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ABSTRACT
In this paper we propose a fast and efficient algorithm for
learning overcomplete dictionaries. The proposed algorithm
is indeed an alternative to the well-known K-Singular Value
Decomposition (K-SVD) algorithm. The main drawback of
K-SVD is its high computational burden especially in high-
dimensional problems. This is due to the fact that in the dic-
tionary update stage of this algorithm an SVD is performed
to update each column of the dictionary. Our proposed al-
gorithm avoids performing SVD and instead uses an especial
form of alternating minimization. In this way, as our simu-
lations on both synthetic and real data show, our algorithm
outperforms K-SVD in both computational burden and the
quality of the results.

Index Terms— Sparse approximation, compressive sens-
ing, dictionary learning, alternative minimization

1. INTRODUCTION

1.1. Sparse Approximation

Sparse approximation of signals has received a lot of attention
during the last decade [1]. This is due to its capability in var-
ious applications such as Compressive Sensing (CS) [2], im-
age processing tasks (e.g. denoising, compression, inpainting,
zooming) [3], and linear regression and variable selection [4].
The sparse approximation problem consists in approximating
a given signal as a linear combination of as few as possible
basis functions. Each basis function is called an atom and the
collection of them is called a dictionary [5]. This dictionary is
overcomplete, i.e. the number of atoms is (much) more than
the dimension of each atom. Specifically, let y ∈ Rn be the
signal whose sparsest approximation is going to be found in
D ∈ Rn×K , with K > n. This amounts to solve the follow-
ing problem:

P0 : min
x

∥x∥0 subject to ∥y −Dx∥2 ≤ ϵ, (1)
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where ∥.∥0 stands for the so-called ℓ0 (pseudo) norm, which
counts the number of nonzero elements, and ϵ is a small
positive constant. The above problem needs a combinatorial
search and is generally NP-hard [6]. So, alternative methods
are used to solve it [1, 7]. One of the most successful ideas is
to replace the non-convex sparsity measure ∥.∥0 with its best
convex approximation ∥.∥1 [8] which leads to the following
convex problem:

P1 : min
x

∥x∥1 subject to ∥y −Dx∥2 ≤ ϵ. (2)

Many algorithms have been introduced to solve the problem
of finding the sparsest approximation of a signal in a given
overcomplete dictionary (for a good review see [9]). These al-
gorithms can be classified into two general categories, greedy
methods such as Orthogonal Matching Pursuit (OMP) [10]
and Compressive Sampling Matching Pursuit (CoSaMP) [11],
and relaxation methods, which replace the combinatorial P0

problem with a tractable one, e.g. P1 problem. Iterative
Shrinkage-Thresholding (IST) [12], Iteratively Re-weighted
Least Squares (IRLS) [13], and Smoothed ℓ0 (SL0) [7] are
some examples of the second category. Greedy algorithms
successively choose the appropriate atoms of the dictionary
that result in the greatest improvement in the quality of the
approximation. Theses algorithms benefit from high speed,
but their accuracy is usually less than that of the second cate-
gory.

1.2. Learning overcomplete dictionaries

For a given class of signals, e.g. class of natural facial im-
ages, the dictionary should have the capability of sparsely
representing the signals. In some applications there is a pre-
defined and universal dictionary that is known to be well-
matched to the contents of the given class of signals, for ex-
ample, the overcomplete DCT dictionary for the class of nat-
ural images. These non-adaptive dictionaries are appealing
because of their simplicity and in some cases their fast com-
putations. However, learning the atoms from some training
signals would result in dictionaries with the capability of bet-



ter matching the contents of the signals. In this way, the adap-
tive dictionaries would outperform the non-adaptive ones in
many applications such as image denoising [14], classifica-
tion tasks [15], and so on.

Most of the dictionary learning algorithms are indeed a
generalization of K-means clustering algorithm [16]. While
in K-means, each training signal is forced to use only one
atom (called centroid), in the sparse approximation case, each
signal is allowed to use more than one atom provided that it
uses as fewest as possible atoms. The approach of K-means
to optimize a set of atoms (called codebook) is to iteratively
perform two stages. In the first stage, known as the clustering
stage, training signals are assigned to their nearest (usually in
the sense of ℓ2 norm) atoms. The second stage is the update of
the atoms in which each atom is updated as the (weighted) av-
erage of the signals in its cluster. This procedure is repeated
several times. As a generalization of this approach, dictio-
nary learning algorithms iteratively performs the two stages
of sparse approximation and dictionary update. In the first
stage, which is actually the clustering of signals into a union
of subspaces, the sparse approximation of each signal is com-
puted using the current dictionary. The second stage is the
update of the dictionary.

In this paper we are going to propose an efficient dictio-
nary learning algorithm, which is indeed a good alternative to
K-SVD. As will be seen in the experimental results, our pro-
posed algorithm outperforms K-SVD in both execution time
and the quality of the results.

The paper is organized as follows. In the Section 2 we
briefly review the general dictionary learning problem to-
gether with K-SVD algorithm. Then in Section 3 we detail
our proposed algorithm. Section 4 presents some experimen-
tal results. Finally, Section 5 concludes the paper.

2. DICTIONARY LEARNING PROBLEM

Consider a set of L training signals in Rn as {yi}Li=1. Putting
these signals as the columns of the matrix Y, the general dic-
tionary learning problem is then to find a sparsifying dictio-
nary, D, by solving the following problem:

min
D∈D,X∈X

∥Y −DX∥2F , (3)

where D and X are the admissible sets of the dictionary and
the coefficient matrix, respectively. D is usually defined as
the set of all dictionaries with unit column-norm. Since we
require that each signal has a sparse approximation, X is the
set of all matrices X with sparse columns. As stated previ-
ously, the general approach to solve (3) is to use alternating
minimization over X and D, i.e. by fixing D the objective
function is minimized over X, and vice versa.

With a fixed D, the minimization of (3) over X is equiv-
alent to sparsely approximating the training signals over D.
Among the various sparse coding algorithms, OMP (or its

variants) is very appealing. This is due to two reasons. The
first reason is the speed of OMP. The second one is its capa-
bility to be efficiently implemented in batch mode. In some
applications, such as dictionary learning, in which we need to
find sparse approximations of a batch of signals in the same
dictionary, we can factor some common operations of OMP.
This fact along with the use of Cholesky factorization results
in the significant acceleration of OMP which leads to Batch-
OMP algorithm [17].

2.1. K-SVD

In the dictionary update stage of K-SVD, only one atom is
updated at a time. Moreover, while updating each atom, the
nonzero entries in the associated row vector of X is also up-
dated. In other words, only those signals participate in updat-
ing one atom that have used it. This is in accordance with the
approach of K-means in which each atom is updated using its
own cluster signals. This also prevents each row vector to be
filled. In what follows, we define x(ω) as a vector containing
those entries of x that are indexed by ω, and E(:, ω) as a ma-
trix containing those columns of E that are indexed by ω. As-
sume that we want to update di along with the nonzero entries
of xi

T , the ith row of X. We define ωi =
{
j : xi

T (j) ̸= 0
}

as
the support of xi

T . Then the problem of updating di along
with xi

T (ωi) amounts to solve the following minimization
problem:

min
d,xr

∥Er
i − dxr∥2F subject to ∥di∥2 = 1, (4)

where Er
i = Ei(:, ωi), in which Ei = Y −

∑
j ̸=i djx

j
T de-

notes the approximation error matrix when di is removed, and
xr is a row vector of length |ωi|. The above problem actually
finds the closest rank-1 approximation to Er

i and can be easily
solved via SVD.

3. PARALLEL ATOM-UPDATING DICTIONARY
LEARNING

In this section we introduce our proposed algorithm. This
algorithm like K-SVD is based on atom-by-atom updating.
The main drawback of K-SVD is its computational burden
especially in high dimensions. This is due to performing SVD
for atom updating. An alternative way of solving (4) is to use
the idea of alternating minimization [17]. In other words, (4)
is alternatively minimized over d and xr. A few (e.g. 3)
alternations give a fast approximation to SVD. The resulting
algorithm is known as the Approximate K-SVD (AK-SVD)
[17]. Although performing more alternations gives a better
approximation, the average performance will not exceed the
performance of the exact solution, i.e. via SVD.

We describe a different way of performing alternating
minimization to update the atoms and their associated row



vectors in the coefficient matrix. To this aim, consider the
overall error matrix,

E = Y − (A1 +A2 + . . .+AK), ∀i : Ai = dix
i
T . (5)

In K-SVD (or AK-SVD), in order to update (the nonzero
columns of) for example Ai, the updated versions of A1, . . . ,Ai−1

are used to compute Ei; while Ai+1, . . . ,AK have not been
yet updated. Keeping this point in mind, we propose to update
the atoms in parallel. In other words, instead of fully updating
each Ai by performing T alternations between di and xr, we
perform T alternations in such a way that in each alternation
all of Ai’s are partially updated (using only one alternation).
In this way, in the subsequent alternations all Ai’s have been
partially updated. As our experimental results in Section 4
suggest, parallel updating of the atoms may result in further
accelerating the convergence rate and even the quality of the
final result.

To update each Ai, we need to compute the error matrix
Ei. It can be easily seen that this matrix can be updated as
follows. The overall error matrix is firstly computed as E =
Y −DX using the current dictionary and coefficient matrix.
Then Ei = E+Ai and after updating Ai to A

(new)
i , the error

matrix E is updated as E = Ei −A
(new)
i . In this way, there

is no need to completely re-compute the error matrix for each
atom, but instead it is updated in a ranked-1 manner.

Algorithm 1 gives a description of the proposed algo-
rithm, which we have called it Parallel Atom-Updating Dic-
tionary Learning (PAU-DL) algorithm. By OMP(Y,D, τ)
we mean the sparse approximation of Y in D and with thresh-
old τ . Depending on the application at hand, τ may be the
threshold on the approximation error (ϵ in (1)) or the maxi-
mum allowed number of atoms in the sparse approximation
of each training signal.

4. SIMULATIONS

We evaluate the efficiency of our proposed algorithm and K-
SVD1 with three sets of experiments. In the first set we aim
to evaluate the capability of the two algorithms in recovery
of a known dictionary. The second experiment is on an au-
toregressive (AR) signal, where there is no underlying dictio-
nary, and we just evaluate the capability of the algorithms in
learning a good (i.e. sparsifying) dictionary form the training
signals. To further evaluate the advantage of PAU-DL over
K-SVD, we consider as the third experiment the problem of
image denoising over a learned overcomplete dictionary as in
[14].

Our simulations were performed in MATLAB R2010b en-
vironment on a system with 3.8 GHz CPU and 8 GB RAM,
under Microsoft Windows 7 operating system. As a rough

1For K-SVD and OMP we have used K-SVD-Box v10 and OMP-Box
v10 available at http://www.cs.technion.ac.il/˜ronrubin/
software.html

Algorithm 1 PAU-DL algorithm
1: Task: Learning an overcomplete dictionary to sparsely

approximate Y = {yi}Li=1.
2: Initialization: Set k = 0, D(k) = D0.
3: The main loop: Repeat until convergence:
4: Sparse Approximation: X(k) = OMP(Y,D(k), τ).
5: Dictionary Update: Set D = D(k), X = X(k), E =

Y −DX, and repeat the following loop T times (T = 3
works well):

6: for i = 1, . . . ,K do
7: Ei = E+ dix

i
T

8: Er
i = Ei(:, ωi) where ωi =

{
j : xi

T (j) ̸= 0
}

9: xT
r = xi

T (ωi)
10: di = Er

ix
T
r

11: di = di/∥di∥2
12: xi

T (ωi) = dT
i E

r
i

13: E = Ei − dix
i
T

14: end for
15: Set k = k + 1, D(k) = D, and go back to the sparse

approximation stage.

measure of complexity, we will mention the run times of the
algorithms.

4.1. Reconstruction of a known dictionary

We generated the underlying dictionary by normalizing a ran-
dom matrix of size 20× 50, with zero mean and unit variance
independent and identically distributed (i.i.d.) Gaussian en-
tries. A collection of 2000 training signals {yi}2000i=1 were pro-
duced, each as a linear combination of s different columns of
the dictionary, with zero mean and unit variance i.i.d. Gaus-
sian coefficients in random and independent positions. We
varied s from 3 to 6. We then added white Gaussian noise
with Signal to Noise Ratio (SNR) levels of 10, 20, 30, and
100 dB. We applied all algorithms onto this noisy training
signals, and compared the resulting recovered dictionaries to
the generating dictionary as follows. Assume that di is a gen-
erating atom and d̄i is the atom in the recovered dictionary
that best matches di among the others. We say that the recov-
ery is successful if |dT

i d̄i| is above 0.99 [16]. The percentage
of the correct recovery was used as the measure of success-
fully reconstructing the generative dictionary. We performed
100 alternations between sparse approximation and dictionary
update stages for both algorithms. The initial dictionary was
made by randomly choosing different columns of the training
signals followed by a normalization.

The average percentage of successfully recovery of the
underlying atoms (APSRA) is shown in Fig. 1. To see the
convergence behaviour of the two algorithms, the improve-
ment of APSRA along the alternation number for SNR =
20 dB and s = 4, 5 is shown in Fig. 2. The average execution
times of K-SVD and PAU-DL were 27.68 and 5.41 seconds,



respectively. With these results in mind, we deduce the fol-
lowing observations:

• PAU-DL has a better APSRA compared to K-SVD in
average. This is especially evident at s = 5 and s = 6.

• The convergence rate of PAU-DL is faster than K-SVD.
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Fig. 1. Successful recovery ratios. Each figure corresponds to
a certain amount of noise.
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Fig. 2. Convergence behaviour of PAU-DL and K-SVD in
recovery of a known dictionary (SNR = 20 dB).

4.2. AR(1) signal

In this experiment, we consider an AR(1) signal (according
to [18]) that is generated as v(k) = 0.95v(k − 1) + e(k),
where e(k) is Gaussian noise with zero mean and unit vari-
ance. A collection of L = 2000 training signals were made
by chopping this signal into vectors of length n = 20. Num-
ber of atoms was set to m = 40, and s = 5 atoms were used
to approximate each training vector. For both algorithms 100
alternations were done. As in [18], we computed SNR as
SNR = 10 log ∥Y∥2F⧸∥Y −DX∥2F .

SNR versus alternation number is plotted in Fig. 3. From
this figure we see that PAU-DL has reached a higher SNR
value compared to K-SVD. The average execution times of K-
SVD and PAU-DL were 15.88 and 2.79 seconds, respectively.
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Fig. 3. SNR in dB is plotted versus the alternation number
during the learning process.

4.3. Image denoising over learned dictionaries

We evaluate here the efficiency of PAU-DL relative to K-SVD
in an image denoising experiment. We aim to find an estimate
of a clean image contaminated with an additive white Gaus-
sian noise with zero mean. The approach of sparse approx-
imation is to firstly divide the noisy image into some small
blocks (typically of size 8 × 8), then learn an overcomplete
dictionary using these blocks as the training signals, and fi-
nally denoise each block over the learned dictionary [14]. As
in [14], we used Peak Signal to Noise Ratio (PSNR), as the
criterion for comparison of the denoising quality. We consid-
ered four test images, all of size 256 × 256. To learn a dic-
tionary for each image, we randomly selected 30000 blocks
of it as the training signals. We repeated each experiment
(corresponding to a certain level of noise) 5 times and aver-
aged the results. The final PSNR values are shown in Table 1.
The average execution times of K-SVD and PAU-DL were
approximately 90 and 30 seconds, respectively.

These results together with those in the previous experi-
ments all suggest the advantage of PAU-DL compared to K-
SVD.

5. CONCLUSION

We proposed a fast and efficient alternative to K-SVD. Our
algorithm is based on updating the atoms of the dictionary
in parallel using the idea of alternating minimization. As the
simulations results on both synthetic and real data showed,
our algorithm outperforms K-SVD in both the average execu-
tion time and the quality of the results.
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