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Abstract—Existing privacy controls based on access control
techniques do not prevent massive dissemination of private data
by unauthorized users. We suggest a usage control enforcement
scheme that allows users to gain control over their data during its
entire lifetime. The scheme is based on a peer-to-peer architecture
whereby a different set of peers is randomly selected for data
assignment. Usage control is achieved based on the assumption
that at least t out of any set of n peers will not behave maliciously.
Such a system would still suffer from re-injection attacks whereby
attackers can gain ownership of data and the usage policy thereof
by simply re-storing data after slight modification of the content.
In order to cope with re-injection attacks the scheme relies on
a similarity detection mechanism. The robustness of the scheme
has been evaluated in an experimental setting using a variety of
re-injection attacks.

I. INTRODUCTION

With the advent of social networks and cloud computing
the processing and storage of private data is more and more
outsourced to services operated by third parties. The significant
capacity increase and widespread dissemination advantages
offered by these services also come with unprecedented se-
curity and privacy concerns. Beyond basic exposures that are
partially covered by classical security mechanisms such as
data confidentiality, authentication, and access control new
security and privacy requirements arise due to the sheer volume
of data exchanges and the span of dissemination enabled
by these services. Existing privacy controls based on access
control techniques do not prevent massive dissemination of
private data by malevolent acquaintances of social network,
unauthorized duplication of files or personal messages, or
persistence of some files in third-party operated storage beyond
their deletion by their owners. As a result of such exposures,
users of these outsourced services lose control over their data
thereof. Bestowing users back with the control of their data
and over the way it is disseminated within these services can
unfortunately not be achieved by means of classical access
control mechanisms.

Access control can achieve perfect control over the identity
of parties authorized to access the data and the circumstances
of the access operation pertaining to time and content but it
does not allow for any control over the way these parties make
further use of the data. Such a comprehensive control spanning
the entire lifetime of each data segment can actually, be assured
through a security service called usage control. A contingent,
high-level use case example that entails usage control allows a
set of users to store their data segments along with the imposed
by them policy into a system, such that the usage control policy

will be enforced during the entire lifetime of users’ data. Usage
control guarantees the policy enforcement to every copy of
the data segment and the conformation to the policy after the
deletion of it without letting unauthorized duplications in third-
party storage services.

In this paper, we suggest an original solution to tackle
a special case of the usage control problem. Even though a
generic usage control solution fitting all possible settings seems
infeasible, in a confined environment with a well defined set
of subjects, resources and operations, usage control can be
achieved. The impact of leaving the system to violate some of
the rules would be negligible. The proposed solution defines a
P2P system where data management operations are performed
and controlled by a subset of peers. The enforcement is
assured thanks to the collaboration of peers and based on
the assumption that at least t out of any set of n randomly
chosen peers will not behave maliciously. In all users who have
adopted the P2P network architecture for any operation, the
usage control policy enforcement is guaranteed and violations
outside this network would not significantly affect the system.

Furthermore, even in such a confined environment, an ad-
versary may try to gain control over data segments by slightly
modifying the content and re-submitting the resulting data
segments with a different policy. The proposed enforcement
mechanism allows peers to detect similarities between any
upcoming data and the existing one, thanks to the use of special
functions defined as error tolerant hash function (ETHF).

In section 2, we define the problem of usage control and
depict the idea of our solution. Related work is presented in
section 3. In section 4, the preliminaries of our solution are
provided and in section 5 we give a detailed description of the
scheme. Before closing with our conclusion and future work in
section 8, we analyze the security of the proposed mechanism
in section 6 and in section 7 we evaluate the correctness of the
error tolerant hash function and the feasibility of our solution
in an experimental setup.

II. PROBLEM STATEMENT

A. Usage control

If we could try to give a definition for usage control
then this can be summarized as follows: Enforce compliance
with policy during the entire lifetime of each resource. Usage
control’s main difference with access control is the notion of
continuous policy validation whereas access control is discrete
in the sense that there is no policy enforcement between
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various checkpoints. In contrast, usage control enforces the
policy during the time elapsed between checkpoints.

For instance an access control system verifies that a user
has the rights required by the policy before authorizing access
to a file, but it does not monitor the operations performed
by that subject on the data driven from the file during that
access operation–whereas a usage control policy enforcement
system would also assure that the data obtained through the
access operation is used properly, i.e. in accordance with the
usage control policy. Thus, an online social network (OSN)
application that verifies access to personal data as part of user
profile, assures access control but not usage control because
usage control violations such as duplication or dissemination
of personal data by parties authorized for access control, such
as friends, cannot be prevented even when required by the
owner.

As already introduced in the previous section, the proposed
solution is applied to a confined environment whereby all data
within the system is protected following usage control policies
defined by their respective owner. In a scenario with such a
confined environment, let S be a system that implements usage
control on a set of data D based on the policy of data owners.
Usage control in such a scenario inherently suffers from two
limitations that would allow malicious users to evade the usage
control on data D by system S.

In the first type of attack, which we define as bypass
attacks, a legitimate user can escape from usage control
enforcement on a piece of data di by simply pulling out di
from S and using it outside S in an unauthorized way. Even
though impossible to prevent, the bypass attack has a limited
impact if S has a global coverage that makes it inescapable
for the overwhelming majority of users. Some OSNs such as
Facebook or LinkedIn are inescapable with respect to the inter-
personal communication and if these OSNs implement a usage
control system like S then the bypass attack on personal data
would only have a very limited impact. Therefore, in the sequel
of the paper, we assume that given the confined environment
bypass attacks will not have a strong impact on the security
of the system.

Even a system that would benefit from the impact factor to
prevent the bypass attacks, would still suffer from the other
inherent exposure of usage control system that is the re-
injection attack. In such an attack an adversary extracts some
data di that are governed by a usage control policy P , imposed
by its owner ui. Afterwards the malicious user slightly alters
the data and tries to re-store data d′i but now with the same
or different usage control policy P ′. As such she will present
herself as the new owner o′i of data d′i abusing the usage control
policy system and affecting the dissemination of legitimate
users’ data by duplicating it.

B. Idea of solution

In order to assure usage control together with preventing
re-injection attacks, we propose a distributed enforcement
mechanism based on a P2P system whereby peers collaborate
with each other to assure the enforcement of usage control
policies defined by data owners: in the proposed solution, each
data is assigned to and managed by a predefined set of n peers
whereby at least t of them are considered as being legitimate.

The new system hence relies on a threshold solution whereby
at least t legitimate nodes collaborate and guarantee the correct
enforcement of policies defined for each piece of data.

Yet, such a solution does not protect the system from re-
injection attacks. Since the decentralized control of each data
segment is distributed among a different subset of nodes, any
attacker may gain ownership of a data segment by slightly
altering some existing data segment and submitting the new
version of a new segment with its own policy to the system.
Such modification attempts will go undetected because the
modified data segment will be considered as a brand new
segment and thus it will be assigned to a different set of peer
nodes.

Such attacks are avoided thanks to the design of a dedicated
data assignment algorithm which detects similarities between
any new and already stored data. This newly defined type
of algorithm is a specific function which outputs the same
fingerprints for slightly modified files. This function is named
error tolerant hash function (ETHF) an assures that similar
data are assigned to the same set of nodes.

Furthermore, the node assignment operation of course
cannot be implemented by the user itself: hence, randomly
selected peers should agree on this final set of peers assigned
to the management of a specific content. Therefore in addition
to the need for similarity detection function, the system should
define a random generator to select these random peers whose
main role is to perform the initial data assignment step. Basic
cryptographic hash functions are a good candidate for this
preliminary step.

Furthermore, even before the problem of node assignment,
one should define the way how content is defined in the system.
Indeed, the relevant and unique content has to be extracted
from files that may be defined or encoded in different ways.
We therefore assume that each file consists of some metadata
that includes information about the file and the content itself.
This content is used as the input to detect similarity. We assume
that the content of the files is human readable encoded text.

To summarize, the proposed usage control mechanism that
defines the P2P network as the confined environment protects
against re-injection attacks thanks to the use of error-tolerant
hash functions that are able to detect similarities. However, the
use of such functions is not sufficient in order to fully ensure
the control over data. We next give a description of previous
related work.

III. RELATED WORK

In [12] authors provide the first definition of usage control
policy in the sense of ongoing policy enforcement after data
release. A set of authorizations, obligations and conditions
should be smoothly orchestrated for a usage control policy
scheme. Conditions should be validated in accordance with
obligations in order to allow authorizations on objects. Zhang
et al [9] provide a different formalization of usage control
using Petri nets. In [17],[6] authors propose a policy based
usage control language for usage control enforcement. Zhao
et al [17] in their analysis proposed the notion of timing
constraints which advocates an ongoing usage control policy.
Both papers lack the definition of a mechanism whereby
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the enforcement of a usage control policy can be applied
in an architecture with malicious users. Janicke et al [8]
proposed an enforcement scheme which can be considered as
being the closest one to the proposed solution in the sense
that enforcement is achieved in a distributed environment.
Unfortunately, as opposed to our solution the correctness and
security of such mechanisms are not evaluated though out a
real life data management scenario.

In [13] authors propose usage control enforcement targeted
for the X11 graphical user interface management daemon in
Linux, Unix and Mac operating systems. Their solution is
based on data flow tracking in between different resources.
In [10], Kumari et. al. enforce usage control policies in the
application level of a web browser by evaluating it in a web
based online social network plugin. Harvan et al [4] implement
a data flow control mechanism with system calls interposition
by controlling them with a monitoring mechanism. Even
though the aforementioned practical usage control enforcement
mechanisms are implemented in different levels of a system
our solution identifies and copes with specific attacks which
have a serious impact on the security of the usage control
mechanism such as re-injection and bypass attacks.

Some other works such as in [2] propose the use of
similarity detection algorithms for an optimized data storage
and lookup operation in P2P systems. Our work significantly
differs from [2] since EHF are used for usage control and
proved to be secure against re-injection attacks.

IV. PRELIMINARIES

In order to introduce the proposed scheme, we first describe
the tools which will further be used as the main building blocks
of the proposed usage control mechanism.

We consider the scenario whereby a user Ui wishes to store
a file Fi to further share it with some other users. In order to
enforce the control over the file Fi, the owner Ui defines a set
of policy rules Pi.

A. Peer to peer network.

As previously mentioned, the proposed solution imple-
ments usage control within a P2P network which is considered
as a confined environment with a global coverage: we assume
that the impact of bypass attacks hence is limited.

In this P2P system, data lookup, data retrieval and all other
operations related to data management follow a protocol based
on Distributed Hash Tables (DHT) [16]. A DHT associates
the stored data with a key. Each key is assigned to a subset
of nodes who corresponds to the peers that are responsible of
storing the corresponding data and enforcing the correct usage
of it. The mapping between the key and the subset of nodes
in a specific protocol is based on the use of a specific hash
function which is described in the next section.

The correctness and security of the proposed usage control
scheme relies on the legitimate behavior of a corresponding
peers responsible of controlling data. Lookup and retrieval
operations for a certain data object are distributed among n
peers whereby at least t of them do not behave maliciously.

B. Error tolerant hash function.

In the proposed solution, the hash functions that define the
mapping between certain data and the subset of nodes which
will store it is an error tolerant hash function which will allow
peers to detect similarities between data pieces.

As opposed to cryptographic hash functions which given
a slightly modified input return a totally different digest than
the original one, an error tolerant hash function (ETHF ) is
resilient to some changes on the input and is defined as follows:

Definition 1: Hs is an ETHF if and only if satisfies the
following properties:

1) resiliency to changes: given two files x1, x2 that
are similar, that is, only a small percentage δ of their
content is different, it exists σ, such that the hamming
distance is less than σ, i.e: HD(Hs(x1),Hs(x2)) ≤
σ, where HD corresponds to the hamming distance.

2) first pre-image resistance: given the result of Hs(x)
it is hard for an adversary to reconstruct x.

3) collision resistance: it is hard for an attacker two find
two different files x1, x2 such that Hs(x1)=Hs(x2)

Thanks to the aforementioned properties an ETHF as-
sures the correctness and security of the usage control policy
enforcement scheme. By assuring that a file and a slightly
modified version thereof will be assigned to the same set
of peer nodes, resiliency to changes helps detect re-injection
attacks. First pre-image resistance prevents an attacker from
determining data files that would be assigned to colluding
peers. Collision resistance on the other hand prevents false
alarms while detecting re-injection attacks.

Similarity detection was the focus of several research
activities [14], [11]. One of the most performant solution
[5] which nowadays is widely used is Charikar’s Simhash
algorithm [1]. This algorithm is used to check similarities
between web documents. The approach consists of creating a
sequence of tokens in such a way that each web page is treated
as an m-dimensional vector by extracting a set of features from
the input. Authors apply random projections of the vector to
a single vector using randomizations. The similarity of two
documents depends on the similarity of the positions at the
projection vector.

The Simhash algorithm can be divided into the following
four sequential phases. Figure 1 illustrates an example of the
way Simhash operates.

Feature extraction During this first phase, a set of k features is
extracted from the input file. For example given the following
text input “Our university is a graduate school” when the
features are sequential words of the text grouped in sets of 3
words the output becomes: {“Our”, ”uni”, ‘ver ”,”sit”, “y i
”,”is ”, “a g”, “rad”, “uat”, “e s”, “coo”, ”l ”}

Hashing: Each feature is then hashed with a cryptographic
hash function and represented as a l-bit array digest.

Accumulation: The set of all digests is accumulated in the
following way: Given the set of the binary digests from the
previous step an l × k matrix is constructed. An addition
operation is performed at the elements of each column by
treating each “0” as −1 and each “1” as 1.
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Reduction: Depending on the sign of the numerical value
of each element in the array that was constructed from the
previous step, the final fingerprint is calculated using the sign
of each value in the table. For each negative value or zero a
0 is assigned, and 1 otherwise.

+

1 1 0 00 1
0 1 1 1 0 0

1 1 0 00 1
0 1 1 1 0 0

0 1 1 1 0 0

1 1 0 00 1
0 1 1 1 0 0

0 1 1 1 0 0

-8 -2

0 1 1 1 0 0

(2) Hashing 

 "Our university is a graduate school"

(1) Features Extraction 

{"Our","uni","ver","sit","y_i",
"s_a","_gr","adu","ate","_sc",
"hoo","l__"} 

(3) Accumulation

(4) Reduction

-2 8 2 2 -2

0

Fig. 1: Simhash’s phases. In phase 1 the features extraction
functionality extracts the features from the file given as input.
Next the hashing procedure occurs whereby all the features
are encrypted using cryptographic hash functions. Afterward
in phase 3 the accumulation operation takes places and in
the end from the reduction phase the final Simhash digest is
computed based on the sign of each number element from the
previous phase

C. Error correcting code.

Since the proposed solution consists of a complete data
management scheme that assures usage control, this manage-
ment scheme should of course ensure data reliability addi-
tionally. Therefore, a redundancy mechanism becomes a basic
building block of the system. Our solution implements an
error correcting code (ECC) [15] which encodes a k symbol
message into n symbols such that given any k symbols the
original message can be reconstructed using the correspond-
ing decoding function. We denote the encoding function as
Enc : {0, 1}k → {0, 1}n and the decoding function as
Dec : {0, 1}k → {0, 1}k.

D. Content Extractor.

Even though two files may look different following a
similarity checking mechanism, their actual content still can
be the same. This occurs due to the different representation of
a file. Configuration data and layout parameters may result
on different representations of the file but the content still
can remain the same. The extractor Ext separates the Data
D from the metadata M of a file F . We refer to this
operation as content extraction implemented by a function
Ext. Furthermore when the P2P network is asked to retrieve
content the InvExt() function reconstructs the file from both
its content and its metadata.

V. THE PROPOSED MECHANISM

A. Overview

As mentioned in the previous section, the proposed solution
relies on the existence of a peer to peer (P2P) network.
Therefore, the main data management operations are executed
through this P2P network following the steps defined in the
newly proposed protocol. In this particular P2P network, nodes
can have four roles:

• Producers UP basically are nodes that wish to share
some data in the network. The producer generates con-
tent and becomes the owner of this specific content.
It also specifies the usage control policy rules for the
retrieval and the usage of this specific content.

• Consumers UC ”consume” content. These are nodes
that wish to retrieve some data. Consumers receives
the required content only if they fulfill the require-
ments defined by the policy rules sticked with the
relevant content.

• Caretakers CT are responsible of both storing content
and verifying whether a consumer is authorized for
the specific usage of the data based on the respective
policy defined by the producer.

• Initiators I define the set of caretakers that are
responsible of a specific content upon reception of
storage request. They also separate the content data
D and metadata MD from the file F .

The proposed mechanism is mainly defined by two oper-
ations, namely the storage and the retrieval. Assuming that
not all nodes are legitimate, the operations defined at both
phases are distributed among a set of n caretaker nodes and
such operations are successful only if a threshold number of
caretakers collaborate. This threshold number is set regarding
the trust degree on the network. During the storage phase,
the newly proposed protection mechanism assures that similar
data are stored and managed by the same set of caretakers. The
similarity verification is performed using the error tolerant hash
function that was defined in section IV-B . During the retrieval
phase, the consumer contacts each relevant caretaker which in
turn verifies whether the consumer fulfills the requirements
originating from the policy rules of the targeted content. In
the following section, we describe each operation in details.

Throughout the paper we are using the following notations:
F , D, MD and P respectively denote the file that is to be
stored in the system, the content of the file, the metadata that
includes information needed for the reconstruction of the file
and the policy corresponding to the usage of the file. that of
the file. Hs denotes the Error tolerant hash function which
is the main building block of the protocol and H denote
a cryptographic hash function. Gen indicates the Content
Extractor which separates the data D from the metadata MD
of a file F and InvG() is the Inverse Content Extractor
that reconstructs the file. Finally Enc and Dec denote the
encoding and decoding functions of the error correcting code
respectively.

B. Storage

We assume the scenario where a producer UPi wishes
to store a file Fi with its predefined policy Pi. The storage
protocol is subdivided into the following three main phases:

• Initialization: At this first phase, the producer UPi

sends the file Fi together with its policy Pi to a
set of l initiators Ii. These l initiators are randomly
selected thanks to the use of a regular cryptographic
hash function H . UPi computes H(F ) and the output
defines Ii. The selection of l initiators is random
because all nodes are not assumed to be legitimate
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however the collaboration of at least l nodes is as-
sumed to produce a correct output. The parameter l
is predefined and depends on the trust degree of the
P2P level. In addition to defining the set of caretakers
for a particular content, the first role of initiators
is to extract the content from the file itself. Indeed,
initiators first extract content Di and construct its
respective metadata MDi from file Fi using the Ex-
tractor Ext described in IV-D. All further operations
will be performed over the content Di.

• Node assignment: The main role of initiators is to
define the set of caretakers that will store the relevant
content. Of course, before allowing the storage of the
data and in order to protect the network from re-
injection attacks, each initiator checks the similarity
between files that are already inserted in the system
and the candidate content. Therefore, initiators apply
an error tolerant hash function Hs as it is defined in
IV-B.
Assume Hs(Dj) = hs′i. Each initiator then computes
the hamming distance between the candidate output
hs′i and the digests of all existing files which are
stored in an index. If there exists hsj in the index
such as HD(hs′i, hsj) ≤ σ then initiators identify a
re-injection attack and reject the storage request. On
the other hand, if initiators agree on the novelty of
the candidate content, then the output hsi defines the
unique set of caretaker nodes that are in charge of
storing the data together with its policy. In order to
assure the integrity of this result, a group signature is
generated over the tuple (filenamei||UPi, {CTi,j}).
This tuple is further added to the newly updated P2P
filesystem index.

• Content and policy storage: Once the non-similarity
verification is successful and the new file references
are added in the P2P filesystem index, the data is
prepared to be sent to the corresponding caretakers. In
order to first ensure data reliability, the error correction
code described in section IV-C is applied over the
data and the metadata separately. Therefore initiators
generate the newly encoded data blocks {ei,1, .., ei,n}
and the encoded metadata blocks {e′i,1, e′i,n}. Initiators
further sign each couple (ei,j , e

′
i,j) using a group sig-

nature again and send it to the corresponding caretaker
node CTi,j . Once these encoded blocks received, the
caretaker CTi,j first verifies initiators’ signature and
further stores this couple together with its policy.

C. Retrieval

We assume consumer UCv would like to retrieve a file Fi.
As opposed to the storage protocol, the retrieval protocol does
not use any error tolerant hash function and does not involve
initiators. Only caretakers and consumers play a role in this
protocol which is divided into the three following phases as in
the case of the storage protocol:

• data lookup: Consumer UCv sends a regular P2P
lookup request for the file Fi using the filename of
Fi. Following the index, UCv receives the set of
caretakers that store the data corresponding to Fi.

• verification: UCv sends a retrieval request to at least
k caretaker nodes together with its credentials. Each
caretaker CTi,j verifies whether consumer UCv’s cre-
dentials are compliant with the policy Pi. If this veri-
fication is successful UCv receives the corresponding
couple (ei,j , e

′
i,j) from each CTi,j .

• content retrieval and file reconstruction: Once con-
sumer UCi receives at least k pairs of encoded blocks
(ei,j , e

′
i,j), it applies the decoding function D over

these encoded blocks in order to compute the original
blocks and hence retrieve both data Di and MDi.
Following the information in MDi, UCi reconstructs
Fi using the inverse extractor InvExt().

VI. SECURITY ANALYSIS

In this section we prove the first pre-image resistance
property of the Simhash algorithm that is required to prevent
re-engineering attacks through which an adversary can derive
from a collection of colluding nodes data segments that would
be managed by those nodes.

Thanks to the existence of collision resistance crypto-
graphic hash functions [3], the set of nodes that selects the
initiators, which in turn define the caretakers for a specific file,
through the execution of the Simhash algorithm, are defined
in a random manner. Resiliency to changes and collision resis-
tance that are required for the security and the correctness of
the usage control policy enforcement scheme are demonstrated
through experimental evaluation in section VII.

Theorem 1: Hs is first pre-image resistant, ie. there is no
polynomial adversary A that can reconstruct the content of
a file F given the output of the Simhash with probability no
better than negligible.

Proof: In order to show thatHs is first pre-image resistant,
we first model the algorithm as a set of three transitions
corresponding to the last three phases of the Simhash algo-
rithm, namely, hashing, accumulation, reduction and a set of
four states s1, s2, s3 and s4 where s2, s3 and s4 respectively
represent the outputs of each phase and s1 denotes the input
of the Simhash algorithm. The model can be summarized by
the following states:

• s1 : The file is a set of plaintext features.

• s2 : Fingerprints are hashed.

• s3 : Each feature is represented as a k long vector
after the accumulation phase.

• s4 : In the end a final fingerprint is available for
similarity checking.

Therefore, the proof of Theorem 1 consists of proving that
it is hard to find s1 given s4. We now sequentially analyze
the probability of finding the state before a transition given
the state after its execution. We therefore start to evaluate
the probability of finding s3 given s4. Each number in s3 is
mapped to a bit (0,1) based on its sign. Since the accumulation
phase consists of a simple addition operation of l numbers
which are set to either −1 or 1, the resulting sum for each
element of the array is an integer between [-l, l]. Hence the
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Input: A producer UPi wants to store file Fi under policy Pi

• UPi: Compute H(Fi). derive the list of initiators{I1,I2,. . ., Il}, send Fi and filenamei to each Ii
• Initiator Ii: Extract {Di,Mi} from F , Compute and−→ {CTi,1, CTi,2, . . . ,CTi,n},

if ∀j HD(hsj , hs
′
i) > σ then:

1) Store (filename|UPi, {CTi,1, CTi,2, . . . , CTi,3}) as index.
2) Group sign ({CTi,1, CTi,2, . . . , CTi,n})
3) Encode data:Enc(Di) −→ {di,ri} = ei,j , Enc(Mi) −→ {m′

i, r
′′
i } = e′i,j

4) Send (ei,j , e
′
i,j) to the CTi,j signed with a group signature scheme.

• Caretaker CTi,j : if Verify(ei,j , e
′
i,j) := success

1) Store {(ei,j , e′i,j , Pi)}

Fig. 2: Storage

Input: A consumer UCv seeks to obtain file F under policy P with credentials C
1) UCv asks for filename|Uid gets the list of nodes {n1,n2,n3, . . ., nl}
2) UCv is asking for Di from every participant of the {n1,n2,n3, . . ., nl} list.
3) Each CTi,j evaluates credentials Ci for data Di that she owns
4) if Evaluate(UCv, Ci, Di, Pi) = Success :

a) Each CTi,j sends {(ei,j , e′i,j)} to UCv .
b) UCv decodes: Dec(ei,j) −→ {Di, Pi} , Dec(e′i,j) −→ {Mi}. and reconstructs the file:

InvExt(Di,Mi) −→ F

Fig. 3: Retrieval

probability of finding one element of s3 is 1/(2l + 1). Since
s4 is k-bit large, the probability to find s3 given s4 is:

Pr[s3 ← s4] = (
1

2l + 1
)k

We further analyze the hardness of finding s2 based on s3.
The state s3 consists of an array T of size k, where each
element is a number of size in the range [−l, l] and is the
result of the accumulation phase of Simhash algorithm as
described in IV-B. We compute the probability of an adversary
to successfully guess the set of all k numbers such that
when summing them accordingly with the description of the
accumulation phase of Simhash algorithm she can reconstruct
the state s3. Such a probability basically depends on the size l
and differs if l is even or odd. We now analyze the probability
Pr of finding l numbers whose sum is equal to Ti with respect
to the nature of l.

Even: If l is even then l = 2 ·k and there are l+1 possibilities
for the sum. These are:

−l,−l + 2,−l + 4, . . . , 0, 2, 4, . . . , l

When Ti = −l all the numbers should be equal to 0 as 0
indicates a transformation into −1, hence Pr[Ti] = 1.

For each subsequent case where Ti = −l + 2j with j =
1, .., l/2, j numbers among l should be equal to ”1” and this
probability is 1

(lj)
. Therefore, the probability of guessing the l

arrays of size k which defines the probability of guessing s2
given s3 is:

Pr[s2 ← s3] = (
1

1 + l
·

l∑
i=0

1(
l
i

) )k

Odd: Similarly when l is odd, there are only l possible values
for Ti; hence, the probability of finding the l values whose is
Ti for all k bits is:

Pr[s2 ← s3] = (
1

l
·

l∑
i=0

1(
l
i

) )k
We analyze the hardness of finding s1 given s2. This

step corresponds to the hashing phase that implements crypto-
graphic hash functions which by their very definition are first
pre-image resistant. Finding s1 from s2 is as hard as breaking
the first pre-image resistance property of a cryptographic hash
function.

To conclude, given s4, we proved that the probability of
a polynomial time adversary that can reconstruct s1 depends
on the security of the underlying cryptographic hash function,
hence Hs is first pre-image resistant.

VII. EXPERIMENTAL EVALUATION

A. Simhash

In this section we evaluate the correctness of the resiliency
to changes property that is required in our ETHF . This
property is of significant importance in our scheme as it allows
similar data to be mapped to the same set of peers and as
such it renders re-injection attacks impossible to occur. The
second property that is demonstrated through the evaluation
procedure is the collision resistance for two non-similar files
given as input an ETHF . Indeed an attacker who manages to
compute an identical Simhash digest for two non-similar files
is be able to produce abnormal behavior, as the usage control
policy enforcement scheme will raise an alert in two similar
files that are different; thus introducing a false positive into
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the scheme. These two properties are demonstrated through an
intensive experimental evaluation whereby different similarity
degrees are assigned to different sets of files. It is very difficult
to theoretically prove these two properties since there is no
formal definition for similarity given the huge diversity among
the representations of content.

1) Experimental Setup: In order to evaluate the accuracy
of the underlying Simhash algorithm with respect to different
modification operations (either minor or major), we analyze
its performance over a large set of files. First, 180 files
have been generated using the sci-gen random scientific paper
generator 1. Each file contains 700 words on average. Since
the performance may vary with respect to the size of the
files, another set of 180 small files has been created by
simply extracting 20 consecutive words from each file of the
previous set. The original files are further modified following
six different scenarios. The modification operations consist in
either adding or removing words to/from the original file at
either the beginning, the end or from a random position in the
file. The significance or impact of the modification depends on
the number of words used in each scenario: in the case with
small files, this number varies from 3 to 10 whereas for large
files either 20 or 60 words are added/removed to/from files.

The Simhash algorithm is implemented using Python 2.7
on a commodity machine with 3.30 GHz Intel Core i5 2500,
8GB memory, 6MB cache which runs Fedora OS. The accu-
racy of this algorithm is evaluated by applying it over a pair
of files and further computing the ratio of the cardinality of
the same bits set to the total number of bits of the resulting
Simhash digest.

We evaluate the resiliency to changes property by running
the Simhash algorithm on every file and its altered version.
The similarity degree of two files is computed as the ratio
of the cardinality of the same bits set to the total number of
bits of the Simhash digest in a percentage form. The result is
a collection of 5040 Simhash digests. The sensitivity of the
algorithm on different number of words is analyzed as well
by running Simhash several times on a file while gradually
increasing the number of words that alter the file according
to the aforementioned scenarios. The sensitivity shows how
unexpectedly Simhash behaves at each scenario. Next we
compute the Simhash digests for each possible pair of files
from each category (small and large files) and evaluate the
collision resistant property for different files.

2) Resiliency to changes: As already mentioned, for each
scenario presented in the previous section, we apply two differ-
ent modifications for each original file: in the case with small
files, either 3 or 10 words are added/removed/replaced. Figures
4 and 5 show the similarity degree between an original file and
an altered one computed for each of the seven modification
scenarios and Table I depicts their mean values. The most
visual result is that in all scenarios, the average similarity
degree is approximately 80%. In the case with small files,
there is a significant difference between the two modification
operations since the modification which uses only 3 words
results in an average similarity degree of 85% whereas the one
with 10 words ends up with a degree of 76%. The main reason
of this strong difference is the fact that 10 words correspond

1http://pdos.csail.mit.edu/scigen/

TABLE I: Average similarity degree

Scenarios Small files Large Files
3 words 10 words 20 words 60 words

Prepend 83.34 76.66 97.38 96.17
Append 87.11 80.61 97.16 96.23
Randomly Append 81.26 77.20 80.38 74.88
Pre-Delete 86.21 78.06 87.11 80.61
Delete 82.77 72.36 83.34 76.66
Randomly delete 80.35 74.84 86.21 78.06

to the 50% of the size of the content. Hence, this can be
considered as a significant modification. Additionally, in order
to evaluate the sensitivity of the underlying Simhash algorithm,
we also computed the similarity degree with respect to the
number of words varying from 1 to 20 for small files. From
Figure 6a, we observe that Simhash reacts as expected to the
gradual increase of the modification parameter. The analysis
with large files (figure 5) basically shows the same behavior as
small files with respect to the decrease of the similarity degree
with the increase of the modification parameter. Furthermore,
we also notice a very large similarity degree for the first
two scenarios where words are added (either in the beginning
or at the end). To conclude, the proposed error-tolerant hash
function outputs a large similarity degree ranging from 72.36%
to 97.38% and therefore can be considered as being resilient
to minor modifications.

0 50 100 150 200
0

20

40

60

80

100

Files

S
im

ila
ri
ty

 d
e

g
re

e

 

 

append 10 words 

append 3 words 

randomly append 3 words

randomly append 10 words

prepend 3 words 

prepend 10 words

(a) Append

0 50 100 150 200
0

20

40

60

80

100

Files

S
im

ila
ri
ty

 d
e

g
re

e

 

 

delete 3 words from a random position

delete 10 words from a random position

delete 3 words from the beginning

delete 10 words from the beginning

delete 3 words from the end

delete 10 words from the end

(b) Delete
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3) Collision resistance: Albeit an error-tolerant hash func-
tion should provide the same output given two similar files,
it should also follow the collision resistance property of a
conventional cryptographic hash function in the case where
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files are significantly different. Therefore, we also compute
the similarity degree between all possible two files from the
same category. Figure 6b depicts the results originating from
the 180 files for each category: the average similarity degree
is approximately 50% for small files and 60% for large files
from a corpus of

(
180
2

)
= 16000 comparisons. The maximum

detected similarity degree for large files is 78.39 and for small
files 71.48. Even the largest similarity degree is much lower
than the minimum similarity degree computed based on similar
files. Therefore, we realize that Simhash can be considered as
being collision resistant.

B. Protocol overhead

We proceed into a prototype implementation of the entire
protocol in order to evaluate its efficiency. For this purpose
we have extended the Kademlia distributed hash table in order
to enforce the usage control policy over files according to our
novel solution. The implementation has been done on a single
computer simulating numerous nodes. For the parameters of
our system we have chosen the following:

1) Each message has length k = 5 bytes and the block
length of the Reed-Solomon error correction code is
n = 7.

2) Each node in kademlia consists of a k-bucket of size
10.

3) For the usage control policy we assume a key based
authorization policy.

4) Initiators are set up using HMAC-SHA256

We store a file of size 100 MB 10 times and we measure
the average time of storage and retrieval operations. As it
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can be observed from figure 7 as the number of nodes is
increasing there is an increasing storage and retrieval overall
time. . The main reason is that the lookup operation will take
more as the larger the number of nodes the more time for the
lookup operation for the initiators and the caretakers nodes to
be addressed. The implementation is unoptimized and there
is space of more efficient implementation with respect to the
simhash algorithm as it can be easily parallelized during the
accumulation phase.

C. Summary

Via evaluating our scheme with respect to the ETHF we
conclude that:

• Similar files end up with a similarity degree that can
be accurately defined by a threshold, as the plots in
figures 4 and 5 show that the results of Simhash have
a low “spread” around the mean value.

• Different files end up with a similarity degree that
is lower than the degree defined for similar files
according to our test scenarios.

The previously analyzed properties, namely, resiliency to
changes and collision resistance imply a random selection of
peers to assign caretakers for data management in such a way
that similar content is assigned to the same set of peers. It
is therefore impossible for potential intruders to apply a re-
injection attack by slightly altering the content of the file and
gaining the ownership of it. Moreover it is guaranteed that
different content will be assigned to a different set of peers.

VIII. CONCLUSION

In this paper we presented a solution for the usage control
policy enforcement problem. Namely, usage control defines
a continuous validation of the policy imposed by the user
during the entire lifetime of its data. The proposed solution
assumes the legitimate behavior of t out of n peer nodes
in a P2P network. Thanks to the employment of Simhash
algorithm which is an ETHF , similar data segments are
assigned to the same set of peers, therefore rendering potential
re-injection attacks impossible to occur. Bypass attacks are
not of significant impact in the scheme, since we assume
that a copy of a file from a confined environment S and its
usage outside this environment with the policy defined by the
user doesn’t have an intense impact because S has a global
coverage.

The security and the correctness of Simhash are demon-
strated through an analytical and experimental evaluation re-
spectively. The experimental evaluation shows that Simhash is
resilient to changes, thus Simhash contributes to the mitigation
of re-injection attacks through various scenarios of possible
file manipulations. Furthermore, Simhash is collision resistant:
thus it acts as a barrier in the abnormal behavior of our scheme
without allowing different content to be assigned to the same
set of caretakers. As part of future work we are planning
to deploy our experimental prototype implementation into a
real peer-to-peer network and evaluate its efficiency with more
complex policies.
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