
HAL Id: hal-00868406
https://hal.science/hal-00868406

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation validation using the compatibility between
Simulation Model and Experimental Frame

Damien Foures, Vincent Albert, Alexandre Nketsa

To cite this version:
Damien Foures, Vincent Albert, Alexandre Nketsa. Simulation validation using the compatibility
between Simulation Model and Experimental Frame. SummerSim’13 (45th Summer Simulation Multi-
conference 2013), Jul 2013, Toronto, Canada. pp.75. �hal-00868406�

https://hal.science/hal-00868406
https://hal.archives-ouvertes.fr

Simulation validation using the compatibility between Simulation Model and

Experimental Frame

Damien FOURES1,2, Vincent ALBERT1,2, Alexandre NKETSA1,2

1CNRS, LAAS, 7 avenue du colonel Roche, BP 54200, 31031 TOULOUSE, FRANCE
2Univ de Toulouse, UPS, LAAS, 31400 TOULOUSE, FRANCE

dfoures@laas.fr, valbert@laas.fr, alex@laas.fr

Keywords: Discrete event simulation, experimental frame,

measure, validation, V&V

Abstract
This work illustrates the possibilities associated with the con-

cept of experimental frame in the domain of simulation. The

experimental frame noted ”EF” is used to define the environ-

ment in which a model will evolve. EF and model are ex-

tracted from specifications of the system understudy. Formal

language has been utilized for designing EF & model such

that model checking techniques can be employed. We have

chosen ”I/O automata”, applying the frame to the model im-

plies incompatibilities with parts of the model. In this con-

tribution we detect these incompatibilities to measure it. Our

method will allow a set of metrics evaluate the validity of

simulations according to goals of simulation user-defined.

1. INTRODUCTION

Since 60’s, Systems Engineering (SE) has evolved. There

is general agreement to define the SE as a interdisciplinary

scientific approach, whose goal is to formalize and apprehend

the design of complex systems successfully. Complex sys-

tems have invaded our environment, closest are in our pocket,

farthest are at some 18 billion kilometres from Earth (space

probe Voyager 1).

A system is said to be complex, when it includes a large

number of heterogeneous entities in interaction and includes

calculations requiring either time or complex operators. This

complexity poses hurdles to any possibility of knowing the

system behavior in its entirety by an observer. These com-

plexity problems have led to use two approaches for systems

validation, to answer the question: ”It is the good system?”.

The first method consists of developing the system before

submission to a set of tests. Then it is manually applied a set

of stimuli to the system while observing his behavior (time-

costly procedure). This method allows exploring only a small

part of the system.

The second one, more complex could not appear until the ar-

rival of computing. It consists in building a model of the sys-

tem and simulate it to perform validation activities as early

as possible in the development cycle of the system. This sec-

ond method reduces development costs and time to market by

detecting problems earlier in the design. For example, the lat-

est Peugeot 208 (a french car)has required twice less physical

tests than the 207, giving more prominence to the simulation

[Clapaud 2012]. Due to a growing interest in simulation and

the increase of computer computational power, modelling and

simulation (M&S) is now a fully fledged discipline, with its

own problems and its own research areas.

In order to obtain the confidence of engineer and development

teams in the simulation results, it is essential to validate these

results. Our research is primarily concerned with the follow-

ing issues:

• Assess the validity of a simulation model based on the

level of abstraction and objectives of simulation.

• Attach information to clarify the validity range of the

simulation model and possible means to remain in the

defined area.

• Define metrics to quantify the efficiency of simulation

considering models involved and the expected results.

We use the concept of experimental frame originally intro-

duced by [Zeigler 1976] to answer these issues in the field of

simulation.

This paper will address these problematic and briefly de-

scribe the proposed solutions to address them. It will focus on

the presentation of the simulation, the concept of experimen-

tal frame and related formal methods. We will then present

our approach and methodology through SiML, a SysML pro-

file for simulation. Section 5, puts forward the metrics that

can be derived by our approach. We will conclude this paper

by research perspectives.

2. SIMULATION
This section acts as preliminary to present simulation and

key concepts of experimental frame for modelling and sim-

ulation as they were introduced by B.P.Zeigler in [Zeigler

1976]. Simulation is used throughout the life cycle, from cus-

tomer requirements capture to system validation as shown in

Figure 1.

Simulation is divided into four stages according to project

progress. The transition from one simulation platform to an-

other requires more or less effort, depending on the type of

mailto:dfoures@laas.fr
file:valbert@laas.fr
mailto:alex@laas.fr

Figure 1. Simulation in the development cycle.

systems developed and tests which can be achieved. Figure

4 illustrates the chronology of platforms. It is difficult to es-

tablish a precise location for each method. Depending on the

activities and policies of the development team and the type

of system to be deployed, these phases will be forced to slide,

and thus appear more or less early in the development cycle.

• 1-MITL: ”Model in the loop” consists of recovering a

model describing the behavior of the system to be vali-

dated by simulation.

• 2-SITL: ”Software in the loop” consists of recovering

a program that implements the model in the target lan-

guage. This implementation can lead to bias due to

model implementation constraints. A new phase of val-

idation and/or verification is required to ensure the se-

mantic equivalence.

• 3-CITL: ”Controller in the loop” consists of validating

the behavioural equivalence of the program after con-

troller integration. All control systems is still simulated.

• 4-HITL: ”Hardware in the loop” consists of replac-

ing successively simulated systems by physical systems.

The environment remains simulated.

Our work proposes the use of formal and semi-formal ap-

proaches to improve the process of V&V of the ”Model in the

loop” platform . The MITL platform wants to be independent

of the actual system, which means that the language used are

not specific to a given architectural solution. The developer

can focus on the functional aspects without worrying about

compatibility with physical components and thus providing

to simulation ”users” a previous model which describes the

behavior of the system.

The simulation user is in charge of validating the system.

To do this, he describes the assumed system environment on

the basis of requirements to validate simulation assumptions.

This phase of environmental modelling can be done in par-

allel with the modelling phase of the system, or completely

independently as shown in Figure 2. Starting from a com-

mon set of knowledge (expert) and specifications, the user

describes evolution of environment model and simulation as-

sumptions. This allow, through this experimental frame defi-

nition, take into account model usage requirements reducing

consequently the model field. These restrictions or deviation

must be qualified or quantified by measures, we call it met-

rics.

Requirements

User Developer

User Formal Specification

Dev. Specification

Dev. Formal Specification

Model

Experimental Frame

User Specification

knowledge

Figure 2. Model / Experimental frame Development

According to validation needs, the environment (experi-

mental frame) or the model will be more or less detailed,

which leads to the use of modelling and simulation environ-

ments with different levels of abstraction depending on V&V

objectives.

The experimental frame features three components as

shown in Figure 3.

• A generator, which generates a set of inputs segments for

the model or the system.

• A transducer, which observes and analyses the output

segments of the model or the system.

• A acceptor, which selects the data of interest to the model

or the system while monitoring whether the experimental

conditions are complied with.

The experimental frame provides a first complete model of

the environment.

To assist the simulation user in his task, we introduced a

methodology associated with SysML profile, called Simula-

tion Modeling Language (SiML).

Figure 4. Simulation platforms chronology

System

Model

or

Generator Transducer

Experimental Frame

Acceptor

OportsEF I portsEF

ω<t0,tn>

t0 tn

ρ<t0,tn>

t0 tn

Results

SU

Figure 3. The experimental frame and its components

3. A PROFILE FOR SIMULATION

Improving the validation of the simulation, and more gen-

erally the V&V, goes through the use of formal / semi-formal

methods. By observing current needs, we realize easily that a

major problem for adopting these methods lies in the lack of

methodology. Which formalism to use? In which phase of the

development cycle? Experts able to answer these questions

are rarely in the industry. It seems essential to propose a

language combining the concept of experimental frame to

assist the use of formal methods and thus improve the V&V

chain of the MITL platform .

Using a new language involving semantics and syntax

completely unknown does not seems to be appropriate. The

current size of conception teams of complex systems makes

it difficult and costly to adopt new practices. The possibilities

offered by UML (Unified Modeling Language)make it a

good alternative allowing profile creation. Profiles allow

you to extend UML for a specific domain through extension

mechanisms (stereotypes) that enrich the semantic and syntax

of the language. This is the selected solution to develop a

simulation oriented profile. This profile is shown in Figure 6

(Appendix A).

It describes the EF concepts and simulation needs (us-

age assumptions, modelling assumptions abstraction level,

etc.). Its purpose is to provide simulation user to support to

describe its objectives and simulation assumptions in semi-

formal way. This formalism allows a set of predefined mea-

sures to be provided and then gives the user feedback on the

appropriateness of the simulation. It could be guided on the

choice of the most appropriate simulation model based on its

validation objectives. Predefined behavior assumptions will

determine which model is most suitable to meet simulation

objectives.

By following the steps of Figure 2, the simulation user

needs to validate, or redefine the model and its assumptions it-

eratively. Using the profile allows a systematic application of

our metrics, therefore automatic. Guided by the user, profile

will provide necessaries informations for their calculations.

Formal methods allow a larger set of metrics to be used. It is

therefore decided to use automata to describe the behavior of

the generator and transducer. We shall see in the next section

how it is possible to connect them, to enrich our metrics, with

the completeness property of model checking 1.

The assumptions have a significant role in the SiML profile .

Associated with one or more automata (generator, transducer,

model), applying an assumption will restrict their behaviors.

The assumption that an event ”a” never appears will reduce

the possible evolutions of an automaton taking into account

the event ”a”. Associated with a variable, an assumption may

restrict this variable, but may also restrict other variables (eg

Let A, B, C three variables: If B = A+C, a limitation on A →
a limitation on B).

We classify assumptions into three categories:

• Rational: Assumptions fall within the physics.

• Modeling: Assumptions caused by technical limitations or

modelling choices.

• Operational: Assumptions resulting from system specifica-

tion, simulation specification and objectives.

Although, our work initially focused on the simulation

user, it appears that the use of SiML profile by system devel-

opers can significantly increase possibilities of metrics and

their relevance to the simulation validation. The interaction

between the EF and the system model is performed through

compatibility between automata describing the model, the

generator and the transducer. The following section illus-

trates our approach through an example and describes the

coupling of automata which leads obtained metrics.

1The model checking explores the model state space to see if it meets the

specifications described through a temporal logic.

4. METHODOLOGY
Our method has initially three automata. Compatibility

between these three models complicates understanding

without involving other concepts, the study will be limited to

the compatibility between two extended deterministic finite

automaton which we will call through this paper automaton

.This part derives restriction from article [Foures et al. 2012].

Automaton: An automaton is a 6-tuple: A =
〈X ,Y,S,s0,δx,δy〉 o:

• X is a finite set of input events;

• Y is a finite set of output events;

• S is a finite set of states, s0 ∈ S is the initial state;

• δx : S×X → S is external state transition function that

defines how an event changes states;

• δy : S → Y φ × S is the external state transition function

that defines how an input event changes a state, Y φ =
Y ∪{φ} and φ /∈ Y define null event.2

It is possible to connect two automata to make au-

tomata network. Automata network is a 6-tuple: C =
〈X ,Y,D,Cxx,Cxy,Cyy〉 o:

• X(res. Y)is finite set of input (res. output) events, such

that X ∩Y = ∅ .

• D = {Mi} is a finite set of names of subcomponents.

• {Mi} is an index set of sub-components. Mi can be either

an atomic or coupled automaton.

• Cxx ⊆ X ×
S

Mi∈D Xi s a set of input couplings where Xi

is a set of input couplings where i ∈ D.

• Cxy ⊆
S

Mi∈D Xi ×
S

Mi∈D Yi , is a set of internal relations

of the coupled component.

• Cyy =
S

Mi∈D Yi → Y ∪{ε}, is a set of output couplings,

where Yi is the set of output events of subcomponent i ∈
D.

4.1. Examples
An example of our analysis method for ”experimental

frame - model” compatibility is given hereafter .

� Phase 1 SiML completion.

The first step is to complete the SiML profile using require-

ments. For example: • Simulation assumption: the variable

2δy can be split into two functions: the output function :λ : S →Y and the

internal transition function δint : S → S

z will never happen in this environment (¬z).• Rational as-

sumption: The variable A is always less than 50 ({A|A ∈
I;−∞ ≤ A ≤ 50}). •

By successive stages the profile allows requirements to be for-

malized to achieve a formal specification of the simulation

environment and the model (as suggested in paragraph B).

All assumptions will restrict the use of the model. The final

formalisms choice to describe modelling assumptions has not

yet been subject of detailed studies.

We believe that the use of OCL constraints [OMG], prop-

erties of temporal logic [Di Giampaolo et al. 2010], math-

ematical relations, pattern modelling [Abid et al. 2011] and

automation mechanisms of LTL properties [Nikora and Bal-

com 2009] can be used to define them efficiently.

� Phase 2 Modeling of the environment.

During this phase the user will describe simulation scenarios,

stimuli sequences that he will implement (generator) and the

observable assumed behavior of the model (transducer).

Formally: A coupled automaton C12 = 〈X ,Y,D,Cxx,Cxy,Cyy〉
where: X = Y = {∅},D = A1,A2, Cxx = {∅}, Cxy =
{(a!,a?),(b!,b?),(c!,c?)},Cyy = {∅}, where A1,A2 are two

automata representatives respectively specification of the

frame and the model: • A1 = 〈X1,Y1,S1,s01
,δX1

,δY1
〉 where

X1 = {∅}, Y1 = {a!,b!,c!}, S = {0,1,2}, s01
= 0, δX1

() =
{∅}, δY1

(0,a!) = 2, δY1
(0,c!) = 1, δY1

(1,b!) = 2 and

• A2 = 〈X2,Y2,S2,s02
,δX2

,δY2
〉 with state variables A ∈

I;0 ≤ A ≤ 100 where X2 = {a?,b?,c?,d?,z?}, Y2 = {∅},

S = I × {0,1,2,3}, s02
= (0,0), δX2

((0,A),z?) = (1,100),
δX2

((0,A),a?) = (2,A + 10), δX2
((1,A),b?) = (2,A + 10),

δX2
((1,A),c?) = (3,A), δX2

((2,A),d?) = (3,A), δY2
= ∅.

(A1,A2) can be represented graphically, see phase 2 in Fig-

ure5.

There is a cycle between Phase 1 and Phase 2 in order to

complete the SiML model. Modeling will perhaps generate

new hypotheses. For example, the user can add new assump-

tions to reduce a variable domain and limit the state space of

the experimental frame. The modeller may also be forced to

restrict the model in view of technological constraints.

� Phase 3 Perimeter compatibility.

The compatibility of I/O is a prerequisite for the use of simu-

lation in accordance with the experimental frame. Compat-

ibility should include the name, informations, type, range

and accuracy. This accuracy is function of many parameters.

These assumptions may also affect the compatibility.

For example: A variable {XEF |XEF ∈ I;0 ≤ XEF ≤ 70} can

be compatible with {XM|Xm ∈ I;0 ≤ XM ≤ 50} if an hypoth-

esis defined under certain usage conditions 0 ≤ X ≤ 30. If

compatibility is not complete, each conflict is shown to the

user and discordant inputs/outputs are ”corked” (replaced by

internal events).

� Phase 4 Models exploration.

Model (resp. the experimental frame) is totally explored to

know all the possibilities associated with the model (resp. the

experimental frame) (eg total number of states, variable res-

olution, ...). This phase is not associated with any hypothesis,

it is a complete exploration.

Formally: This is the set of words m recognized, causing a

change from the initial state to a state marked by an automa-

ton A. LM(A1) = {m ∈ (X1 ∪Y1)
∗|δ∗X1∪Y1

(s0,m) ∈ S1}.

� Phase 5 Automata composition.

We carry parallel product called parallel composition (de-

noted by //) in automata theory. The EF and all assumptions

are associated with this product to restrict the model. Parallel

product reveals common transitions of automata, but can rep-

resent the evolution of the model that does not belong to the

alphabets iteration.

Phase 3 may seem unnecessary, but it sets the compatibil-

ity statically. The hypothetical size of models is important, it

is essential to perform a static compatibility test before ex-

ploring the models and dynamic compatibility (time costly).

Using the example of phase 3, if two variables have incompat-

ible validity domain, it is good to detect statically, rather than

find it out after exploring several thousands of states. The user

can still accept the inconsistency of phase 3 to understand in

further detail with dynamic exploration of phase 5.

� Phase 6 Analysis phase.

Compatibility results are given to the simulation user. A set

of metrics (detailed in the next paragraph) give a simulation

confidence index. It could be chosen to refine assumptions

and repeat a cycle of simulations.

5. METRIC

By definition, a metric is a way to find the distance be-

tween two points. Applied to our method, it seeks to measure

the distance between the behavior of the simulation and the

behavior specified by the user of the simulation. Measure-

ments are then used to quantify the confidence that the user

can grant to the simulation. Some metrics are known and rec-

ognized. For example, the calculation of ”good properties” of

a Petri net [Murata 1989]. In our approach, the experimental

frame can reduce the possibilities of the model, these prop-

erties would be impacted and would not provide more infor-

mation. It is possible to say a metric is quantifiable or qual-

ifiable. Without going into details, a simple example permit

to understand these two concepts: the water temperature can

be quantified through the set of real numbers (250K, 383K,

...) or qualified (solid, gaseous, ...). Depending on the objec-

tive of simulation, it can be important to know the water tem-

perature, but sometimes a simple information about its state

is sufficient. The reader will understand intuitively that this

abstraction is significant, the state space and the system com-

plexity are greatly reduced.

This study does not attempt to list and define the set of met-

rics necessary to validate the simulation. As ever, the purpose

0

0
0

1 2

3

1 2

3 4 5

6

0

1

2

c!

a!

b!

a
b
c

EF 3

d
z

Model

EF Model

1 2

3

A=0

A=A+10A=100

d;

a?z;

b?

c?

0

1

2

c!

a!

b!

0

1 2

A=0

A=A+10A=100

d?

a?z?

b?

c?

SiML
Hypo

!z
Ratio

A<50 ...

c a

b

z a

c b

d

d

EF Model

A=0

A=100 A=10

c! a!

b!

z# a?

c? b?

d;

d;

EF Model

A=0

A=100 A=10

Analyse des résultats

1

2

3

4

5

6
Manuel Automatique

Figure 5. Methodology

of simulation, the type of simulated system, the simulation

”accuracy” will lead to the use of different metrics. A com-

promise ”computation time/accuracy of the metric” is manda-

tory.

Several works propose metrics for embedded systems. In

[Karlsson et al. 2008] they use the formal approach to im-

prove the coverage simulations, they are mainly interested in

coverage metrics by calculating the number of places or tran-

sitions from a Petri net. The aim is to validate the model and

not the validity of the simulation. The method includes two

phases: firstly, they generate a set of stimuli, and if a too im-

portant part of the model is uncovered, they explore through

model checking.

Others contributions [Chidamber and Kemerer 1994, Brito e

Abreu and Melo 1996, Lorenz and Kidd 1994] proposed

sets of structural metrics such as ”Coupling between object

classes (CBO)”, ”Polymorphism Factor (POF)” or ”SIZE2”

(the number of attributes and the numbers of local methods

defined in a class).

We distinguish four types of measures: quantifiable, qual-

ifiable, ”A priori” (before execution), ”Posteriori” (after ex-

ecution). These metrics are measured from the superposition

of the complete exploration of models (Phase 4) and the re-

sulting automaton composition (Phase 5), others based on in-

formation provided through the SiML profile. Following is

the list of metrics that we are already capable to extract from

the SiML profile. A thorough study of the possibilities and

their formal definition is in progress.

� A priori:

• quantifiable: The percentage of I/O compatible in relation

to the domain of the I/O, to the unit,...

• qualifiable: Completeness index: If the entire SiML model

who define I/O is completed imply the completeness is good.

� Posteriori:

• quantifiable:: Coverage M/EF is the percentage of states ex-

plored in the model through the experimental frame, in rela-

tion to the total number of possible states.

• qualifiable: Confidence Index is the confidence in the sim-

ulation. Assumptions and the EF behavior limit the model to

one execution trace explored at 100% imply a high confidence

index. Assumptions and the behavior of the EF partially limit

the model imply a limited confidence.

6. CONCLUSION
In this article we covered the concepts of simulation and

validation of the simulation, which show two different issues.

One seeks to validate the model while the other seeks to vali-

date the method validation (improving confidence in the sim-

ulation in view of simulation objectives). The presentation of

the methodology and SiML profile showed two approaches

to restricted the model. The use of different kinds of assump-

tions allow to have constraints that restrict the model (eg ra-

tional assumptions) and others like the generator, that restrict

a set of sequences of events in the automaton. The use of

SiML profile by all actors in the development cycle allows

a better control of the simulation and its validity. It is impor-

tant to formally define the set of metrics to help to validate the

simulation. The issue of taking into account the time currently

poses problems with states explosion but is essential for an in-

dustrial use. Experience has shown that the scaling is always a

delicate moment. This factor was considered since the begin-

ning of the study; it is an important step that should be taken

into account. The use of qualitative reasoning [Kuipers 1994]

seems to be an interesting way to limit the complexity of the

simulation, limiting the state space variables and therefore the

resulting automaton.

7. ACKNOWLEDGEMENT
We are grateful to Vikas Shukla, whose discussions and

comments helped to improve this paper.

REFERENCES
N. Abid, S. Dal Zilio, and D. Le Botlan. Verification of Real-

Time Specification Patterns on Time Transition Systems.

Technical report, 2011.

F. Brito e Abreu and W. Melo. Evaluating the impact of

object-oriented design on software quality. In Software

Metrics Symposium, 1996., Proceedings of the 3rd Inter-

national, pages 90–99. IEEE, 1996.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object

oriented design. Software Engineering, IEEE Transactions

on, 20(6):476–493, 1994.

A. Clapaud. Psa : deux fois moins de tests physiques pour

concevoir la peugeot 208. 2012.

B. Di Giampaolo, G. Geeraerts, J. Raskin, and N. Sznajder.

Safraless procedures for timed specifications. In 8th Inter-

national Conference on Formal Modelling and Analysis of

Timed Systems, 2010.

D. Foures, V. Albert, A. Nketsa, et al. Formal compatibil-

ity of experimental frame concept and fd-devs model. In

9th International Conference on Modeling, Optimization &

SIMulation, 2012.

M. H. Hwang and B. Zeigler. Reachability graph of finite

and deterministic devs networks. IEEE Transactions on

Automation Science and Engineering,, 2009.

D. Karlsson, P. Eles, and Z. Peng. Model validation for

embedded systems using formal method-aided simulation.

Computers & Digital Techniques, 2008.

B. Kuipers. Qualitative reasoning: modeling and simulation

with incomplete knowledge. MIT press, 1994.

M. Lorenz and J. Kidd. Object-oriented software metrics: a

practical guide. Prentice-Hall, Inc., 1994.

T. Murata. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 1989.

A. P. Nikora and G. Balcom. Automated identification of

ltl patterns in natural language requirements. ISSRE’09,

2009.

OMG. Omg object constraint language (ocl), superstructure.

OMG specification, pages 1–256.

B. Zeigler. Theory of modelling and simulation. A

Wiley-Interscience Publication. Wiley, 1976. ISBN

9780471981527. URL http://books.google.fr/

books?id=M-ZQAAAAMAAJ.

http://books.google.fr/books?id=M-ZQAAAAMAAJ
http://books.google.fr/books?id=M-ZQAAAAMAAJ

A APPENDIX

Figure 6. SiML profil

	Introduction
	Simulation
	A profile for simulation
	Methodology
	Examples

	Metric
	Conclusion
	Acknowledgement
	Appendix

