La structure combinatoire du calcul intégral.

Abstract : Gian-Carlo Rota suggested in one of his last articles the problem of developing a theory around the notion of integration algebras, complementary to the already existing theory of differential algebras. This idea was mainly motivated by Rota's deep appreciation for Kuo-Tsai Chen's seminal work on iterated integrals. As a starting point for such a theory of integration algebras Rota proposed to consider a particular operator identity first introduced by the mathematician Glen Baxter. Later it was coined Rota-Baxter identity. In this article we briefly recall basic properties of Rota--Baxter algebras, and present a concise review of recent work with a particular emphasis of noncommutative aspects.
Type de document :
Article dans une revue
Gazette des Mathématiciens, Société Mathématique de France, 2013, 138, pp.5-22. <http://smf4.emath.fr/Publications/Gazette/2013/138/smf_gazette_138_5-22.pdf>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00866616
Contributeur : Patras Frédéric <>
Soumis le : jeudi 26 septembre 2013 - 17:53:36
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

  • HAL Id : hal-00866616, version 1
  • ARXIV : 1304.1204

Collections

Citation

Kurusch Ebrahimi-Fard, Frederic Patras. La structure combinatoire du calcul intégral.. Gazette des Mathématiciens, Société Mathématique de France, 2013, 138, pp.5-22. <http://smf4.emath.fr/Publications/Gazette/2013/138/smf_gazette_138_5-22.pdf>. <hal-00866616>

Partager

Métriques

Consultations de la notice

115