a smaller entropy implies that the
maximizer is well-identified. They show that their ap-
proach outperforms the EGO strategy on a series of prob-
lems. Another example in a reliability assessment context
can be found in Bect et al. (2012). In general, SUR ap-
proaches allow to define policies rigorously with respect
to a given objective, resulting in very good performances.
However, they are often challenging to use in practice, as
they rely on very expensive GP simulations.

We propose here a novel SUR strategy to address the
multi-objective problem. It is based on a measure of un-
certainty of the current identification of the Pareto front
X

∗, hence avoiding some of the drawbacks of the existing
criteria (hierarchy between objectives, difficult-to-tune pa-
rameters, etc.). Following Chevalier et al. (2012), explicit
formulae for the expected uncertainty reduction are pro-
vided, avoiding the need to rely on simulations.

The paper is organized as follows: section 2 presents the
GP model and the basics of GP-based optimization. Then,
we describe our SUR strategy for a single objective in sec-
tion 3 and for several objectives in section 4. We provide
some numerical experiments in section 5 and compare our
method to the state-of-the-art. Finally, advantages and
drawbacks of the method are discussed in section 6.
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2 Some concepts of Gaussian-

process-based optimization

2.1 Gaussian process emulation

We consider first the emulation of a single computer re-
sponse y. The response is modelled as

Y (.) = f(.)Tβ + Z(.), (1)

where f(.)T = (f1(.), . . . , fp(.)) is a vector of trend func-
tions, β a vector of (unknown) coefficients and Z(.) is a
Gaussian process (GP) Z with zero mean and known co-
variance kernel k (Cressie, 1993; Rasmussen and Williams,
2006). Let us call An the event:

{Y (x1) = y1, . . . , Y (xn) = yn} ;

conditionally on An, the mean and covariance of Y are
given by:

mn(x) = E
(
Y (x)

∣∣An

)
=

= f(x)T β̂ + kn(x)
TK−1

n (yn − Fnβ̂),

cn(x,x
′) = cov

(
Y (x), Y (x′)

∣∣An

)

= k(x,x′)− kn(x)
TK−1

n kn(x
′)

+
(
f(x)T − kn(x)

TK−1
n Fn

)T (
FT

nK
−1
n Fn

)−1

(
f(x′)T − kn(x

′)TK−1
n Fn

)
,

where

• yn = (y1, . . . , yn)
T
are the observations,

• Kn = (k(xi,xj))1≤i,j≤n
is the observation covariance

matrix,

• kn(x)
T = (k(x,x1), . . . , k(x,xn)),

• Fn =
(
f(x1)

T , . . . , f(xn)
T
)T

, and

• β̂ =
(
FT

nK
−1
n Fn

)−1
FT

nK
−1
n yn is the best linear un-

biased estimate of β.

In addition, the prediction variance is defined as

s2n(x) = cn(x,x).

The covariance kernel depends on parameters that are
usually unknown and must be estimated from an initial set
of responses. Typically, maximum likelihood estimates are
obtained by numerical optimization and used as face value,
the estimates being updated when new observations are
added to the model. The reader can refer to Stein (1999)
(chapter 6), Rasmussen and Williams (2006) (chapter 5)
or Roustant et al. (2012) for detailed calculations and im-
plementation issues.
When several functions y(1), . . . , y(q) are predicted si-

multaneously, it is possible to take their dependency into
account (Kennedy and O’Hagan, 2001; Craig et al., 2001).
However, in this work we consider all the processes Y (i)

independent, hence modelled as above, which is in line
with current practice.

2.2 Gaussian-process-based optimization

with a single objective

The EGO strategy, as well as most of its modifications,
is based on the following scheme. An initial set of ob-
servations is generated, from which the GP model is con-
structed and validated. Then, new observations are ob-
tained sequentially, at the point in the design space that
maximizes the infill criterion, and the model is updated
every time a new observation is added to the training set.
The two later steps are repeated until a stopping criterion
is met.
The expected improvement criterion (EI) used in EGO

relies on the idea that progress is achieved by perform-
ing an evaluation at step n if the (n + 1)th design has a
lower objective function value than any of the n previous
designs. Hence, the improvement is defined as the differ-
ence between the current observed minimum and the new
function value if it is positive, or zero otherwise, and EI
is its conditional expectation under the GP model:

EI(x) = E
[
max

(
0, ymin

n − Y (x)
)
|An

]
,

where ymin
n denotes the current minimum of y found at

step n: ymin
n = min(y1, . . . , yn).

EGO is the one-step optimal strategy (in expectation)
regarding improvement: at step n, the new measurement
is chosen as

xn+1 = argmax
x∈X

EI(x),

which is in practice done by running an optimization al-
gorithm. It has been shown in Jones (2001) that EGO
provides, among numerous alternatives, an efficient solu-
tion for global optimization.

2.3 Gaussian-process-based optimization

with several objectives

Several adaptations of EGO to the multi-objective frame-
work have been proposed; a review can be found in Pon-
weiser et al. (2008). The main difficulty is that the concept
of improvement cannot be transferred directly, as the cur-
rent best point is here a set, and the gain is measured
on several objectives simultaneously. In Knowles (2006),
the objectives are aggregated in a single function using
random weights, which allows using the standard EGO.
Keane (2006) derived an EI with respect to multiple objec-
tives. Ponweiser et al. (2008) proposed an hypervolume-
based infill criterion, where the improvement is measured
in terms of hypervolume increase.

3 Single objective optimization by

stepwise uncertainty reduction

We consider first the case of a problem with a single ob-
jective y to minimize. In this section, we propose a new
strategy in a form similar to EGO that uses an alterna-
tive infill criterion based on stepwise uncertainty reduction
principles. The adaptation of this criterion to the multi-
objective case is presented in Section 4.
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3.1 Definition of an uncertainty measure

for optimization

The EGO strategy focuses on progress in terms of objec-
tive function value. It does not account (or only indirectly)
for the knowledge improvement that a new measurement
would provide to the GP model, nor for the discrepancy
between the location of the current best design found and
the actual minimizer (which is actually most users’ objec-
tive).
Alternative sampling criteria have been proposed to ac-

count for these two aspects. In Villemonteix et al. (2009),
the IAGO stategy chooses the point that minimizes the
posterior Shannon entropy of the minimizer: the inter-
est of performing a new observation is measured in gain of
information about the location of the minimizer. Unfortu-
nately, it relies on expensive GP simulations, which makes
its use challenging in practice. Gramacy and Lee (2011)
proposed an integrated expected conditional improvement

to measure a global informational gain of an observation.
In the noisy case, Scott et al. (2011) proposed a some-
how similar knowledge gradient policy that also measures
global information gain. However, as both criteria rely on
notions of improvement, it makes them difficult to adapt
to the multiobjective case. The criterion we propose below
address this issue.
Consider that n measurements have been performed.

As a measure of performance regarding the optimization
problem, we consider the expected volume of excursion set
below the current minimum ymin

n :

evn = EX

[
P
(
Y (x) ≤ ymin

n |An

)]
. (2)

Similarly to the Shannon entropy measure in IAGO, a
large volume indicates that the optimum is not yet pre-
cisely located (see Figure 1); on the contrary, a small vol-
ume indicates that very little can be gained by pursuing
the optimization process. Following the stepwise uncer-
tainty reduction paradigm, this volume is an uncertainty
measure related to our objective (finding the minimizer
of y); minimizing the uncertainty amounts to solving the
optimization problem.
The probability pn(x, y

min
n ) := P

(
Y (x) ≤ ymin

n |An

)
,

which is often referred to as probability of improvement

(Jones, 2001), can be expressed in closed form, and Eq. (2)
writes:

evn =

∫

X

pn(x, y
min
n )dx =

∫

X

Φ

(
ymin
n −mn(x)

sn(x)

)
dx, (3)

where Φ(.) is the cumulative distribution function (CDF)
of the standard Gaussian distribution. Hypothesizing that
a measurement yn+1 is performed at a point xn+1, its
benefit can be measured by the reduction of the expected
volume of excursion set ∆ = evn − evn+1, with:

evn+1 =

∫

X

pn+1(x,min
(
ymin
n , yn+1

)
)dx

=

∫

X

Φ

(
min

(
ymin
n , yn+1

)
−mn+1(x)

sn+1(x)

)
dx.

Of course, evn+1 cannot be known exactly without eval-
uating yn+1. However, we show in the following that its

expectation can be calculated in closed form, leading to
a suitable infill criterion. To do so, we first formulate a
series of propositions in the next subsection.

3.2 Probabilities updates

An interesting property of the GP model is that, when a
new observation yn+1 = y(xn+1) is added to the training
set, its new predictive distribution can be expressed simply
as a function of the old one (Emery, 2009):

mn+1(x) = mn(x) +
cn(x,xn+1)

cn(xn+1,xn+1)
(yn+1 −mn (xn+1)) ;

s2n+1(x) = s2n(x)−
cn(x,xn+1)

2

s2n(xn+1)
. (4)

Note that only mn+1(x) depends on the value of the new
observation yn+1. Now, conditionally on the n first obser-
vations, Yn+1 is a random variable (as the new observation
has not yet been performed) with its moments given by
the GP model:

Yn+1 ∼ N
(
mn(xn+1), s

2
n(xn+1)

)
.

We can then define the future expectation Mn+1(x) (or
any quantity depending on it) as a random variable con-
ditionally on An and on the fact that the next observation
will be at xn+1. This applies to any quantity depending
on Yn+1 or Mn+1(x), for instance, the probability of being
below a threshold a ∈ R:

Pn+1(x, a) = Φ

(
a−Mn+1(x)

sn+1(x)

)
.

Proposition 3.1. Without any restriction on the value

of Yn+1, the expectation of the future probability of being

below the threshold is equal to the current probability:

P (Y (x) ≤ a|An, Y (xn+1) = Yn+1) = E
[
Pn+1(x, a)

∣∣An

]

= pn(x, a).

Proposition 3.2. Conditioning further by Yn+1 ≤ b,
the probability expectation writes in simple form using the

Gaussian bivariate CDF:

q(x, b, a) := P
[
Y (x) ≤ a

∣∣An, Y (xn+1) = Yn+1, Yn+1 ≤ b
]

× P
[
Yn+1 ≤ b

∣∣An

]

= E
[
Pn+1(x, a)× 1Yn+1≤b

∣∣An

]

= Φρ

(
b̄, ã
)
, (5)

where Φρ is the Gaussian bivariate CDF with zero mean

and covariance

[
1 ρ
ρ 1

]
, b̄ = b−mn(xn+1)

sn(xn+1)
, ã = a−mn(x)

sn(x)
and

ρ = cn(x,xn+1)
sn(xn+1)sn(x)

.

Corollary 3.3. Similarly, conditioning by Yn+1 ≥ b leads
to:

r(x, b, a) := P
[
Y (x) ≤ a

∣∣An, Y (xn+1) = Yn+1, Yn+1 ≥ b
]

× P
[
Yn+1 ≥ b

∣∣An

]

= Φ−ρ

(
−b̄, ã

)
. (6)
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The final proposition resembles Proposition 3.2, but the
fixed threshold a is here replaced by Yn+1:

Proposition 3.4. The expectation of the probability that

Y (x) is smaller than Yn+1, conditionally on Yn+1 ≤ b, is
given by:

h(x, b) := P
[
Y (x) ≤ Yn+1|An, Y (xn+1)

= Yn+1, Yn+1 ≤ b
]
P
[
Yn+1 ≤ b

∣∣An

]

= E
[
Pn+1(x, Yn+1)× 1Yn+1≤b

∣∣An

]

= Φν

(
b̄, η
)
, (7)

with:

η =
mn(xn+1)−mn(x)√

s2n(x) + s2n(xn+1)− 2cn(x,xn+1)
and

ν =
cn(x,xn+1)− s2n(xn+1)

sn(xn+1)
√
s2n(x) + s2n(xn+1)− 2cn(x,xn+1)

.

All the proofs are reported in Appendix A.

3.3 A Stepwise uncertainty reduction cri-

terion

Coming back to the SUR criterion, at step n the future
volume of excursion set EVn+1 is a random variable, and
its expectation is:

EEV (xn+1) := E
(
EVn+1

∣∣An, Y (xn+1) = Yn+1

)

=

∫

X

E

[
Φ

(
min

(
ymin
n , Yn+1

)
−Mn+1(x)

sn+1(x)

)

∣∣An, Y (xn+1) = Yn+1

]
dx.

Let ϕ (yn+1) be the probability density function (PDF) of
Yn+1 conditionally on An. We have:

EEV (xn+1)

=

∫

X

∫

R

Φ

(
min

(
ymin
n , yn+1

)
−mn+1(x)

sn+1(x)

)
dϕ (yn+1) dx

=

∫

X

[ ∫ ymin
n

−∞

Φ

(
yn+1 −mn+1(x)

sn+1(x)

)

+

∫ +∞

ymin
n

Φ

(
ymin
n −mn+1(x)

sn+1(x)

)
dϕ (yn+1)

]
dx

=

∫

X

[
h(x, ymin

n ) + r(x, ymin
n , ymin

n )
]
dx.

The first term of the integrand is given by Eq. (7) in Propo-
sition 3.4, with b = ymin

n , and the second term is given by
Eq. (6) in Corrolary 3.3, with a = b = ymin

n , hence:

EEV (xn+1) =

∫

X

[
Φν

(
ymin
n , η

)
+Φρ

(
−ymin

n , ỹmin
n

)]
dx,

(8)
with:

ymin
n = (ymin

n −mn(xn+1))/sn(xn+1)

and
ỹmin
n = (ymin

n −mn(x))/sn(x).

The SUR optimization strategy consists in adding the
experiment that minimizes the expected volume of excur-
sion set (or maximizes the difference), that is, the one-step
optimal policy in terms of reduction of the uncertainty on
the objective function minimizer:

xn+1 = arg min
x+∈X

EEV (x+) (9)

Remark In general, the probability of improvement
pn(x, y

min
n ) is high where the prediction mean mn(.) is

low and/or the prediction variance s2n(.) is high. Sim-
ply choosing points that maximize pn(x, y

min
n ) is known

to be inefficient (Jones, 2001), as it does not consider the
amplitude of the gain in the objective function. Here,
EEV (x+) strongly depends on the potential gain am-
plitude. Indeed, minimizing the expected volume relies
on two mecanisms: reducing the local uncertainty and
lowering the current minimum value (ymin

n ). The first is
achieved by adding measurements in unsampled regions
(high s2n(.)), the second in regions where this potential re-
duction is high. Hence, the EEV criterion can be seen as
a mixed measure of uncertainty on the current minimum
location and of potential gain in the objective function.

3.4 Illustration

Figure 1 illustrates the concept of reduction of volume of
excursion on a toy example. A GP model is built on a six-
point training set, from which the probability of improve-
ment p6(x, y

min
6 ) is computed for every point in X = [0, 1].

We see that it can be intepreted as an indicator of the
uncertainty we have about the location of the actual min-
imizer x∗ = 0.47, as the model can only predict that x∗

is likely to be between 0.4 and 0.6. Then, we consider
two candidate points (x+ = 0.2 and x+ = 0.5) and com-
pute, for each, the expected new probability (integrand
in Eq. (8)). We see that the probability is likely to re-
main mostly unchanged by adding the measurement at
x+ = 0.2 (which is, indeed, a region with high response
value), while it would be considerably reduced by adding
a measurement at x+ = 0.5. In terms of volume of excur-
sion set, we have EEV (0.2) ≈ ev6 (no reduction), while
EEV (0.5) ≈ ev6/3 (large reduction): the EEV criterion
clearly indicates x+ = 0.5 as a better sampling location.

4 Multi-objective optimization by

stepwise uncertainty reduction

4.1 Volume of excursion behind the

Pareto front

Let y(x) =
(
y(1)(x), . . . , y(q)(x)

)
be the vector of ob-

jective functions to minimize. A point x dominates an-
other point x′ if y(k)(x) ≤ y(k)(x′) for all k in {1, . . . , q},
which we denote by x′ ≺ x in the following. At step n,
Xn = {x1, . . . ,xn} is the current experimental set and
Yn = {y(x1), . . . ,y(xn)} the corresponding set of mea-
sures. The non-dominated subset X∗

n of Xn constitutes
the current Pareto front (of size m ≤ n). In the objective

4



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

GP model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proba of improvement

Figure 1: Illustration of the effect of a new observation on the EV criterion. Left: actual objective function (dotted
line), GP model (depicted by its mean in black plain line and 95% confidence interval in grey) based on six observations
(black circles). The horizontal line shows the current minimum; the vertical bars are placed at two candidate locations.
Right: probability of improvement given by the current model and expected updated probability for each candidate.
Adding a point at x+ = 0.5 (mixed line) is likely to reduce substantially the probability, while adding a point at
x+ = 0.05 (dotted line) has little expected effect.

space, the corresponding subset Y∗
n separates the regions

dominated and not dominated by the experimental set.
Then, we decompose the objective space plane using a

tesselation {Ωi}i∈{1,...,I} of size I = (m+1)q (∪i∈IΩi = R
q

and ∩i∈IΩi = ∅), each cell being a hyperrectangle defined
as:

Ωi = {y ∈ R
q|y(k)i− ≤ y(k) < y

(k)
i+ , k ∈ {1, . . . , q}}.

Each couple (y
(k)
i− , y

(k)
i+ ) consists of two consecutive values

of the vector
[
−∞, y(k)(x∗

1), . . . , y
(k)(x∗

m),+∞
]
. An illus-

tration is given in Figure 2.
A cell Ωi dominates another cell Ωj (Ωj ≺ Ωi) if any

point in Ωi dominates any point in Ωj , and it partially

dominates Ωj if there exists a point in Ωj that is domi-
nated by any point in Ωi. Otherwise, we say that Ωj is
not dominated by Ωi (Ωj 6≺ Ωi).
We denote by I∗ the indices of all the non-dominated

cells at step n, that is, the cells that are not dominated by
any point of X∗

n. In two dimensions, the non-dominated
cells are located in the bottom left half of the plane (Figure
2).
Now, let us assume that GP models are fitted to each

objective y(k). At step n, the probability that Y(x) be-
longs to the cell Ωi is:

pin(x) = P
[
Y(x) ∈ Ωi

∣∣An

]

=

q∏

k=1

Φ

(
y
(k)
i+ −m

(k)
n (x)

s
(k)
n (x)

)
− Φ

(
y
(k)
i− −m

(k)
n (x)

s
(k)
n (x)

)

:=

q∏

k=1

pi(k)n

by pairwise independence of Y (1), . . . , Y (q). The probabil-
ity that x is not dominated by any point of Xn is then the
probability thatY(x) belongs to one of the non-dominated
parts of the objective space. As the Ωi’s are disjoint, it is
equal to:

P(x 6≺ Xn

∣∣An) =
∑

i∈I∗

pin(x). (10)

Figure 2: Example of Pareto front generated by four points
(circles), and associated tesselation. The grey area corre-
sponds to the dominated cells.

Figure 3: Example of Pareto front modification due to
a new measurement. Two points are removed from the
Pareto front while the new point is added. The hatched
area represents the additional dominated region.
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Finally, the volume of the excursion sets behind the
Pareto front is equal to the integral of this probability
over X:

evn =

∫

X

P(x 6≺ Xn

∣∣An)dx

=

∫

X

∑

i∈I∗

pin(x)dx =
∑

i∈I∗

∫

X

pin(x)dx. (11)

When evn is high, a large proportion of the design space is
likely to be better than the current Pareto set; inversely,
when X∗

n approaches the actual Pareto set X∗, the volume
tends to zero. Hence, it defines naturally an uncertainty
indicator for a SUR strategy.

4.2 SUR criterion derivation

Now, let us consider that a measurement yn+1 is per-
formed at a point xn+1. Compared to step n, the vol-
ume ev is modified by two means. First, the new mea-

surement will modify the quantities m
(k)
n (x), s

(k)
n (x) (k ∈

{1, . . . , q}), hence, the probabilities pin(x). Second, if the
new measurement is not dominated by the current Pareto
set, it modifies the Pareto optimal front, as the new value
y(xn+1) is added to Y∗ and the values of Y∗ dominated
by y(xn+1) (if they exist) are removed. An example of
such update is given in Figure 3.
Focusing on the probability that a point remains non-

dominated (Eq. (10)), accounting for the modifications
of the models is relatively easy (that is, computing the
quantity pin+1(.)), but accounting for modifications in the
Pareto front is complex, as both the number of elements
and their values might change. To address this issue, we
consider that the updated probability P(x 6≺ Xn+1

∣∣An+1)

can be computed using the same sum as for P(x 6≺ Xn

∣∣An)
(Eq. (10)) by modifying its elements pin(x):

P(x 6≺ Xn+1

∣∣An+1) =
∑

i∈I∗

p̃in+1(x),

with

p̃in+1(x) = P

(
x 6≺ Xn+1∩Y(x) ∈ Ωi

∣∣∣An,y(xn+1) = yn+1

)

and the Ωi’s defined using Y∗
n (not Y∗

n+1).

Seing from step n, the P̃ j
n+1(x) are random, as

Y (xn+1)
(k) ∼ N

(
m(k)

n (xn+1), s
(k)2
n (xn+1)

)
,

∀k ∈ {1, . . . , q}.
The expectation of the new volume is then:

EEV (xn+1) = E



∫

X

∑

j∈I∗

P̃ j
n+1(x)dx




=
∑

j∈I∗

∫

X

E

[
P̃ j
n+1(x)

]
dx.

This expression can be decomposed by conditioning on
the range values of the new observation (using the fact

that the Ωi’s are disjoint):

E

[
P̃ j
n+1(x)

]

=
∑

i∈I

Pn+1

[
x 6≺ Xn+1 ∩Y(x) ∈ Ωj

∣∣∣Yn+1 ∈ Ωi

]

× Pn+1

[
Yn+1 ∈ Ωi

]

:=
∑

i∈I

pij(x),

where Pn+1 is the probability conditional on(
An,Y(xn+1) = Yn+1

)
.

We first note from Proposition 3.1 that

Pn+1 [Yn+1 ∈ Ωi] = pin(xn+1).

Then, leaving aside non-domination, the probability that
Y(x) belongs to Ωj knowing that Yn+1 belongs to Ωi is
given by:

Pn+1

[
Y(x) ∈ Ωj

∣∣∣Yn+1 ∈ Ωi

]
× pin(xn+1) =

q∏

k=1

b
(k)
ij (x),

with:

b
(k)
ij (x) = Pn+1

[
y
(k)
j− ≤ Y (k)(x) < y

(k)
j+

∣∣∣y(k)i− ≤ Y
(k)
n+1 < y

(k)
i+

]

× pi(k)n (xn+1),

pi(k)n (xn+1) = Pn

[
y
(k)
i− ≤ Y

(k)
n+1 < y

(k)
i+

]
,

by pairwise independence of Y (1), . . . , Y (q). We show in

Appendix B that b
(k)
ij (x) can be expressed in closed form

as:

b
(k)
ij (x) = Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j+

)
−Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j−

)

− Φ(k)
ρ

(
y
(k)
i− , ỹ

(k)
j+

)
+Φ(k)

ρ

(
y
(k)
i− , ỹ

(k)
j−

)

with the notations introduced in Section 3.2.
Now, we define:

d
(k)
ij (x) = Pn+1

[
y
(k)
j− ≤ Y (k)(x) < y

(k)
j+ ∩ Y

(k)
n+1 ≤ Y (k)(x)

∣∣∣ y
(k)
i− ≤ Y

(k)
n+1 < y

(k)
i+

]
× pi(k)n (xn+1),

which is identical to b
(k)
ij (x) with the additional condition

Y
(k)
n+1 ≤ Y (k)(x). This condition is met when the k-th com-

ponent of the new observation dominates the k-th compo-
nent of Y(x). We have x ≺ xn+1 only if the condition

Y
(k)
n+1 ≤ Y (k)(x) is met for all components, hence, with

probability of occurence
∏p

k=1 d
(k)
ij (x). Three cases arise:

• y
(k)
i− ≥ y

(k)
j+ : the component cannot be dominated,

which implies d
(k)
ij (x) = 0;

• y
(k)
i+ ≤ y

(k)
j− : the component is always dominated,

which implies d
(k)
ij (x) = b

(k)
ij (x);
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• y
(k)
i+ = y

(k)
j+ (and y

(k)
i− = y

(k)
j− ): Y (k)(x) and Y

(k)
n+1 share

the same interval of variation, and:

d
(k)
ij (x) = Pn+1

[
F

(k)
n+1 ≤ Y (k)(x) < y

(k)
i+

∣∣∣y(k)i− ≤ Y
(k)
n+1 < y

(k)
i+

]

× pi(k)n (xn+1),

which is equal (as shown in Appendix B) to:

d
(k)
ij (x) = Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j+

)
−Φ(k)

ν

(
y
(k)
i+ , η(k)

)

+ Φ(k)
ν

(
y
(k)
i− , η(k)

)
−Φ(k)

ρ

(
y
(k)
i− , ỹ

(k)
j+

)
.

The probability of Y(x) being non-dominated while in
Ωj (and Yn+1 being in Ωi) is then:

pij(x) =

q∏

k=1

b
(k)
ij (x) −

q∏

k=1

d
(k)
ij (x).

If Ωj ≺ Ωi, the new observation dominates any point

in Ωj , hence d
(k)
ij (x) = b

(k)
ij (x) for all k, which gives

pij(x) = 0. Inversely, if Ωj 6≺ Ωi, the new observation can-

not dominate any point in the cell Ωj . We have d
(k)
ij (x) = 0

for at least one value of k, and pij(x) is the probability

that Y(x) belongs to Ωj : pij(x) =
∏q

k=1 b
(k)
ij (x).

Finally, for a given point x ∈ X, we compute the prob-
ability that it is non-dominated at step n+ 1 using:

Pn+1(x 6≺ Xn+1) =
∑

i∈I

∑

j∈I∗

pij(x),

and the SUR criterion is:

EEV (xn+1) =
∑

i∈I

∑

j∈I∗

∫

X

pij(x)dx, (12)

with:

pij(x) =





0 if Ωj ≺ Ωi∏q
k=1 b

(k)
ij (x) if Ωj 6≺ Ωi∏q

k=1 b
(k)
ij (x)−∏q

k=1 d
(k)
ij (x) otherwise

(13)
The first sum in Eq. (12) accounts for Yn+1 potentially
being in any cell Ωi; the second sum accounts for Y(x)
potentially being in a non-dominated cell Ωj .

4.3 Computation

Evaluating the criterion as in Eq. (12) is a non-trivial task;
besides, a relatively fast computation is needed, as it may
be embedded in an optimization loop to search for the
best new observation (Eq. (9)). We provide here some
technical solutions to ease its computation. Some of these
issues have also been experienced with SUR criteria for
inversion, as reported in Chevalier et al. (2012, 2013).
Firstly, as no closed form exists for the integration over

the design domain X in Eq. (12), one may rely on Monte-
Carlo integration, with approximations of the form:

∫

X

pij(x)dx ≈ 1

L

L∑

l=1

wlpij(x
l),

where the xl’s and wl’s are integration points and weights,
respectively. One solution to alleviate the computational
cost is to use a fixed set of integration points while search-
ing for the best new observation. Then, many quantities
that do not depend on xn+1 can be precalculated only once
beforehand outside the optimization loop, as suggested in
Chevalier et al. (2012).

Secondly, the criterion relies on the bivariate normal
distribution, which also must be computed numerically.
Very efficient programs can be found, such as the R pack-
age pbivnorm (Kenkel, 2012), which makes this task rela-
tively inexpensive.

Thirdly, the tesselation used in the previous section has
I = (m + 1)q elements, with I∗ = I/2 non-dominated
elements, making the computation of the double sum in
Eq. (12) intensive. As detailed in Section 4.4 for the two
dimensional case, the number of elements can be very sub-
stantially reduced by grouping cells together. Note how-
ever that such decomposition may not be straightforward
in high dimension.

Finally, as the optimization progresses, it is likely that
the Pareto set grows, making the criterion more expen-
sive to compute as more cells are to be considered. This
problem is shared by all GP-based strategies, and some so-
lutions have been proposed to filter the Pareto set and re-
tain a small representative set (Wagner et al., 2010). Such
types of strategies may be applicable to our criterion, as
some small cells would contribute to a very small part of
the volume of excursion sets and could be neglected with-
out introducing a critical error, and would reduce substan-
tially the computational cost, especially when the number
of observations is high.

4.4 Efficient formulas in the two-objective

case

We consider here the two-objective case, for which the
EEV criterion can be expressed in a compact and compu-
tationally efficent way. With two objectives, the Pareto set
can be ordered as follows (the first and second objective
functions in ascending and descending order, respectively):

y
(1)∗
1 ≤ . . . ≤ y

(1)∗
m and y

(2)∗
1 ≥ . . . ≥ y

(2)∗
m .

The non-dominated part of the objective space can be
divided in m + 1 cells. Then, given a non-dominated cell
Ωj , only four cases arise for Ωi (the cell of the new ob-
servation), as shown in Figure 4, for which the quantities
pij(x) need to be computed.

Hence, the criterion can be expressed as a sum of at
most (m+1)×4 terms. As many terms can be factorized,
we finally obtain:

EEV (xn+1) =
m∑

j=0

∫

X

αj(x),

7



Figure 4: Left: the m+1 non-dominated cells (in white). Right: the four cases for Ωi given Ωj : three are represented
by the different hatched regions, the fourth corresponds to Ωj = Ωi.

with:

α0(x) =
[
Φ(1)

ρ

(
ȳ
(1)∗
1 , ỹ

(1)∗
1

)
−Φ(1)

ν

(
ȳ
(1)∗
1 , η(1)

)]

×
[
Φ
(
η(2)

)
− 1
]
+Φ

(
ỹ
(1)∗
1

)
,

αj(x) =
[
Φ(1)

ρ

(
ȳ
(1)∗
j+1 , ỹ

(1)∗
j+1

)
−Φ(1)

ν

(
ȳ
(1)∗
j+1 , η

(1)
)

+ Φ(1)
ν

(
ȳ
(1)∗
j , η(1)

)
−Φ(1)

ρ

(
ȳ
(1)∗
j , ỹ

(1)∗
j

) ]

×
[
Φ(2)

ν

(
ȳ
(2)∗
j , η(2)

)
−Φ(2)

ρ

(
ȳ
(2)∗
j , y

(2)∗
j

)]

+
[
Φ
(
ỹ
(1)∗
j+1

)
− Φ

(
ỹ
(1)∗
j

)]
Φ
(
ỹ
(2)∗
j

)
,

∀j ∈ {1, . . . ,m− 1},

and:

αm(x) =
[
1− Φ

(
η(1)

)
+Φ(1)

ν

(
ȳ(1)∗m , η(1)

)

− Φ(1)
ρ

(
ȳ(1)∗m , ỹ(1)∗m

) ]

×
[
Φ(2)

ν

(
ȳ(2)∗m , η(2)

)
−Φ(2)

ρ

(
ȳ(2)∗m , ỹ(2)∗m

)]

+
[
1− Φ

(
ȳ(1)∗m

)]
Φ
(
ȳ(2)∗m

)
.

Calculations are not detailed, as they are straightforward
developments of Eq. (13). The two extremal terms (j = 0
and j = m+1) correspond to special cases of Ωj (first and
last cells in Figure 4, right).

5 Numerical experiments

5.1 One-dimensional, bi-objective prob-

lem

In this section, we apply the method to the following bi-
objective problem: F (1) and F (2) are independent real-
izations of one-dimensional GPs, indexed by a 300-point
regular grid on [0, 1], with a stationary Matern covari-
ance with regularity parameter ν = 3/2 (Rasmussen and
Williams, 2006, chapter 4). The variance and range pa-
rameters are taken as one and 1/5, respectively.
Now, two GP models are built based on four randomly

chosen observations. The covariance function is considered
as known. Figure 5 shows the initial models and Pareto

front. Here, a single point dominates the three others. Af-
ter building the tesselation as described in Section 4.1, we
compute the volume of the excursion sets corresponding to
each cell (Eq. (11)). As there are only four observations,
the probability to belong to a non-dominated cell is rela-
tively high (Figure 5, bottom right). Then, the criterion
is computed for each point in the grid (Figure 5, bottom
right). Its maximum is obtained in a region with high un-
certainty and low expected values for the two functions.

After 10 iterations (Figure 6), the Pareto front is well-
approximated. The models are accurate in the optimal
regions and have high prediction variances in the other
regions, which indicates a good allocation of the compu-
tational resources.

Next, we compare these results to a state-of-the-art
method, called SMS-EGO (Ponweiser et al., 2008), which
has been shown to outperform significantly non-GP based
methods (such as NSGA-II), in particular when only a lim-
ited budget of evaluation is available. As measuring per-
formances is non-trivial in multi-criteria optimization, we
use a series of three indicators: hypervolume, epsilon and
R2 indicators (Zitzler et al., 2003; Hansen and Jaszkiewicz,
1998), all available in the R package EMOA (Mersmann,
2012). They provide different measures of distance to the
actual Pareto set and coverage of the objective space. Re-
sults are reported in Figure 7. The Pareto front obtained
with SMS-EGO shows that the algorithm only detected
one of the two Pareto optimal regions. As a consequence,
the Pareto front is locally more accurate than the one ob-
tained with the SUR strategy, but the indicators are much
poorer.

5.2 Six-dimensional, bi-objective problem

Here, the objectives functions are realizations of six-
dimensional GPs indexed by a 2000-point Sobol sequence
on [0, 1]6, with a stationary Matern covariance with regu-
larity parameter ν = 5/2. The variance and range param-
eters are taken as one and

√
6/6, respectively. The initial

experimental set consists of 10 points randomly chosen,
and 40 points are added iteratively using the SUR and
SMS-EGO strategies. The results are given in Figure 8.
Again, the SUR strategy shows better performances com-
pared to SMS-EGO.
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Figure 5: Top graphs: initial models (same representation as Figure 1); the actual Pareto-optimal points are repre-
sented by red crosses. Bottom right: observations (black circles) represented in the objective space, actual Pareto
front (red) and current front (blue). Bottom left: criterion value as a function of x. The vertical bars show the new
observation location; the green circle is the new observation.
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Figure 7: SMS-EGO Pareto front after 10 iterations (left) and performance comparison between SUR (plain line)
and SMS-EGO (dotted line) on a one-dimensional problem. Hypervolume indicator: higher is better; other indicators
should tend to zero.

6 Discussion

We have proposed a new sequential sampling strategy,
based on stepwise uncertainty reduction principles, for
multi-objective optimization. Closed-form expressions

were provided for the infill criterion. Numerical exper-
iments showed promising performances of our strategy
compared to a state-of-the-art method. We point here
some strengths and weaknesses of our approach.

First of all, as it is based on Gaussian process modeling,
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it shares the limits inherents to the model. In particu-
lar, it is well-known that classical GP models cannot cope
with large datasets (> 1000) or high-dimensional spaces
(> 100). Most models also have restrictive conditions on
the approximated function (typically, stationarity), and
the strategy efficiency may be greatly penalized by impor-
tant inadequations between the model hypothesis and the
actual function characteristics. Using the proposed strat-
egy on more complex GP models (Gramacy and Lee, 2008;
Banerjee et al., 2013) may help mitigate these issues.

Secondly, we wish to emphasize here that the proposed
method has a non-negligible computational cost, as (a) the
criterion is evaluated by numerical integration and (b) it
is embedded in an optimization loop. Hence, its use may
be limited to simulators for which the time to compute an
evaluation is much higher than the time to choose the next
point to evaluate. However, one may note that the use of
closed-form expressions, although relying on the bivariate
normal CDF, avoid the need to use conditional simulations
(as in Villemonteix et al. (2009)) that would have made
the method overly expensive.

On the other hand, moving away from the expected im-
provement paradigm allowed us to provide a method that
does not necessitate any artificial ranking or trade-off be-
tween objective functions. It is also scale-invariant, which
can be of great advantage when dealing with objectives of
different nature. Finally, one advantage of the proposed
strategy is that it considers progress in the design space
rather than in the objective space, which corresponds to
what practitioners are eventually interested in.

Possible extensions of this work are various. Accounting

for the uncertainty due to the estimation of the model hy-
perparameters were left appart here; Bayesian approaches,
in the fashion of Kennedy and O’Hagan (2001) or Gramacy
and Lee (2008) for instance, may help address this issue.
Objective functions were considered as not correlated to
ease calculations and allow the use of simple models. As
objectives are likely to be negatively correlated in prac-
tice, accounting for it while keeping tractable criteria is
an important question. Finally, the stepwise uncertainty
reduction strategy may be easily adapted to other frame-
works, such as constrained or noisy optimization.

A Probabilities update

A.1 Proof of Proposition 3.2

Using the model update equations (4), we note first that:

pn+1(x, a) = Φ


a−mn(x) +

cn(x,xn+1)
s2n(xn+1)

[mn (xn+1)− yn+1]

sn+1(x)




Now, let ϕ (yn+1) be the PDF of Yn+1 (conditional onAn).
We have:

q(x, b, a)

=

∫ b

−∞

pn+1(x, a)dϕ (yn+1)

=

∫ b

−∞

Φ


a−mn(x) +

cn(x,xn+1)
s2n(xn+1)

[mn (xn+1)− yn+1]

sn+1(x)




dϕ (yn+1)
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As Yn+1 ∼ N
(
mn(xn+1), s

2
n(xn+1)

)
, we can write (fol-

lowing Chevalier et al. (2012)):

Yn+1 = mn(xn+1) + sn(xn+1)U

with

U ∼ N (0, 1) ,

which allows to simplify the previous equations to:

q(x, b, a)

=

∫ b̄

−∞

Φ

[
a−mn(x)

sn+1(x)
−
(

cn(x,xn+1)

sn(xn+1)sn+1(x)

)
u

]
dϕ(u)

=

∫ b̄

−∞

Φ [â− βu] dϕ(u),

(14)

with

β = (cn(x,xn+1))/(sn(xn+1)sn+1(x)),

â = (a−mn(x))/sn+1(x) and

b̄ = (b−mn(xn+1))/sn(xn+1).

This quantity can be written as a bivariate Gaussian CDF.
Indeed:

∫ b̄

−∞

Φ [â− βu] dϕ(u)

=
1√
2π

∫ b̄

−∞

Φ [â− βu] exp

(−u2

2

)
du

=
1

2π

∫ b̄

−∞

∫ â−βu

−∞

exp

[
−1

2

(
u2 + t2

)]
dtdu

=
1

2π

∫ b̄

−∞

∫ â

−∞

exp

[
−1

2

(
u2 + [t− βu]

2
)]

dtdu

=
1

2π|Σβ |

∫ b̄

−∞

∫ â

−∞

exp

[
−1

2

[
u t

]
Σ−1

β

[
u
t

]]
dtdu,

with Σβ =

[
1 β
β 1 + β2

]
(noting that |Σβ | = 1), which

is the standard form of the bivariate Gaussian CDF with
zero mean and covariance matrix Σβ , hence:

q(x, b, a) = ΦΣβ

(
b̄, â
)
.

Finally, applying the normalization ã = â/
√
1 + β2, we

have: q(x, b, a) = Φρ

(
b̄, ã
)
, with:

ρ =
β√

1 + β2
=

cn(x,xn+1)

sn(xn+1)sn(x)
.

A.2 Proof of Proposition 3.1

The result can be obtained directly from Proposition 3.2
with b → +∞. We have then: q(x, b, a) → Φ (ã) =
pn(x, a).

A.3 Proof of Corollary 3.3

From Eq. (14), we have directly:

r(x, b, a) =

∫ +∞

b̄

Φ [â− βu] dϕ(u)

=

∫ −b̄

−∞

Φ [â+ βu] dϕ(u)

= ΦΣ
−β

(
−b̄, â

)
= Φ−ρ

(
−b̄, ã

)
.

A.4 Proof of Proposition 3.4

The steps of the proof are similar to those of Proposition
3. Using the update equations (4), we have first:

P (Y (x) ≤ yn+1|An, yn+1 = y(xn+1))

= Φ

[
yn+1 −mn+1(x)

sn+1(x)

]

= Φ



−mn(x) +

cn(x,xn+1)mn(xn+1)
s2n(xn+1)

+
[
1− cn(x,xn+1)

s2n(xn+1)

]
yn+1

sn+1(x)




= Φ

[
mn(xn+1)−mn(x)

sn+1(x)
−
(
cn(x,xn+1)− s2n(xn+1)

sn(xn+1)sn+1(x)

)
u

]
.

Now:

h(x, b)

=

∫ b

−∞

P (Y (x) ≤ Yn+1|An, Yn+1 = yn+1) dϕ (yn+1)

=

∫ b̄

−∞

Φ
[mn(xn+1)−mn(x)

sn+1(x)

−
(
cn(x,xn+1)− s2n(xn+1)

sn(xn+1)sn+1(x)

)
u
]
dϕ(u)

=

∫ b̄

−∞

Φ [µ− τu] dϕ(u)

= ΦΣτ

(
b̄, µ
)
,

as we get a form similar to Equation 14, with ΦΣτ
the

CDF of the centered bigaussian with covariance Στ =[
1 τ
τ 1 + τ2

]
,

µ = (mn(xn+1)−mn(x))/sn+1(x)

τ = (cn(x,xn+1)− s2n(xn+1))/(sn(xn+1)sn+1(x)).

Normalizing η = µ/
√
1 + τ2 delivers the final result.

B b
(k)
ij (x) and d

(k)
ij (x) computation

Let X and Y be two dependent random variables, and
a, b, c and d four real numbers. By direct application of

11



Bayes formula, we have:

P (a ≤ X < b|c ≤ Y < d)P (c ≤ Y < d)

= P (Y < d)× [P (X < b|Y < d)− P (X ≤ a|Y < d)]

− P (Y ≤ c)× [P (X < b|Y ≤ c)− P (X ≤ a|Y ≤ c)]

P (Y ≤ X < b|a ≤ Y < b)P (a ≤ Y < b)

= P (Y < b)× [P (X < b|Y < b)− P (X ≤ Y |Y < b)]

− P (Y ≤ a)× [P (X < b|Y ≤ a)− P (X ≤ Y |Y ≤ a)]

Now, by definition, b
(k)
ij is of the form of the fist equa-

tion:

b
(k)
ij (x) := Pn+1

(
y
(k)
j− ≤ Y (k)(x) < y

(k)
j+ |y(k)i− ≤ Y

(k)
n+1 < y

(k)
i+

)

× Pn

[
y
(k)
i− ≤ Y

(k)
n+1 < y

(k)
i+

]
,

hence write as the sum of four terms:

b
(k)
ij (x) = p(k)n (xn+1, y

(k)
i+ )
(
Pn+1

[
Y (k)(x) ≤ y

(k)
j+

∣∣Y (k)
n+1 ≤ y

(k)
i+

]

− Pn+1

[
Y (k)(x) ≤ y

(k)
j−

∣∣Y (k)
n+1 ≤ y

(k)
i+

])

− p(k)n (xn+1, y
(k)
i− )
(
Pn+1

[
Y (k)(x) < y

(k)
j+

∣∣Y (k)
n+1 ≤ y

(k)
i−

]

− Pn+1

[
Y (k)(x) ≤ y

(k)
j−

∣∣Y (k)
n+1 ≤ y

(k)
i−

])

= q(k)
(
x, y

(k)
i+ , y

(k)
j+

)
− q(k)

(
x, y

(k)
i+ , y

(k)
j−

)

− q(k)
(
x, y

(k)
i− , y

(k)
j+

)
+ q(k)

(
x, y

(k)
i− , y

(k)
j−

)
,

with q(k)(x, b, a) given by Eq. (5), thus:

b
(k)
ij (x) = Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j+

)
−Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j−

)

−Φ(k)
ρ

(
y
(k)
i− , ỹ

(k)
j+

)
+Φ(k)

ρ

(
y
(k)
i− , ỹ

(k)
j−

)
.

Similary, d
(k)
ij is of the form of the second equation:

Starting with the definition:

d
(k)
ij (x) := Pn+1

(
Y

(k)
n+1 ≤ Y (k)(x) < y

(k)
j+

∣∣y(k)i− ≤ Y
(k)
n+1 < y

(k)
i+

)

× Pn

[
y
(k)
i− ≤ Y

(k)
n+1 < y

(k)
i+

]
,

hence writes:

d
(k)
ij (x) = p(k)n (xn+1, y

(k)
i+ )
(
Pn+1

[
Y (k)(x) ≤ y

(k)
j+

∣∣Y (k)
n+1 ≤ y

(k)
i+

]

− Pn+1

[
Y (k)(x) ≤ Y

(k)
n+1

∣∣Y (k)
n+1 ≤ y

(k)
i+

])

− p(k)n (xn+1, y
(k)
i− )
(
Pn+1

[
Y (k)(x) < y

(k)
j+

∣∣Y (k)
n+1 ≤ y

(k)
i−

]

− Pn+1

[
Y (k)(x) ≤ Y

(k)
n+1

∣∣Y (k)
n+1 ≤ y

(k)
i−

])

= q(k)
(
x, y

(k)
i+ , y

(k)
j+

)
− h(k)

(
x, y

(k)
i+

)

− h(k)
(
x, y

(k)
i−

)
+ q(k)

(
x, y

(k)
i− , y

(k)
j−

)
,

with q(k)(x, b, a) given by Eq. (5) and h(k) (x, b) given by
Eq. (7), thus:

d
(k)
ij (x) = Φ(k)

ρ

(
y
(k)
i+ , ỹ

(k)
j+

)
−Φ(k)

ν

(
y
(k)
i+ , η(k)

)

+ Φ(k)
ν

(
y
(k)
i− , η(k)

)
−Φ(k)

ρ

(
y
(k)
i− , ỹ

(k)
j+

)
.
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