Linear and Non-Linear Model for Statistical Localization of Landmarks

Abstract : This paper presents and compares 3 methods for the statistical localization of partially occulted landmarks. In many real applications, some information is visible in images and some parts are missing or occulted. These parts are estimated by 3 statistical approaches : a rigid registration, a linear method derived from PCA, which represents spatial relationships, and a non linear model based upon Kernel PCA. Applied to the cephalometric problem, the best method exhibits a mean error of 3.3 mm, which is about 3 times the intra-expert variability.
Type de document :
Communication dans un congrès
16 th International Conference on Pattern Recognition (ICPR), 2002, Québec, Canada. 4, pp.393-396, 2002, 〈10.1109/ICPR.2002.1047478〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00868252
Contributeur : Image Greyc <>
Soumis le : lundi 20 janvier 2014 - 13:51:06
Dernière modification le : mardi 5 juin 2018 - 10:14:42
Document(s) archivé(s) le : mardi 22 avril 2014 - 11:36:20

Fichier

icpr02.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Barbara Romaniuk, Michel Desvignes, Marinette Revenu, Marie-Josèphe Deshayes. Linear and Non-Linear Model for Statistical Localization of Landmarks. 16 th International Conference on Pattern Recognition (ICPR), 2002, Québec, Canada. 4, pp.393-396, 2002, 〈10.1109/ICPR.2002.1047478〉. 〈hal-00868252〉

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

106